From: "Raatikainen Panu A K" <Praatikainen@elo.helsinki.fi>
Date: Mon, 19 Mar 2001 11:00:05 +0200

On 16 Mar 01, at 10:01, charles silver wrote:

Are you the person who recently published an article debunking
Chaitin’s celebrated Godel-like theorem? And, if so, I wondered
whether you’ve received any response from him disputing your
interpretation of his result.

Yes, that’s me. And yes, we had a short round of e-mail exchange with
Chaitin on my first paper in JPL (Vol 27, No 6, Dec. 1998) on Chaitin’s
earlier incompleteness result. I found his reply rather unsatisfying, being at
odds with the facts of recursive function theory. But there is also a second
paper by me in Synthese Vol. 123 (2000) on Chaitin’s later work on halting
probability €2 etc. I have not received any responses to that. But anyway,
I think I was just pointing out several logical facts challenging the standard
interpretation of that work.

I would be very interested to discuss these issues, if there are people in
FOM interested in them.

Panu

From: ‘'charles silver" <silver_1@mindspring.com>
Date: Mon, 19 Mar 2001 11:03:45 -0800

On 16 Mar 01, at 10:01, charles silver wrote:

Are you the person who recently published an article de-
bunking Chaitin’s celebrated Godel-like theorem? And,
if so, I wondered whether you’ve received any response
from him disputing your interpretation of his result.



Panu Praatikainen wrote:

Yes, that’s me. And yes, we had a short round of e-mail exchange
with Chaitin on my first paper in JPL (Vol 27, No 6, Dec. 1998)
on Chaitin’s earlier incompleteness result. I found his reply rather
unsatisfying, being at odds with the facts of recursive function
theory.

I'd be interested in FOMers’ opinions on two things: (1) whether Chaitin’s
Theorem actually accomplishes much the same thing as Gddel’s (while be-
ing different in several respects), and (2) whether anything can be inferred
from Chaitin’s Theorem about the limitations (or more neutrally put: the
capabilities) of the human mind. (In this latter regard, I have to admit that
I’'ve never been able to see any connection between Godel’s result and the
capabilities of the human mind, though Chaitin’s result supposedly provides
more information that allows us to jump from the mathematical result to a
conclusion about the human mind [acc. to Rucker, for example].)

Charlie Silver

From: "Jeffrey Ketland" <ketland@ketland.fsnet.co.uk>
Date: Mon, 12 Mar 2001 17:35:21 -0000
Dear Panu,

Silver: Are you the person who recently published an article de-
bunking Chaitin’s celebrated Gddel-like theorem? And, if so, I
wondered whether you’ve received any response from him disput-
ing your interpretation of his result.

Raatikainen: Yes, that’s me [snip].

As far as [ recall, Chaitin defines a notion of program-size complexity for
axiom systems, and defines the halting probability €2 and then shows that,
roughly:



“It takes an axiom system of at least complexity /N + ¢ bits to determine
N bits of Q (¢ being a fixed constant).”

Is that it? It seems rather neat to me. Chaitin’s result seems to strengthen
the result that no non-recursive function is numeralwise represented in a
consistent r.e. system. Can you explain your argument about Chaitin’s
idea? I'm interested and maybe other fom people would be interested too.

Best - Jeff

From: "Raatikainen Panu A K" <Praatikainen@elo.helsinki.fi>
Date: Wed, 21 Mar 2001 12:08:16 +0200

As there are some people here in FOM interested in my critical work on
the interpretation of Chaitin’s results, I'll try to explain shortly my main
points.

There are two somewhat different results by Chaitin:

a) Chaitin 1974 (mentioned by Charlie Silver). For every formal system F,
there is a finite constant ¢ such that F' cannot prove any true statement
of the form K (n) > ¢ (even though there are infinitely many n for which
this is true) - here K(z) is the Kolmogorov complexity of

b) Chaitin 1986 (mentioned by Jeff Ketland) Any formal system F' can
determine only finitely many digits of the halting probability €.

As I have (carefully) formulated them here, above results are just fine.
What is problematic are the ambitious (fantastic?) philosophical conclusions
one has drawn from them.

One has standardly assumed that the size of the limiting constant ¢ for
a theory F' (in a) or the number of digits of Q2 decided by F' (in b) somehow
reflects the power, or content, of F'. Sometimes it is rather said that it is the
size, or the complexity, of F' which determines this finite limit.

I show, however, that all this is wrong. Actually, it is determined by a
rather accidental coding of computable functions used. In particular, there



are codings such that theories with highly different power (say, Q and ZFC)
have the same finite limit. Also, the size and complexity of F' are quite
irrelevant. For any given finite collection of formal systems, however different
in all respect, one can always fix a coding such that they all have the same
limiting constant - one can even make it 0.

Futher, the interpretation is seriously confused with use and mention
(e.g., the complexity of a theorem as a syntactical object (mentioned) vs.
the compexity a theorem ascribes to an object (used)).

For every theory, there is indeed a finite limit, but that is all - the value
of this finite limit does not reflect any natural or interesting property of F'.

All this is argued in detail in my JPL paper — I repeat the essential
argument for the € case in my Synthese paper.

Now speaking about €2, my basic point in the later paper is rather simple.
I attack (besides the above mentioned interpretation) the claims that this
result is “the ultimate undecidability result”, “the strongest possible version
of incompleteness theorem” etc. I point out that € is actually AY, (and
thus even recursive in Turing’s halting set), so it is all too easy to present
undecidability and incompleteless results that are definitively stronger that
Chaitin’s. I give some natural examples.

I am glad to discuss these issues further here in FOM, but I also recom-
mend my papers for those seriously interested in the issue. My papers are
quite self-contained, and have useful introductions (and the later paper is
even short). I repeat the references:

Panu Raatikainen: “On interpreting Chaitin’s incompleteness theorems”,
Journal of Philosophical Logic 27 (1998), 569-586.

Panu Raatikainen: “Algorithmic information theory and undecidability”,
Synthese 123 (2000), 217-225.

Charlie Silver wrote:

It seemed to me, despite your assertion at the end of the article
about the theorem still being of value (or something like that), the
points you make in the article were devastating. If we take away
the standard interpretation of the theorem, what do you think of
value is left?

I am happy to hear that you think that my points were devasting — that
was my intention. On what value is left: well, I was just trying to be not
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too devasting and merciless; anyway, I think that the result (a) shows that
there is some difference whether one constructs an incompleteness result in
terms of a simple set rather than in terms of a creative set, as the standard
Godelian proof does. But I think that this is the only lasting value that is
left.

Panu

From: Stephen G Simpson <simpson@math.psu.edu>
Date: Wed, 21 Mar 2001 17:02:32 -0500

Raatikainen Panu A K, Wed, 21 Mar 2001 12:08:16 +0200:

There are two somewhat different results by Chaitin:

As I have (carefully) formulated them here, above results are just
fine. What is problematic are the ambitious (fantastic?) philo-
sophical conclusions one has drawn from them.

Yes. Thank you for making these points. Chaitin’s results are not without
interest, but claims about their philosophical/foundational significance are
greatly exaggerated.

Speaking of Chaitin’s ¢, Raatikainen says:

there are codings such that theories with highly different power
(say, Q and ZFC) have the same finite limit. Also, the size and
complexity of F' are quite irrelevant. ...

For every theory, there is indeed a finite limit, but that is all - the
value of this finite limit does not reflect any natural or interesting
property of F.



Yes.
Now clearly there is a serious foundational /philosophical problem here.
A crude attempt at formulating the problem:

(*) For well known foundational theories F' (e.g. F' = PA,Z,, ZFC,ZFC +
a large cardinal axiom, etc), find versions of the incompleteness phenomenon,

e.g., mathematically natural statements independent of F', which are sensitive
to F.

I invite other FOM participants to give a sharper formulation.

Obviously (*) is a key f.o.m. problem — some would say THE key f.o.m.
problem. And this problem seems extremely difficult. Godel’s independent
statements, Con(F), do not have the required properties, nor do Chaitin’s
statements K (n) > c¢. The Paris/Harrington theorem is a well-known major
contribution to (*).

Many people underestimate the difficulty of (*) and overestimate Chaitin’s
contributions to it. For example, the New Scientist article at

http://www.newscientist.com/features/features. jsp?id=ns22811

is loaded with overblown hype.

Harvey Friedman’s recent Boolean relation theory is a direct assault on
(*). In my estimation this work of Harvey is much deeper and better than
anything Chaitin has done, and it goes much farther than Paris/Harrington.
Details are in Harvey’s numbered FOM posting # 100 of today, Wed, 21 Mar
2001 11:29:43 -0500.

On the one hand, it is good that serious f.o.m. issues have attracted so
much attention in the popular press. On the other hand, it is unfortunate
that these issues are so badly misunderstood.

Steve

From: ‘'"charles silver" <silver_1@mindspring.com>
Date: Fri, 23 Mar 2001 08:08:53 -0800



Steve Stmpson wrote:

Chaitin’s results are not without interest, but claims about their
philosophical /foundational significance are greatly ezaggerated.

I would appreciate any detailed comments you might wish to make about
what interest Chaitin’s Theorem really has and what exaggerations you
have found concerning their philosophical /foundational significance. Rudy
Rucker, for one, considers it to be of greater philosophical interest than
Godel’s Theorem. He says that Chaitin’s Theorem gives us more information
than Godel’s. (See the section of Mind Tools on “Algorithmic Information”,
beginning on page 279.) What I find of particular interest (independently of
whether Chaitin’s Theorem has real content) is Rucker’s connecting Chaitin’s
Theorem to the philosophical notion of “conceivability”. According to Rucker
(p- 290), “a pattern is ‘inconceivable’ if it is too complex for me to reproduce
in detail.” Later, on the same page, he says, “Suppose I think of myself as
being a Turing machine about to make marks on a blank tape. My brain has
only finitely many components, and each of these components can be set in
only finitely many ways....”

It seems to me that certain scientific or maybe pseudo-scientific notions
fire up the public’s imagination and are then translated into modern jargon,
which then becomes used to reflect the “general intellectual interest” of the
day. It would be useful to assess the scientific value of such notions and then
to evaluate their application to diverse fields in the humanities.

Charlie Silver

From: Joe Shipman <shipman@savera.com>
Date: Fri, 23 Mar 2001 11:50:40 -0500

In defense of Chaitin, I have always found his approach by far the easiest
way of establishing incompleteness theorems, and his philosophical insight
that the strength of theories is ultimately dependent on their algorithmic in-
formation content is important. Chaitin’s result that the halting probability



of a computation-universal system is maximally compressed information is
also useful in various contexts.

On the other hand, Chaitin’s more recent remarks about the “random-
ness” of mathematical truth seem muddled to me. Yes, there are parameter-
ized exponential Diophantine equations (and probably regular diophantine
equations too), the existence of solutions to which is an absolutely random
function of the parameter in various senses, but it is not surprising that
there are mathematical statements which are true for no particular reason.
This would only become interesting if the statements themselves were small
enough to be interesting.

The relevance of algorithmic information to the incompleteness theorems
and to mathematics generally is obscured because the well-explored hierarchy
of logical strengths of theories does not seem to correspond to amount of
algorithmic information in the theory. Some very strong theories seem to
have much simpler axiomatizations than much weaker ones. We need a better
way to measure (an upper bound on) the algorithmic complexity of a theory.

The most straightforward way to do this is to start with the predicate cal-
culus as a computational base, and define the complexity of a theory to be the
length of the shortest axiomatization, converting non-finitely-axiomatizable
theories into finitely axiomatizable conservative extensions ones by introduc-
ing new predicates to Skolemize axiom schemes. (Consider GB versus ZF.)
But there may well be ways to represent the size of a theory involving other
computational bases that are superior for relating “size” of a theory to logical
strength.

PA and ZFC both seem to have the property that they are “simpler” (in
some inexact sense) than any logically stronger consistent theories. I'd like
to see someone either dispute this assertion or suggest other examples of the
phenomenon.

Joe Shipman

From: "Alexander R. Pruss" <pruss@imap.pitt.edu>
Date: Fri, 23 Mar 2001 11:52:47 -0500



From: "charles silver” jsilver_1@mindspring.comy

According to Rucker (p. 290), “a pattern is ’inconceivable’ if it
s too complex for me to reproduce in detail.”

Sorry to ask something naive, but I haven’t been following this discussion
or reading Rucker. Is “inconceivable” here an idiosyncratic synonym for
“unimaginable”? Surely I can conceive of “the atomic structure of my left
big toe” in some real sense of “conceive”, even though it would be impossible
for me to reproduce it in detail. When I entertain a thought of “the atomic
structure of my left big toe”, I entertain a thought I know to be coherent,
though I can only imagine the content of that thought in general terms. But
in any case, what is there that I can really imagine or reproduce in detail? I
can’t even imagine any given triangle in detail, because no triangle I imagine
has determinate side-lengths and I cannot reproduce “in detail” the exact
side lengths of any specific triangle.

Alex Pruss

From: ‘'"charles silver" <silver_1@mindspring.com>
Date: Fri, 23 Mar 2001 19:14:02 -0800

From: 7charles silver” jsilver_1@mindspring.comg

According to Rucker (p. 290), “a pattern is ‘inconceiv-
able’ if it 1s too complex for me to reproduce in detail.”

Sorry to ask something naive, but I haven’t been following this
discussion or reading Rucker. Is “inconceivable” here an idiosyn-
cratic synonym for “unimaginable”?

I don’t wish to try to represent Rucker’s views or to defend them. I
suggest that people who are interested in this read Rucker on “conceivability”
to see whether what he says seems interesting or not. My experience reading
philosophy papers on the topic of conceivability and related notions (which



is not very extensive, I admit) is that they are far far less interesting than
Rucker’s views and close to being completely vacuous. At least Rucker ties
the notion of conceivability to a mathematical theorem. So, on the face of
it, there may be some content to his views. However, Panu Raatikainen has
challenged the standard interpretation of Chaitin’s Theorem, so it may well
be the case that there’s a problem at the very base of Rucker’s notion.

If T understand Joe Shipman’s most recent post, he thinks Chaitin’s no-
tion of algorithmic complexity is worthwhile in enabling us to compare the
strengths of theories. If I understand Panu Raatikainen, he thinks that the
content of a theory is in no way related to any such measure. I am interested
in understanding these issues better and would like to request that both Joe
and Panu provide more details of their views (and that they correct anything
I have wrongly attributed to them).

Charlie Silver

From: "Raatikainen Panu A K" <Praatikainen@elo.helsinki.fi>
Date: Sat, 24 Mar 2001 18:44:36 +0200

Joe Shipman wrote:

In defense of Chaitin, I have always found his approach by far
the easiest way of establishing incompleteness theorems, and his
philosophical insight that the strength of theories is ultimately de-
pendent on their algorithmic information content is important.

I strongly disagree. The easiest way is to use the notion of truth and
show by diagonal argument that provable does not exhaust true. (see, e.g.,
Smullyan’s book on incompleteness). Indeed, a rigorous proof of Chaitin’s
theorem requires one to arithmetize both Turing machines and the syntax
of the theory in question (Go6del’s proof requires only the latter) and move
back and forth between these two codings (no wonder so many people have
got lost).
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Further, the claim that “the strength of theories is ultimately dependent
on their algorithmic information content is important” is simply false, as
Shipman’s own comments later show when he admits that “Some very strong
theories seem to have much simpler axiomatizations than much weaker ones”

Charlie Silver wrote that Rudy Rucker, for one, considers Chaitin’s The-
orem to be of greater philosophical interest than Godel’s Theorem. He says
that Chaitin’s Theorem gives us more information than Godel’s.

In fact, Chaitin’s Theorem gives less information, in the sense that it
holds only for theories that are, not only consistent (or 1- consistent) as in
Godel’s proof, but also sound for the sentences “K(n) > m”.

Joe Shipman also wrote:

“We need a better way to measure (an upper bound on) the algo-
rithmic complexity of a theory.

The most straightforward way to do this is to start with the pred-
icate calculus as a computational base, and define the complezity
of a theory to be the length of the shortest ariomatization, con-
verting non-finitely-axiomatizable theories into finitely ariomatiz-
able conservative extensions ones by introducing new predicates to
Skolemize aziom schemes. (Consider GB versus ZF.) But there
may well be ways to represent the size of a theory involving other
computational bases that are superior for relating “size” of a the-
ory to logical strength. PA and ZFC both seem to have the property
that they are “simpler” (in some inexact sense) than any logically
stronger consistent theories. I'd like to see someone either dispute
this assertion or suggest other examples of the phenomenon.”

I agree, except that one should not call it algorithmic complexity any
more — it is a different notion. I've had some ideas to this direction, and
Harvey Friedman has had too (in think it was a year ago or so when we had
some discussion on them here in FOM).

Panu Raatikainen
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From: Joe Shipman <shipman@savera.com>
Date: Mon, 26 Mar 2001 10:38:18 -0500

Shipman:

In defense of Chaitin, I have always found his approach
by far the easiest way of establishing incompleteness
theorems, and his philosophical insight that the strength
of theories is ultimately dependent on their algorithmic
information content is important.

Rattikainen

I strongly disagree. The easiest way is to use the notion of truth
and show by diagonal argument that provable does not erhaust
true. (see, e.g., Smullyan’s book on incompleteness).

THIS IS NOT SO EASY, EXCEPT FOR SPECIALLY CHOSEN FOR-
MAL SYSTEMS LIKE SMULLYAN’S WHICH ARE DESIGNED FOR SELF-
REFERENCE

(Rattikainen):

Indeed, a rigorous proof of Chaitin’s theorem requires one to arith-
metize both Turing machines and the syntax of the theory in ques-
tion (Gddel’s proof requires only the latter) and move back and
forth between these two codings (no wonder so many people have
got lost).

WRONG. FIRST OF ALL, ONCE YOU HAVE ARITHMETIZED TUR-
ING MACHINES YOU DON'T NEED TO ARITHMETIZE SYNTAX, YOU
CAN SIMPLY PROGRAM THE SYNTAX. SECONDLY, YOU DON'T
EVEN NEED TO ARITHMETIZE TURING MACHINES TO GET IN-
COMPLETENESS RESULTS, JUST TO GET INCOMPLETENESS FOR
PEANO ARITHMETIC WHICH IS MUCH STRONGER.

CHAITIN’S APPROACH VIA THE HALTING PROBLEM MAKES IT
VERY EASY TO SHOW THAT ANY SOUND THEORY WHICH CAN
FORMALIZE THE STATEMENTS K (m) > n IS INCOMPLETE. ZF OB-
VIOUSLY SUFFICES, AS DOES ZF + —(Inf) THIS LATTER THEORY IS
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ALMOST TRIVIALLY ISOMORPHIC TO PEANO ARITHMETIC AUG-
MENTED BY EXPONENTIATION. THE ONLY TECHNICALLY DIFFI-
CULT PART IS IF YOU INSIST ON NOT ALLOWING EXPONENTTA-
TION. THEN YOU HAVE SOME HARD CODING TO DO TO PROVE
THAT YOU CAN REPRESENT EXPONENTIATION IN TERMS OF +
AND -, AND THAT WORK IS NECESSARY IN any PROOF OF THE
INCOMPLETENESS OF PA.

(Rattikainen):

Further, the claim that “the strength of theories is ultimately de-
pendent on their algorithmic information content is important” is
simply false, as Shipman’s own comments later show when he ad-
mits that “Some very strong theories seem to have much simpler
aziomatizations than much weaker ones”.

THAT IS WHY I USED THE WORDS ‘ULTIMATELY’ AND ‘SEEM
TO’. ITIS WRONG TO INTERPRET CHAITIN’S THEOREM TO MEAN
THAT A STRONGER THEORY IS ALWAYS OF GREATER ALGORITH-
MIC INFORMATION CONTENT THAN A WEAKER ONE. THE POINT
IS THAT THE ALGORITHMIC INFORMATION CONTENT GIVES AN
UPPER BOUND ON THE STRENGTH.

Joe Shipman

From: Joe Shipman <shipman@savera.com>
Date: Mon, 26 Mar 2001 11:14:39 -0500

Rattikainen:

I strongly disagree. The easiest way is to use
the notion of truth and show by diagonal argu-
ment that provable does not exhaust true. (see,
e.g., Smullyan’s book on incompleteness).

Shipman:
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THIS IS NOT SO EASY, EXCEPT FOR SPECIALLY
CHOSEN FORMAL SYSTEMS LIKE SMULLYAN'’S
WHICH ARE DESIGNED FOR SELF-REFERENCE

Raatikainen:

I am not sure if I understand this comment. I don’t think that PA
ete. are in any way specially chosen or designed for self-reference.

I was referring to “Smullyan’s Easy Language For Self-reference” (“SELF”)
and his language of Arithmetic SAr which he used to develop incompleteness
very smoothly in J. Symb. Logic 22, no.1 (1957), 55-67. Smullyan’s devel-
opment is repeated in Manin’s remarkable text “A Course in Mathematical
Logic” (Springer GTM # 53). Those languages are carefully contrived to
make the proofs of Incompleteness easy, and they are not the standard way
of formalizing arithmetic (though they are reasonable considered as formal
systems, it’s not difficult to use them).

Raatikainen:

Indeed, a rigorous proof of Chaitin’s theorem
requires one to arithmetize both Turing ma-
chines and the syntax of the theory in ques-
tion (Gddel’s proof requires only the latter) and
move back and forth between these two codings
(no wonder so many people have got lost).

Shipman:

WRONG. FIRST OF ALL, ONCE YOU HAVE ARITH-
METIZED TURING MACHINES YOU DON’T NEED
TO ARITHMETIZE SYNTAX, YOU CAN SIMPLY
PROGRAM THE SYNTAX.

Raatikainen:

I am sorry to disagree: I submit that it makes no sense to talk
about programming the syntax - in the context of Turing machines
reading and writing only zeros and ones, which is the case in the
algorithmic information theory - independently of a binary coding
of the syntax.
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I think we differ about the meaning of “arithmetize”. I am not requiring
the Turing machines to have a binary alphabet, and I am certainly not re-
quiring that they be formalized in a theory of arithmetic with only + and -
as operations. ZF, or ZF — (Inf), can *formalize* Turing machines perfectly
straightforwardly, and the Turing-machine-coding needed to make a Univer-
sal Turing Machine and get results about the Halting Problem is MUCH
easier than “arithmetizing TM’s” in the sense of representing them in Peano
Arithmetic.

Shipman:

SECONDLY, YOU DON’T EVEN NEED TO ARITH-
METIZE TURING MACHINES TO GET INCOMPLETE-
NESS RESULTS, JUST TO GET INCOMPLETENESS

FOR PEANO ARITHMETIC WHICH IS MUCH STRONGER.

Raatikainen:

in a sense, yes (if I got your idea right — at least, if one has a
theory that is about Turing machines directly). But in order to
have interesting and generalized incompleteness results, there is
no choice.

If you admit exponentiation into your arithmetic it is very easy to trans-
late finite set theory into arithmetic using the enumeration of the hereditar-
ily finite sets “f(t) = ;e 277, So you can get generalized incompleteness
results about Peano Arithmetic augmented with exponentiation without dif-
ficulty. It is a separate fact that exponentiation can be represented in terms
of + and -, and there was no a priori reason to suppose that the theory of
+ and - was general enough to get incompleteness (the theory of + and the
theory of - are each decidable but the proofs are hard).

Shipman:

CHAITIN’S APPROACH VIA THE HALTING PROB-
LEM MAKES IT VERY EASY TO SHOW THAT ANY
SOUND THEORY WHICH CAN FORMALIZE THE
STATEMENTS K(m) > n IS INCOMPLETE.

Raatikainen:
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to repeat myself a little: in order to formalize the statements
“K(m) > n” in an ordinary mathematical theory one has to arith-
metize Turing machines first.

No, you just have to *formalize* Turing machines which is easier than
arithmetizing them. ZF certainly suffices, as do much weaker theories. The
theorems of ZF are obviously enumerable, and someone who has learned
enough about the theory of computation to understand that general programs
can be executed by a Turing machine can therefore get the incompleteness of
ZF quickly, and generalize it to PA4+Exponentiation with only a little work.

Raatikainen:

But similarly, if one just assumes that a theory can formalize
Prov(z) and Diagonalization and is sound, it is extremely easy to
prove Gédel’s first theorem fo such a theorem (see e.g. pages 827-
8 of Smorynski’s Handbook survey; the proof takes just 6 lines).

Yes, the hard part is formalizing Prov(z) and Diagonalization. I claim
that for someone with any computer programming education, it is far easier
to get Prov(z) and Diagonalization by going through Turing machines than
by trying to work in PA directly. The only thing you sacrifice is the separate
result that exponentiation is representable in terms of 4+ and -.

Joe Shipman

From: Harvey Friedman <friedman@math.ohio-state.edu>
Date: Mon, 26 Mar 2001 11:54:48 -0500

Reply to Raatikainen 3/21/01 12:08PM:

The main issue that Chaitin’s work does not address is this:
is there any reason to consider extending the usual axioms for mathemat-
ics (ZFC)?
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Chaitin’s work says, in various interesting ways, that there are certain
things that would be nice to do that cannot be done in any reasonable formal
system whatsoever.

But this cannot be a reason to extend the current axioms, because the
problem will arise in the same way for any extension.

Also, Chaitin does not give us a specific task that we cannot accomplish in
our present formal systems, or any reasonable formal system. In fact, Chaitin
does give us an infinite list of tasks that we cannot accomplish all within any
formal system. However, this is not all that surprising since formal systems
are finitary. His example is “determine each digit of the halting probability
Q”. However, this formulation of his result is presumably easier than his full
result, as it depends only on the nonrecursivity of €2.

Chaitin does give us an infinite list of tasks, and shows that we cannot
accomplish infinitely many of these tasks within ZFC, or even within any
reasonable formal system. Again, the tasks are determining the digits of the
halting probability €2.

Of course, the original Godel work does give us a specific task that we
cannot accomplish in our present formal systems, and which, historically, was
sought after and believed to be obtainable, and has the highest significance
— consistency.

It is true that the interesting tasks that Chaitin tells us we cannot hope
to accomplish in various senses are of this character:

*they are not at all like the kinds of things that mathematicians try to
do, or even conceive of trying to do; in fact, it is intrinsically different than
those kinds of things*

This is partly because of the nonrobustness of the underlying notions
used. The mathematical interest of detailed quantitative information about
structures generally depend on their robustness.

This is presumably why Chaitin sometimes works with exponential Dio-
phantine equations. But these are still rather disgusting mathematically.
One cannot hope to use ordinary Diophantine equations because of the lack
of knowledge about them, so that one does not get presentable quantitative
information.

a) Chaitin 1974 (mentioned by Charlie Silver). For every formal
system F', there is a finite constant ¢ such that F' cannot prove
any true statement of the form K(n) > c (even thought there
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are infinitely many n for which this is true) - here K(x) is the
Kolmogorov complexity of x

I think that more is true:

For every consistent reasonable formal system F', there is a finite constant
¢ such that F' cannot prove any sentence of the form K(n) > c.

Under a standard presentation of K, roughly how big does ¢ need to be
for ZFC? And what effect is there if we use PA (Peano Arithmetic) instead
of ZFC?

b) Chaitin 1986 (mentioned by Jeff Ketland) Any formal system
F can determine only finitely many digits of the halting probability
Q.

Again, under a standard presentation of Q (i.e., a standard setup for
Turing machines), roughly how many digits can be determined in ZFC? And
what effect is there if we use PA (Peano Arithmetic) instead of ZFC?

One has standardly assumed that the size of the limiting constant
c for a theory F' (in a) or the number of digits of Q2 decided by F
(in b) somehow reflects the power, or content, of F. Sometimes
it 1s rather said that it is the size, or the complexity, of F' which
determines this finite limit.

I show, however, that all this is wrong. Actually, it is determined
by a rather accidental coding of computable functions used. In
particular, there are codings such that theories with highly differ-
ent power (say, @ and ZFC) have the same finite limit. Also, the
size and complezity of F are quite irrelevant. For any given finite
collection of formal systems, however different in all respect, one
can always fix a coding such that they all have the same limiting
constant - one can even make it 0.

But what if we fix the presentation of Turing machines to be reasonably
natural, in advance, and then change the theories?

As a simplified example, suppose we are interested in the size of the
smallest Turing machine TM which does not halt but cannot be proved to
not halt in PA or ZFC. How do these sizes compare?
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From: "Raatikainen Panu A K" <Praatikainen@elo.helsinki.fi>
Date: Tue, 27 Mar 2001 11:17:27 +0200

First, let me note that it seems there has been some misunderstandings
between me and Shipman which became apparent in his last posting — it is
obvious that on various issues, we’ve been talking on different issues.

But still, I have some comments

On 26 Mar 01, at 11:14, Joe Shipman wrote:

Raatikainen:

I am sorry to disagree: I submit that it makes no sense
to talk about programming the syntax — in the context
of Turing machines reading and writing only zeros and
ones, which is the case in the algorithmic information
theory — independently of a binary coding of the syntaz.

I think we differ about the meaning of “arithmetize”. I am not
requiring the Turing machines to have a binary alphabet, and I
am certainly not requiring that they be formalized in a theory of
arithmetic with only + and - as operations. ZF, or ZF — (Inf), can
*formalize* Turing machines perfectly straightforwardly, and the
Turing-machine-coding needed to make a Universal Turing Ma-
chine and get results about the Halting Problem is MUCH easier
than “arithmetizing TM’s” in the sense of representing them in
Peano Arithmetic.

Yes, I took it for granted that we focus on Turing machines with binary
alphabet. But it seems to me that this is needed for various key definitions
and results in Algorithmic Information Theory. A possible more genralized
approach would be interesting but is non-standard.

I must admit that I don’t recall that I have ever seen the theory of Turing
machines developed in Set Theory (do you have any good references?) - it is
interesting to hear that it makes UTM etc. much easier (by the way, there is
an unpublished textbook manuscript by M. Fitting where he developes the
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Godelian approach in Set Theory — also it turns out to be somewhat simpler
in that context ...)

But I still wonder whether one need not to somehow code Turing Machines
to sets before one can formalize them in Set Theory ?

One final clarification: the approach to the incompleteness results via
Turing Machines has certain appeal — I do not intend to deny this. But
wouldn’t it then be better to credit Turing (rather than Chaitin) - for the
proof of the first incompleteness theorem by using the Halting Problem was
given already by Turing himself in 1936...

All the best

Panu Raatikainen

From: "Raatikainen Panu A K" <Praatikainen@elo.helsinki.fi>
Date: Tue, 27 Mar 2001 12:58:08 +0200

I would like to thank Harvey Friedman for his thoughtful comments on our
issue. There is really nothing I disagree with him. I'll only try to comment
the specific questions Harvey raised

Panu Raatikainen

On 26 Mar 01, ot 11:54, Harvey Friedman wrote:

a) Chaitin 1974 (mentioned by Charlie Silver). For
every formal system F, there is a finite constant ¢ such
that F' cannot prove any true statement of the form
K(n) > c (even thought there are infinitely many n
for which this is true) — here K(x) is the Kolmogorov
complexity of =

I think that more is true:

For every consistent reasonable formal system F', there is a finite
constant ¢ such that F cannot prove any sentence of the form
K(n) >c.
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I think that both your formulation and mine are slightly inexact, namely,
the proof of Chaitin’s result actually requires that F' proves a sentence of the
form “K(n) > m” only it is true — that is, we need some amount of soundness
and not just consistency (my wording was even worse here) - or perhaps you
meant just this by “reasonable” ...

Under a standard presentation of K, roughly how big does ¢ need
to be for ZFC? And what effect is there if we use PA (Peano
Arithmetic) instead of ZFC?

Again, under a standard presentation of ) (i.e., a standard setup
for Turing machines), roughly how many digits can be determined
in ZFC? And what effect is there if we use PA (Peano Arithmetic)
instead of ZFC?

But what if we fix the presentation of Turing machines to be rea-
sonably natural, in advance, and then change the theories?

As a simplified example, suppose we are interested in the size of
the smallest Turing machine TM which does not halt but cannot
be proved to not halt in PA or ZFC. How do these sizes compare?

The problem here is that in general, we cannot compute these values (for
a particular theory, with a particular coding of TMs and a particular Godel
numbering of its syntax, it may turn out to be possible to determine it )
— actually Chaitin’s methods only provide relatively loose upper bounds for
them, contrary to what the standard interpretation seems to suggest. Indeed,
if there were any kind of effective correspondence between F' and the minimal
c (etc.) for F', one could decide the Halting Problem.

Compare: G2 provides an effective upper bound for the length of the
shortest unprovable I19 sentence in a given theory F, i.e., Length(Cons(F))
— but it gives absolutely no information about the simplest such unprovable
sentence. And again, if there were a general method for finding the minimal
unprovable IT9 sentence of a theory, one could decide the undecidable.

And as I have pointed out, there are acceptable codings in which these
finite limits are the same for, say, PA and ZFC (or, for Q and ZFC + MC, or
whatever) — and we simply do not know what happens with various “natural”
or “standard” codings — as far as we know, they may still be the same, at
least for some of them. Or maybe not.
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Anyway, I guess —if it interests anybody— that for a standard coding
technique, these values would turn out to be very large.

Harvey’s “simplified example” (the size of the smallest Turing machine
TM which does not halt but cannot be proved to not halt in F) is actually
not at all simple: it is it which in fact determines the value of these limiting
constants (well, in the first case: the smallest TM which does not halt, cannot
be proved to not halt in F', and further: it cannot be proved in F what would
be the output of TM if it halted. NOTE: this is a small correction to my
JPL paper - thanks to Daniel Leivant for pointing out the gap)). But the
reply to Harvey’s question is: we do not know whether there is a difference,
or whether it is the same TM.

But in any case, my arguments do show that in general, there is no cor-
respondence between these finite limits and the proof- theoretical strengths
of theories. And my own view is that there are quite many rather different
ways of coding Turing machines and syntaxes all which could with equal
right be called “a standard coding”, so that sticking to one and concluding
something about the resulting values of the limiting constants seems to me
quite speculative.

I think that the most natural question of this sort with a real foundational
interest still is (for some natural F):

What is the shortest true sentence (perhaps: I1J sentence) unprovable in
F 7?7 How large it is ?

Best

Panu Raatikainen

*
From: '"Don Fallis" <fallis@email.arizona.edu>
Date: Tue, 27 Mar 2001 08:34:13 -0700

Hi,

Setting aside the difficulties of coding things, I also think that Chaitin’s
“K(m) > ¢” result is very cool and a very intuitive way of proving incom-
pleteness. However, I have never been able to fathom the claims that the

22



“K(m) > ¢” result (or the  number) have serious implications for mathe-
matical practice.

It has become popular in recent years to argue that mathematicians
should make significant changes in the way that they do business (e.g., by
accepting a bunch of new axioms or, more radically, by using non-deductive
methods of proof.). First, it has been argued (on philosophical grounds) that
they will suffer no epistemic loss by making these changes. And, second, it
has been argued that there is a significant mathematical gain to be had by
making these changes.

Many discussions of Chaitin’s work seem to fall under this second cat-
egory. However, as far as I can see, the only really compelling arguments
(in this category) do the following: They show that there is something that
*we would want to be able to prove* (or disprove), but that is impossible
(or computationally infeasible) to prove given our existing techniques. (For
example, a proof of the undecidability of CH is an argument of this sort.) It
is not clear that Chaitin has done anything like this.

take care, don

P.S. Here are some other articles that claim that the implications of
Chaitin’s result are somewhat overstated:

Michiel van Lambalgen, ALGORITHMIC INFORMATION THEORY,
Journal of Symbolic Logic. 1989; 54,1389-1400.

Don Fallis, The Source of Chaitin’s Incorrectness, Philosophia-Mathematica.
1996; 4(3), 261-269.

P.P.S. 1 believe that Boolos once gave a talk where he claimed that
Chaitin’s incompleteness result was a riff on the Berry paradox (i.e., “the
least integer that cannot be named in fewer than thirteen words”) in the
same way that Godel’s incompleteness result is a riff on Russell’s paradox.
Does this sound familiar? Was it ever published?

From: Richard Heck <heck@fas.harvard.edu>
Date: Tue, 27 Mar 2001 13:03:59 -0500
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P.P.S. I believe that Boolos once gave a talk where he claimed that
Chaitin’s incompleteness result was a riff on the Berry paradoz
(i.e., “the least integer that cannot be named in fewer than thir-
teen words”) in the same way that Gédel’s incompleteness result
s a riff on Russell’s paradox. Does this sound familiar? Was it
ever published?

See “A New Proof of the Gédel Incompleteness Theorem” , in Logic, Logic,
and Logic, pp. 383-8, at p.386. Boolos attributes the comparison to Chaitin
himself in “Computational Complexity and Goédel’s Incompleteness Theo-
rem”, AMS Notices17 (1970), p.672.

Richard

From: Alasdair Urquhart <urquhart@cs.toronto.edu>
Date: Tue, 27 Mar 2001 16:16:17 -0500

FOM subscribers who have been following the Chaitin thread might be
interested in the very thoughtful review of Chaitin’s work by Peter Gacs in
the JSL, Vol. 54 (1989), p. 624. In particular, Gacs argues, based on an
information conservation theorem of Leonid Levin, that Chaitin’s results do
not support the idea of empirical mathematics.

Alasdair Urquhart
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