

MATHEMATISCHES INSTITUT DER UNIVERSITÄT BONN

Arbeitsgruppe Mathematische Logik Prof. Dr. Peter Koepke

Bonn, den 06.06.2002

Einführung in die Mathematische Logik SS 2002

Übungsaufgaben, Folge 8, Abgabe: 20.06 nach der Vorlesung

Aufgabe 1

Für jede natürliche Zahl n sei $f_n: \mathbb{R} \to \mathbb{R}$ und es sei $f: \mathbb{R} \to \mathbb{R}$. Ferner seien $r, s \in \mathbb{R}$. Wählen Sie in jeder der Teilaufgaben (a)-(f) eine geeignete Symbolmenge S, eine geeignete S-Interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ und einen S-Ausdruck φ , so daß $\mathfrak{I} \models \varphi$ gleichwertig ist mit der jeweils angegebenen Aussage.

- (a) $\lim_{x\to r} f(x) = s$.
- (b) f ist stetig an der Stelle r.
- (c) f ist stetig.
- (d) f ist gleichmäßig stetig.
- (e) Die Folge $(f_n)_{n\in\mathbb{N}}$ konvergiert punktweise gegen f.
- (f) Die Folge $(f_n)_{n\in\mathbb{N}}$ konvergiert gleichmäßig gegen f.

Aufgabe 2

Es sei $\mathfrak{I}_0 = (\mathfrak{A}_0, \beta_0)$ eine S_0 -Interpretation und $\mathfrak{I}_1 = (\mathfrak{A}_1, \beta_1)$ eine S_1 -Interpretation, beide über demselben Träger A. Ferner sei $S :\equiv S_0 \cap S_1$. Zeigen Sie:

- (a) Es sei t ein S-Term. Wenn für alle $x \in \text{var}(t)$ und für alle $\ell \in S$, die in t vorkommen, $\beta_0(x) = \beta_1(x)$ sowie $\ell^{\mathfrak{A}_0} = \ell^{\mathfrak{A}_1}$ gilt, dann gilt $\mathfrak{I}_0(t) = \mathfrak{I}_1(t)$.
- (b) Es sei φ ein S-Ausdruck. Wenn für alle $x \in \text{frei}(\varphi)$ und für alle $\ell \in S$, die in φ vorkommen, $\beta_0(x) = \beta_1(x)$ sowie $\ell^{\mathfrak{A}_0} = \ell^{\mathfrak{A}_1}$ gilt, dann gilt $\mathfrak{I}_0 \models \varphi$ genau dann, wenn $\mathfrak{I}_1 \models \varphi$ gilt.
- (c) Gelten die Aussagen (a) und (b) auch dann noch, wenn \mathfrak{A}_0 und \mathfrak{A}_1 unterschiedliche Träger haben? Begründen Sie Ihre Antwort.

Aufgabe 3

- (a) Beweisen Sie das Substitutionslemma aus der Vorlesung. Untersuchen Sie dabei auch noch einmal detailliert den in der Vorlesung bereits behandelten Quantorenfall.
- (b) Die Symbolmenge S besitze ein einstelliges Funktionssymbol g, ein zweistelliges Funktionssymbol f, ein zweistelliges Relationssymbol R, ein dreistelliges Relationssymbol P und ein Konstantensymbol C. Es sei φ der S-Ausdruck

$$(\exists v_0 \ Rv_0 f v_1 v_2 \land \forall v_2 \ Pv_0 v_1 v_2).$$

Bestimmen Sie die folgenden S-Ausdrücke.

$$(\alpha) \quad \varphi \frac{c \quad v_0 \quad gv_0}{v_0 \quad v_1 \quad v_2}$$

$$(\beta) \quad \varphi \frac{fv_1v_2 \quad fv_1v_2 \quad c}{v_0 \quad v_1 \quad v_2}$$

$$(\gamma) \quad \varphi \frac{v_2 \quad gv_0 \quad fv_0v_2 \quad c}{v_0 \quad v_1 \quad v_2 \quad v_3}$$

(c) Beweisen oder widerlegen Sie: Ist S eine Symbolmenge, φ ein S-Ausdruck und sind t_0 und t_1 S-Terme und x_0 sowie x_1 verschiedene Variablen, so sind $\left[\varphi \frac{t_0}{x_0}\right] \frac{t_1}{x_1}$ und $\varphi \frac{t_0}{x_0} \frac{t_1}{x_1}$ logisch äquivalent.

Aufgabe 4

Formalisieren die folgenden Aussagen in einer geeigneten Sprache S, und verwenden Sie das in der Vorlesung eingeführte formale Beweiskalkül, um einen Zusammenhang zwischen "matupeln" und "Eine Mause haben" abzuleiten.

- 1. Wer bedrüpt ist, makst nicht.
- 2. Wer knaselt, hat eine Mause.
- 3. Jeder, der nicht deuken kann, makst.
- 4. Alle Drumser nehmen Pfuff.
- 5. Wer kein Pli ist, matupelt nicht.
- 6. Kein betuxter Klep kann deuken.
- 7. Wer Pfuff nimmt, ist bedrüpt.
- 8. Nur betuxte Kleps knaseln nicht.
- 9. Jeder Pli ist ein Drumser.