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Abstract

The paper exposes the philosophical and mathematical flaws in an at-
tempt to settle the continuum problem by a new class of axioms based
on probabilistic reasoning. I also examine the larger proposal behind this
approach, namely the introduction of new primitive notions that would
supersede the set theoretic foundation of mathematics.

1. Introduction. In (Freiling 1986) we are promised a “simple philosophical
‘proof’ of the negation of Cantor’s continuum hypothesis (CH)” which asserts
that the size of the set of real numbers is the first uncountable cardinal.! As
Freiling rightly points out, a formal proof from the standard axioms of set
theory ZFC (Zermelo-Fraenkel with the axiom of choice) is impossible.? His
suggestion is to consider in addition to ZFC “intuitively clear axioms” that
are justified by the symmetry in a thought experiment where ‘random darts’
are successively thrown at the real number line. The philosophical appeal of
this approach, according to Freiling, rests on its direct consideration of the
continuum itself because of the strong connections of the latter with physical
reality on the one hand, and the abstract world of set theory on the other.
Freiling cites this as an advantage over the usual method for justifying axioms
which in his view starts from an intuition about finite or countable sets and
“haphazardly” extends it to all sets.

Those ideas have caught hold not only among philosophers and cognitive
scientists, but also among mathematicians outside the field of set theory. For
example D. Mumford in his address to the conference Mathematics towards
the Third Millenium held in 1999, speaks of a “beautiful stochastic argument
to disprove the continuum hypothesis” and wonders why it “is not universally
known and considered on par with the results of Godel and Cohen.”? By
contrast, the majority of researchers working in axiomatic set theory insist that
the continuum problem is open. The purpose of this article is to explain why
axioms of symmetry do not count as a solution to C'H and why they are not
candidates for axiomhood in the first place.
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Ylop. cit., p. 190)

2This follows from the work of (Gédel 1938). The unprovability of CH from the standard
axioms was established by (Cohen 1963).

3 (Mumford 2000, p. 206, p. 208)



Freiling’s approach to the continuum problem is in fact part of a larger pro-
posal which seeks to formulate new axioms by introducing new primitives. In
the second half of the paper some recent attempts in that direction involving
randomness and other probabilistic notions will be surveyed. I will compare
those attempts with the picture emerging from higher set theory where new
axioms use only set theoretic concepts. This will give us an idea about the
prospects of Mumford’s program of devising a more intuitive and powerful for-
malism by building probabilities and random variables into the foundations of
mathematics, at least as far as axioms of symmetry are concerned.*

2. Axioms of Symmetry. Freiling explains the heuristics behind these prin-
ciples in terms of a thought experiment where a ‘random dart’ is thrown on
the real number line (i. e. the umit interval [0,1]).° Given a countable set
A C [0,1], the dart will land in a point outside A with probablity 1. Now
throw “two random darts” on the real line one after another. In analogy to the
one-dart experiment, for any countable set A C [0,1] associated to the point
hit by the first dart (such as for example the set of all rational multiples of
that point), the second dart, with probability 1, will not land in A. As the two
throws are independent, the situation is symmetric with regard to the order of
the throws (“the real number line does not really know which dart was thrown
first or second”),® and thus the first dart will avoid, with probability 1, any
countable set assigned to the second one. This way we are led to the following
‘axiom’ (with [0, 1]y, denoting the set of all countable subsets of [0, 1]).

Ay, Vi [0’ 1] - [O’ 1]N0 Jz1,z2 € [Oa 1] (z2 ¢ f(z1) Az ¢ f(z2))

The intuition behind this is that 21 and x5 can be found independently throwing
two random darts. Freiling emphasizes that Ay, is weaker than the full intuition
decribed above. “All it claims is that what heuristically will happen every time,
can happen”. Nevertheless, this is enough to obtain a two line proof of -CH,
in fact (Freiling 1986, p. 192) shows that Ay, is (in ZFC) provably equivalent
to ~CH."

At this point the reader may ask why this persuasive argument doesn’t
settle CH. Before entering into considerations of a philosophical nature, I want
to bring out what seems to be the main mathematical flaw in the reasoning
leading to the postulation of Ay, as an axiom.

ACE. (Mumford 2000, p. 198)

5The reason for this standardization is that we can interpret the Lebesgue measures of
subsets of [0, 1] as probabilities.

S (Freiling 1986, p. 192)

" Assuming CH let < be a wellorder of the continuum in order type the first uncountable
cardinal w;. (A wellorder of a set A is a total order on A in which every nonempty subset of
A has a least element.) Define f: [0,1] — [0, 1]y, by f(z) ={y € [0,1] : y < z}. Then for all
z1,z2 €[0,1], 1 € f(z2) or z2 € f(z1)-

Conversely, assume ~CH. Given f : [0,1] — [0, 1]x,, fix an w; sequence of distinct reals
(Ta 1 @ <wi). By =CH we can pick a real y ¢ U,.,,, f(za)- Let z be the first real among
the uncountably many z, not belonging to the countable set f(y). Then x and y are two reals
satisfying the conclusion of Ay,.



Let us take a closer look how Freiling passes from his informal thought
experiment to the formal statement Ay,. Essentially, what he uses is that a
subset of [0, 1] x [0, 1] with probability 1 must be non-empty. More precisely:
Consider the space [0,1] x [0, 1] with the product algebra B> = B® B (where B
is the Borel algebra in [0, 1]), let A denote the Lebesgue measure on B, and set
A2 = A ® X (the product measure). The formal statement of the conclusion of
Freiling’s thought experiment is

Vi:[0,1] = [0,1]x, (M2(Af) =1 A MN2(AT) =1)

where
Ap ={(z1,32) 1 22 ¢ f(z1)}
and

Al = {(z1,22) 1 71 ¢ f(22)}.

From this it follows that A\?(A N Af ) = 1, hence this intersection is nonempty.

This chain of inferences requires the measurability of A; and A/f for which
there seems to be no a priori reason. For example, following a classical argument
of Sierpinski, under CH, let < be a wellorder of the continuum in ordertype w;
and define f(z) = {y : y < z}. Then, by Fubini’s theorem, neither A¢ nor A/
are measurable.®

Thus the mathematical flaw in the transition from the thought experiment
to Ay, lies in its haphazard generalization of a plausible intuition about mea-
surable subsets of [0, 1] to arbitrary subsets of [0, 1].

3. Two instructive comparisons. One may object that the above counterex-
ample to the crucial measurability requirement is a pathological consequence
of CH. Tt is precisely the kind of unnatural situation ruled out by Ay,. My
reply to this is to draw a comparison with the Banach-Tarski paradox® and the
axiom of choice (AC). The existence of paradoxical decompositions (as well
as other counter-intuitive consequences of AC' involving non-measurable sets)
has not resulted in a rejection of the axiom of choice. Instead the former are
generally conceived as expressions of the limitations of measurability.'°
Admittedly the force of this argument is somewhat mitigated by the fact
that AC is supported by an overwhelming amount of extrinsic evidence. With-
out the axiom of choice everyday mathematics becomes rather cumbersome.
One can also quite reasonably hold that choice is self-evident in the sense that
it is implied by the concept of set in its intended meaning. But if the above com-
parision with AC' is disqualified on these grounds, this undermines the intuition
behind Freiling’s principles as well: the measurability assumption underlying

8In fact a weak version of Fubini not mentioning the product measure suffices: If A € BQB
is such that almost all (in A) horizontal sections have measure 1 (0 resp.) then almost all (in
A) vertical sections have measure 1 (resp. 0) and vice versa.

9Using the axiom of choice, Banach and Tarski proved the existence of a decomposition of
the unit ball in three dimensional Euclidean space into five pieces such that from these five
pieces two copies of the unit ball can be reassembled using rotations.

10The Banach-Tarski paradox is resolved by noting that the partitioning sets are clearly not
measurable.



the probabilistic motivation for Ay, is neither intrinsically plausible nor does
it enjoy an extrinsic justification independently of Ay,. In fact the moral of
Sierpinski’s counterexample is that ‘axioms’ of symmetry contain a hidden bias
against CH. Their probabilistic motivation presupposes =CH.

At this point it may be instructive to recall Zermelo’s famous proof that,
assuming the axiom of choice, any set can be wellordered, a result know as
the wellorder theorem.!'! Since a wellorder on a set immediately gives a choice
function for that set, the two principles are in fact equivalent (in the standard
axioms without choice). The key point of Zermelo’s result was that the axiom
of choice is evident in a way in which the wellorder theorem is not.'? Now Ay,
and —~CH are provably equivalent (in ZF'C). But again what evidence can be
adduced in favor of Ay, other than that tainted intuition underlying the above
thought experiment?

Those who still believe in ‘axioms’ of symmetry might respond that the
difficulty arises from the customary treatment of probability theory as based
on set theoretic notions such as c-algebras and measures. Indeed (Mumford
2000) suggests circumventing the set theoretic apparatus altogether by con-
ceiving random variables as basic constructs. Before examining the viability of
this proposal, I want to consider two strengthenings of Ay, that cast further
doubt on the reliability of Freiling’s original probabilistic intuition.

4. More general axioms of symmetry. The heuristic leading to the formu-
lation of Ay, actually motivates a stronger principle. As Freiling points out, all
that was used in the original argument was that countable sets of real numbers
have Lebesgue measure 0.!3 Thus we may as well consider functions assigning
measure 0 subsets of [0, 1] to points hit by a ‘random dart’, i. e.,

Anal Vf:[0,1] = [0, Unuy 371,72 € [0,1] (22 & f(71) Az1 ¢ f(72))

(Here [0, 1],y denotes the collection of subsets of [0, 1] with measure 0.) The
principle A,y implies the failure of Martin’s axiom (MA).'* This fact en-
ables us to contrast axioms of symmetry with recent developments in higher set
theory.

M A is the first in a series of combinatorial principles called forcing azioms
that have been intensively investigated. Even though the combinatorial con-
tent of these principles is not yet fully understood, a rather appealing structure
theory for the first uncountable cardinal w; has begun to emerge under the
influence of the proper forcing axiom PF A and some of its modifications.'> In
a different direction, Woodin has recently found a canonical model for ~C H'6

" (Zermelo 1904).

12Gee (Zermelo 1908, §2a), in particular p. 187.

13 (Freiling 1986, p. 193 and 199.)

Y (Freiling 1986, p. 193). Martin’s axiom is a generalization of the Baire category theorem.
The motivation behind it is to extend certain combinatorial aspects of countable sets to
uncountable sets of size less than the continuum.

15 (Todorcevic 1989, 1996, 1997)

'6The model and its canonicity are explained in (Woodin 1999). It is in some sense analogous
to the constructible universe of (Gddel 1988) with respect to CH. However, because of the



in which M A (and stronger principles) are true. This leads to a definability
analysis of P(w;) that implies among other things that the continuum has size
greater than wy. In addition, Woodin was able to establish a fundamental asym-
metry with respect to the continuum problem: there cannot be any analogous
approach resulting in CH.

This gives us at least three more reasons to remain suspicious about ‘ax-
ioms’ of symmetry: First, no canonical model for them is known, second they
come without an accompanying structure theory and third it remains unclear
whether one could formulate other principles based on similiar intuitions which
imply C'H. In fact, given the evidence supporting M A it seems likely that A,y
is false. Its weaker version Ay, is of course true if ~C'H holds (which is begin-
ning to look more plausible in the light of current research). Nevertheless, the
heuristics of ‘random darts’ should not be taken as grounds on which to adopt
Ay, as an axiom because it is equally supportive of the problematic principle
Anull-

Further doubts about the viability of the intuition behind Freiling’s prin-
ciples arise from examining the standard consistency proof for A,.;, i. e.,
the model of ZFC + A,y obtained by adding N, random reals to a model
of CH.'" Freiling’s thought experiment entails the removal of pathologies by
making many sets measurable. By contrast, in the above model exactly the op-
posite is happening. In the course of removing pathologies conflicting with A,y
many non-measurable sets are generated.!® This undermines the probabilistic
motivation claimed for ‘axioms’ of symmetry.

In the spirit of the dubious motto — if you reject C'H you are only two steps
away from rejecting the axiom of choice — Freiling proposes another extension of
Ay, this time substituting subsets of ‘small’ cardinality rather than measure 0
sets for countable sets. Arguing “that the only thing special about a countable
set of reals is that its complement is of higher cardinality and therefore infinitely
more likely to be hit” he is led to the following principle which outright implies
that there is no wellordering of the continuum.'®

A<2N0 Vf: [0, 1] — [0, 1]<2N0 dzq, 29 € [O, 1] (LEQ ¢ f(l‘l) N x1 ¢ f(l‘g))

(Here [0, 1] 9%, denotes the sets of all subsets of [0,1] of cardinality less than
the continuum.) This type of reasoning is defective in several respects. The
most obvious one is an unwarranted equivocation of the combinatorial notion of
smallness (‘small’ cardinality) with the probabilistic one (measure 0). For one
thing, assuming A,,,;; there may be small sets that are not measurable. With
respect to those sets “statements like ‘its complement is infinitely more likely
to be hit’ do not have any meaning in the usual sense,” as Freiling himself is

limitations imposed by forcing, in the ~C H case it is the theory of the model, rather than the
model itself which is canonical.

YCE. (Freiling 1986, p. 193)

180One manifestation of this is Woodin’s proof (unpublished) of an extension of the Fubini-
Tonelli theorem in that model. (A similar result is proved in (Friedman 1980).) For example
the set of random reals (over the ground model) has outer measure 1, yet fails to be measurable.

9 (Freiling 1986, p. 192)



willing to concede.?®

5. The larger proposal. The fact that many fundamental statements of set
theory as well as propositions in other areas of mathematics are undecidable
on the basis of the standard axioms motivates the search for additional axioms.
The axiomatic extensions which have turned out most useful so far (large cardi-
nal axioms, axioms of determinacy and forcing axioms) are all expressible in the
language of set theory with set and membership as primitive notions. A different
way of introducing axioms is to expand the language of set theory by adding
symbols for new primitives and to formulate plausible principles about them.
From those principles in the expanded language solutions to problems stated in
the original language of set theory may be obtainable. (Kreisel 1969, p. 100)
argues for one such proposal (namely the one of adding a truth predicate), and
remarks that “[a] more interesting, but also more problematic, expansion in
the literature (Kruse 1967) concerns the primitive predicate of being a random
sequence.” A recent articulation of this point of view is contained in the afor-
mentioned programmatic article by Mumford. He suggests that treating the
concept of random wvariable as a basic construct will render the customary set
theoretic foundation of mathematics obsolete and result in a more intuitive and
powerful formalism.

The reductionist approach defines random variables in terms of measures,
which are defined in terms of the theory of the reals, which are defined
in terms of set theory, which is defined on top of predicate calculus. I'd
like to propose instead that it should be possible to put random variables
into the very foundations of both logic and mathematics and arrive at a
more complete and more transparent formulation of the stochastic point
of view. (ibid, p. 206)

Mumford concedes that he lacks a complete formulation of his program, and
offers what he calls “a sketch which draws on two sources [he] find[s] very
provocative. The first is the development by E. T. Jaynes of the foundations of
Bayesian probability and statistics (Jaynes 1996 - 2000); the second is a beau-
tiful stochastic argument due to Christopher Freiling to disprove the continuum
hypothesis (Freiling 1986).”

An appraisal of the viability of Jaynes’ viewpoint falls outside the scope
of this article. At any rate his primary concern is not the resolution of unde-
cidable statements of infinitary mathematics (which he regards as meaningless
altogether), but rather to devise a general calculus of plausible reasoning appli-
cable to all inferences arising from incomplete information.?! Suffice it to say
that this is a highly contested area among philosophers of science, especially

20 (loc. cit.) In this context recall also Gddel’s remarks on the implausible consequences of
CH described in terms of covering properties of small sets in (Géodel 1947, p. 185f) as well
as the commentary of (Martin 1976, p. 87) and the subsequent work of (Todorcevic 1997).

21Gee (Jaynes 1996 - 2000, preface). In that sense it is a quantitative formulation of the ap-
proach taken by (Polya 1945, 1954a,b) for treating general problems of scientific methodology.



with respect to the Bayesian approach favored by Jaynes. For example, it has
repeatedly been pointed out that models of quantitative confirmation employ-
ing Bayesian theories of belief change are plagued with persistent failures to
match our intuitive judgements about evidence.?? Similarly, at present far too
little is known about the way we think, in order to arrive at definite conclusions
whether stochastic models and statistical reasoning are more relevant to un-
derstanding the computations in our own minds than exact models and logical
reasoning.?

In what follows I will concentrate on the other source cited by Mumford,
namely the probabilistically motivated ‘axioms’ of symmetry. My aim is to
examine Mumford’s claim that they establish grounds for making random vari-
ables one of the basic elements of mathematics, and to question whether

it follows that the C.H. is false and we will get rid of one of the meaningless
conundrums of set theory. The continuum hypothesis is surely similiar to
the scholastic issue of how many angels can stand on the head of a pin: an
issue which disappears if you change your point of view. (Mumford 2000,
p. 208)

In view of the diffculties created by non-measurable sets and Sierpinski’s coun-
terexample, Mumford points out that a stochastic reformulation of set theory
requires dropping either the axiom of choice or the power set axiom. His rea-
sons for dropping the latter and keeping the former are that “the existence of
random objects is a sort of axiom of random choice” together with his belief
that “mathematics really needs, for each set X, [...] not the huge set 2% but the
set of sequences X" in X.” Moreover, any definable subset A of the continuum
must be measurable so that a plausibility may be assigned to the event of a
random variable taking a value in A.2* In support of his proposal, Mumford
mentions some recent work in higher set theory.?® Actually, as we shall see,
these results provide hints for appraising the prospects of Mumford’s program.
But before doing so, I shall sketch two modern attempts of incorporating prob-
abilistic notions into the foundations of mathematics.

6. Randomness and independence. An immediate difficulty when one tries
to define random numbers is that their elementary properties seem to contradict
each other. One way to avoid this is by switching from classical to intuitionistic
logic where lawless sequences provide another interpretation of ‘arbitrary’.?6
A related approach using classical logic was suggested by Myhill’s axiomatiza-
tion of random numbers?” which treats randomness as an intensional notion,

i.e., a notion concerning the mode in which infinite sequences are given to us.

??Some of the problems with Bayesian accounts of confirmation are described in (Christensen
1999. See also (Glymour 1980).

BCf. (Mumford 2000, p. 198). Recent empirical studies (Kahneman and Tversky 1996) sug-
gest that the process of scientific discovery does not rest on probabilistic inductive reasoning.

2Cf. (ibid)

*Namely (Shelah and Woodin 1990)

26 (Troelstra and van Dalen 1988)

*"See (Kruse 1967)



Finally, two attempts to axiomatize randomness and independence within clas-
sical logic are made in (van Lambalgen 1992) taking into account extensional
as well as intensional aspects of infinite sequences. His idea is to view ran-
dom sequences as obtained by infinitely many independent choices as opposed
to defining randomness in terms of statistical properties such as the stability
of relative frequencies over many repetitions. Thus the new primitive is inde-
pendence. The notation R(z,¥) expresses that z is independent of ¢, or that
i/ has no information about z. In other words, the language at our disposal
does not allow us to define (using the parameters %) a ‘small’ set containing
z. Adding axioms about R to the ZF axioms, Lambalgen arrives at a system
called ZFR.?® A drawback of ZFR is that it denies that the continuum can
be wellordered and thereby refutes the axiom of choice. The two-line proof (op.
cit., theorem 1.8) makes essential use of the axiom of extensionality, and van
Lambalgen takes this as an indication that randomness should be treated as
an intensional concept. He speculates that the system ZFR minus the axiom
of extensionality is consistent with choice, and proposes intensional set theory
along the lines of (Beeson 1985) as a suitable framework for further investiga-
tions of consistency. The system ZF'R itself is consistent relative to ZF since R
has a straightforward interpretation in a model of Solovay obtained by adding
uncountably many random reals to a model of CH. (cf. (Solovay 1970) and
(Kunen 1984)) In fact this interpretation strongly suggests that ZFR is merely
an abstraction of combinatorics for the continuum in these models. This con-
trasts with van Lambalgen’s claim that ZFR describes “a non-artificial notion
of set for which we do not have perfect information about all sets”, and that
it tells us “ what goes on in universes of set theory (like the world of AD) in
which all sets are Lebesgue measurable, or have the property of Baire.”?? In re-
ality, models of full AD are far more complicated than random real extensions,

28Van Lambalgen’s axioms are as follows (van Lambalgen 1992, p. 1279ff)
RO Axioms and inference rules of classical predicate logic
R1 3z R(z)
R2 R(z,yZ) — R(z,?2)
R3 (a) R(z,¥) — R(z,wy) for any permutation 7
(b) R(z,yZ) = R(z,yyZ)
R4 R(z,y) >z #vy

R5 Suppose ¢(z,%) is in Le = g, where x ranges over reals and all parameters are listed
among the . Then

Fz(R(z,9) A oz, §)) = 3e(R(z, 24) A ¢(=, 7).
(Here z must be different from z.)
R6 R(y,Z) A R(z,yZ) — R(y,zZ) (Steinitz exchange principle)

The system consisting of axioms R0 - R6 is denoted by R. If the 4 range only over reals, this
is indicated by R°. ZFR is obtained by adding R and similiarly ZFR°. In both cases R may
occur in the schemata of ZF, and the first argument of R is always a real.

2 (yan Lambalgen 1992, p. 1278, p. 1282f). AD stands for the aziom of determinacy which
stipulates that in a certain class of infinite two-person games of perfect information, one of
the two players has a winning strategy. (Cf. (Moschovakis 1980)).



and their essential features apparently have nothing to do with randomness as
explicated in ZFR.30

Another fact which, according to van Lambalgen, renders the extensional
theory of randomness difficult is that “practical certainty is not absolute cer-
tainty”, and this motivates formalizing the properties of “practically certain”
itself and incorporating this notion into ZF.3! For the purpose of illustra-
tion suppose we have a stochastic mechanism (such as a ‘fair coin’) randomly
producing infinite binary sequences. Add to the language of set theory a gen-
eralized quantifier (), where the intended interpretation of Qz ¢(x) is “if z is
randomly generated, it is practically certain that ¢(x)”. This leads to a system
dubbed ZFQ with the same drawback as ZFR, namely that the continuum
is no longer wellorderable.’> Lambalgen shows that the theories ZFR and
ZFQ are bi-interpretable, and he describes in detail how Freiling’s axioms of
symmetry can be ‘embedded’ into a suitable fragment of ZF Q.33

To summarize: the attempts examined above to axiomatize probabilistic
notions directly instead of defining them set theoretically depart from the con-
cept of set as codified by the standard axioms ZFC.?* Unless one is willing to
adopt intuitionistic logic, either the axiom of choice or the axiom of extension-
ality has to be abandoned. Both alternatives are unattractive. My reasons for
holding this opinion are not so much that classical mathematics (in particular
real analysis) cannot be developed in intuitionistic or constructive set theory.
After all several case studies beginning with Weyl’s Das Kontinuum in 1918,
have demonstrated that a fair amount of ‘scientifically applicable’ mathemat-
ics can be formalized in weak subsystems of set theory that are reducible to
Peano Arithmetic.?> But the results obtained in the course of this program

39Some of these features are explored in (Woodin, Mathias and Hauser forthcoming)

31 (yan Lambalgen 1992, p. 1285)

32Variables bound by @ range over reals. The following axioms for @ are given in (van
Lambalgen 1992, sec. 2)

QO Axioms and inference rules of classical logic

Ql " Qrz#=x

Q2 Qzz#y

Q3 Qzxoé(...,z,...) > Quo(...,y,...)

Q4 Qzp A Qu(p — ) = Qo

Q5 Qzp A Quyp — Q(dA¢)

Q6 QrQyd « QyQzg
Q is the system consisting of Q0 - Q6. ZFQ is obtained by adding Q to ZF where @ is
allowed to occur in the schemata.

33The fragment is denoted by ZF&, and basicly allows two iterations of Q. ZFE&, proves
Ay,, and conversely ZFE; + AC is interpretable in ZFC + Ay,. (van Lambalgen 1992, §6.2)

34The reason for restricting the discussion to the axiomatizations in (van Lambalgen 1992)
was their connection with Freiling’s axioms of symmetry. Another approach to randomness
is based on the notion of algorithmic complexity along the lines of A. Kolmogorov and A.
Solomonoff. Cf. (Li and Vitany: 1997). This allows a definition of randomness without any
recourse to physical reality whereas (Freiling 1986, p. 199) regards the crucial symmetry
argument in his thought experiment as an “almost physical intuition”.

35See for example (Feferman 1993). However, the complete dispensibility of set theory
in scientific applications of mathematics has not yet been established: The mathematical



contribute very little to the epistemological analysis of the abstract ideas guid-
ing mathematical progress. The essence of mathematics resides in the broadest
possible abstraction, idealization and generalization. In this regard intuitionism
and constructivism with their restrictions on acceptable mathematical reason-
ing fall short of providing a foundation for mathematics. Therefore we should
remain suspicious of proposals to introduce new primitive notions if we are told
that they are best studied within those schools of thought. Van Lambalgen’s
axioms for randomness and independence belong to that category. He suggests
constructive set theory as a suitable framework for capturing the intensional
aspects of randomness,® and he repeatedly compares random sequences with
lawless sequences in the intuitionistic sense in order to justify their properties.
In fact he shows that there is a precise correspondence between the two.3” I
do not deny the usefulness of studies of randomness and independence be it in
classical logic or in intuitionistic and constructivistic systems. But I do not see
why this should result in a more intuitive and powerful formalism than the one
provided by set theory.38

Similar remarks apply with respect to the first one of the four “self-evident
philosophical principles” cited by Freiling in support of his ‘axioms’ of symme-
try, namely their connection with physical reality.

Choosing reals at random is a physical reality, or at least an intuition
mathematics should embrace to the extent possible. (Freiling 1986, p.
199)

For one thing how are we supposed to construe the physical existence of real
numbers given that actual measurements produce only rational numbers as
outcomes?3? On more general grounds, one may even question whether ran-
domness should be regarded as a fundamental entity in the description of phys-
ical reality.*? In any case, mathematical research primarily pursues problems
for the sake of their intrinsic interest independently of irrelevant considerations
about physical reality.*! Mathematics, as Weyl remarked,*? is characterized by
the theoretical desire toward totality which is incomprehensible from a strictly
phenomenal point of view.

7. Beyond the standard axioms. The ZF(C axioms are an adequate formal
framework of mathematics in the sense that (i) every mathematical statement

treatment of quantum field theory, for example, requires at least some impredicative notions.
In any case I regard conjectures about the (in)dispensibility of set theory as highly speculative
for the simple reason that the future shape of physics or other scientific fields depending on
mathematics is unpredictable.

36 (yan Lambalgen 1992, §3)

37 (van Lambalgen 1992, §5)

38Recall that ZFR can readily be interpreted in terms of Solovay-randomness, a fact pointed
out by van Lambalgen himself. (van Lambalgen 1992, 1.6)

39 Already at this point, those who are claiming that integers are less problematic than sets
because they can be ‘embedded’ into physical reality, are faced with an analogous difficulty.

40See for example (Diirr 2001).

“1The continuum problem which in the words of (Hilbert 1925, p. 180) “is distinguished by
its unique character and inner beauty”, serves as an illustrative example.

42 (Weyl 1949, p. 66)
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is expressible in the language of set theory with set and membership as the only
primitives and (ii) every theorem of classical mathematics is formally derivable
from ZFC'. Of course alternative foundations using different primitives may be
possible and equally successful. However, at least for now, there is no viable
axiomatization of mathematics in terms of probabilistic notions. The purpose
of this section is to outline another aspect of the foundations of mathematics
where set theory has made significant advances. An alternative foundation such
as the one envisioned by Mumford would have to reproduce those advances in
one way or another if it were to be taken seriously as an alternative.

Soon after Cohen’s proof of the underivability of CH from the standard
axioms, it became clear that independence is a concern of mathematical prac-
tice. Not only many fundamental questions of set theory, but also important
problems in other areas of mathematics cannot be resolved within ZFC.*3 In
anticipation of that situation and motivated by philosophical reflections, (Gddel
1947) proposed a search for new axioms which are implied by the concept of
set and strong enough to settle questions beyond the reach of ZFC.

First of all the axioms of set theory by no means form a system closed in
itself, but, quite on the contrary, the very concept of set on which they are
based suggests their extension by new axioms which assert the existence of
still further iterations of the operation “set of”. These axioms can also be
formulated as propositions asserting the existence of very great cardinal
numbers... (Gadel 1947, p. 181)

Some large cardinal axioms had already been introduced at the beginning of
the twentieth century — that is almost three decades before the standard ax-
ioms were given their present form. But their systematic investigation did not
begin until the 1960s with the advent of forcing and the importation of tech-
niques from other areas of mathematical logic. Since then the subject has grown
enormously, and the resulting theory is commonly viewed as the correct super-
structure for ZFC. The principal reason for this is the remarkable fact that
— despite the ostensible disparity of the various motivations underlying their
formulation — these axioms are arranged into a linear hierarchy ordered by in-
creasing logical strength.** Moreover, the large cardinal hierarchy functions as
a yardstick for measuring logical strength. Propositions transcending ZFC (to
the extent they have been analyzed so far) are equiconsistent with some large
cardinal axiom - including statements not containing set theoretic vocabulary.
Along this hierarchy canonical ‘halting points’ have been identified. One
of them concerns the definability theory of the continuum which is commonly
known as second order number theory. Here the underlying idea is to obtain
information about the continuum by studying the sets definable in this struc-
ture, namely the projective sets. For example, we may ask whether there is a

“3Examples include the Kaplanski Conjecture (Dales and Woodin 1987), the Whitehead
problem (Shelah 1974), and the S- and L-Space Problems (Todorcevic 1989).

“For an overview of the theory of large cardinals see (Kanamori 1994). The logical strength
of a mathematical proposition is measured in terms of relative consistency. A proposition A;
is stronger than A, if the consistency of ZFC + A; implies the consistency of ZFC + A,. Note
that there is no a priori reason why A; and As should be comparable this way. The fact that
members of a wide ranging class of propositions are comparable this way is quite remarkable.
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projective counterexample to CH: an uncountable projective set which is not
equinumerous with R. For their systematic investigation the projective sets are
classified according to the logical complexity of their definitions. Since these
sets are precisely the ones arising in real analysis it will be important to know
that many of them are well behaved. For the first two levels of the projective
sets, ZFC yields the classical regularity properties such as Lebesgue measur-
ability. At higher levels, the presence of regularity properties is independent
from ZFC, so stronger axioms are needed. If one stipulates that all infinite
two-person games with projective pay-off sets are determined (meaning that in
any such game one of the two players has a winning strategy), the structure
theory for the first two levels can be extended to a complete structure theory
for all projective sets giving the kind of answers that are most useful to ana-
lysts. For instance, under projective determinacy (PD), all projective sets are
Lebesgue measurable.*

On the other hand, acceptance of PD as an aziom is hampered by its lack
of plausibility in contrast with the intrinsic evidence supporting large cardinal
axioms. The apparent difficulty is that determinacy as a ‘local’ phenomenon
occuring in the power set of the real numbers apparently has no connection with
‘global’ considerations about higher regions of the set theoretic universe moti-
vating large cardinals. By the end of the 1980s this difficulty could be overcome,
and in a series of dramatic advances a precise level-by-level correspondence be-
tween determinacy and large cardinals was established.*® Nowadays, we see
that PD is ubiquitous. There are a vast number of combinatorial statements
implying PD which are seemingly unrelated to it. Moreover, in virtually all
cases of interest where a principle has higher consistency strength than PD,
it actually proves PD. Thus when extending ZFC by any of these stronger
principles we automatically pass through second order number theory as given
by PD.

The work done on projective sets in the last fifteen years has also resulted
in a remarkable interaction of set theory with other areas of mathematics. On
the one hand the notions and dichotomies in descriptive set theory turned out
to carry meanings in disciplines ranging from harmonic analysis, Banach space
theory and topological dynamics to control theory and mathematical economics.
On the other hand sophisticated techniques from other branches of mathemat-
ics have led to the solution of purely set theoretic problems and furnished new
insights into the relationship of descriptive set theory with other branches of
mathematical logic.*” Admittedly, the effect of these developments on strong
hypotheses is somewhat mitigated by the fact that many of the applications in-

45 Among other things this means there are no paradoxical decompositions of the unit sphere
into projective pieces. (Moschovakis 1980) is the standard reference to second order number
theory under projective determinacy

“®Tronically, the results in (Shelah and Woodin 1990) cited by Mumford in support of his
own proposal, acted as a catalyst by identifying the relevant large cardinal concept. See
(Kanamori 1994) for a lively account of these developments. Proofs and further references
are given in (Martin and Steel 1989) and (Woodin, Mathias and Hauser forthcoming).

4TExamples of such branches are recursion theory (in connection with the global structure
of Turing degrees) and model theory (topological Vaught Conjecture). For an overview and
further references see (Kechris 2001).

12



volve only the low levels of the projective hierarchy, for which ZFC suffices.*®
However, with increasing sophistication the number of genuine uses of stronger
hypotheses is likely to grow. In any case, irrespective of considerations about
logical strength, the full theory of the projective sets performs a crucial epis-
temic function by virtue of their strong closure properties as the natural frame-
work for modeling purposes. This fact (which is already in evidence in the set
theoretic foundation of analysis) is philosophically significant.

As far as the continuum problem is concerned, by (Levy and Solovay 1967)
there is no hope of duplicating the success of large cardinals achieved in second
order number theory. Nevertheless, I do not see any compelling basis for the
view that CH is an ill-posed question as alleged in (Mumford 2000, p. 208)*°
In my opinion, the mathematical evolution of set theory in the post-Cohen era
gives no reason to regard the hope as irrational that the continuum problem
will some day be settled. In the end a comprehensive theory as a whole rather
than an intrinsically plausible axiom may be accepted as a solution to CH (or
alternatively as an ezplanation why there is no fact of the matter about the size
of the continuum). But this much is already certain: ‘axioms’ of symmetry fall
short in both respects.
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