Some Remarks on the Tree Property in a Choiceless Context

Arthur W. Apter CUNY (Baruch College and the Graduate Center)

> ICWAC June 11 - 13, 2009

We begin by presenting some basic definitions. Throughout, κ will be an uncountable regular cardinal.

Definition 1: A κ -tree is a tree of height κ , all of whose levels have cardinality less than κ .

Definition 2: κ satisfies the *tree property* if every κ -tree has a branch of length κ .

Definition 3: The Singular Cardinals Hypothesis (SCH) holds at a singular cardinal κ if κ is a strong limit cardinal and $2^{\kappa} = \kappa^+$.

A counterexample to Definition 2 is called a κ -Aronszjan tree. Also, note that for our purposes, all κ -trees will be of cardinality κ and will have base set $\kappa \times \kappa$. This means that every κ -tree may be coded by a set of ordinals.

We now briefly review some of what is known about the tree property in ZFC.

- κ is weakly compact iff κ is strongly inaccessible and satisfies the tree property.
- (Aronszajn) The tree property fails at ℵ₁,
 i.e., an ℵ₁-Aronszajn tree exists.
- (Silver 1971, Mitchell 1972/1973) The tree property at the successor of a regular cardinal greater than ℵ₁ is equiconsistent with a weakly compact cardinal.
- (Abraham 1983) Relative to the existence of a supercompact cardinal with a weakly compact cardinal above it, it is consistent for 2^{ℵ0} = ℵ₂ and for ℵ₂ and ℵ₃ both to satisfy the tree property.
- (Shelah 1996/Magidor and Shelah 1996) The successor of a singular limit of strongly

compact cardinals satisfies the tree property. Further, relative to a huge cardinal with ω many supercompact cardinals above it, it is consistent for SCH to hold at \aleph_{ω} and for $\aleph_{\omega+1}$ to satisfy the tree property.

- (Cummings and Foreman 1998) Relative to the existence of ω many supercompact cardinals, it is consistent for $2^{\aleph_n} = \aleph_{n+2}$ for every $n < \omega$ and for every \aleph_n for $1 < n < \omega$ to satisfy the tree property.
- (Schindler 1999) If both ℵ₂ and ℵ₃ satisfy the tree property, then there is an inner model with a strong cardinal.
- (Foreman, Magidor, and Schindler 2001) If \aleph_n has the tree property for all $1 < n < \omega$ and \aleph_{ω} is a strong limit cardinal, then for all $X \in H_{\aleph_{\omega}}$ and all $n < \omega$, $M_n^{\sharp}(X)$ exists.

• (Neeman 2008) Relative to the existence of ω many supercompact cardinals, it is consistent for there to be a singular strong limit cardinal $\kappa > \aleph_{\omega}$ of cofinality ω such that SCH fails at κ (i.e., $2^{\kappa} > \kappa^+$) and κ^+ satisfies the tree property.

The above results raise the following questions:

Question 1: Is it possible to extend the Cummings-Foreman result to all successor cardinals, i.e., is it possible to get a model of ZFC in which every successor cardinal satisfies the tree property?

Question 2: Is it possible to transfer Neeman's result down to \aleph_{ω} , i.e., is it possible to obtain a model of ZFC in which SCH fails at \aleph_{ω} yet $\aleph_{\omega+1}$ satisfies the tree property?

Unfortunately, an answer to both of these questions in ZFC is unknown. However, it is possible to provide non-AC answers to each question. Specifically, we have the following two theorems.

Theorem 1 (**AA**) $Con(ZFC + There is a proper class of supercompact cardinals) <math>\Longrightarrow$ Con(ZF + DC + Every successor cardinal is regular + Every limit cardinal is singular + Every successor cardinal satisfies the tree property).

Theorem 2 (**AA**) $Con(ZFC + There exist \omega)$ many supercompact cardinals) $\Longrightarrow Con(ZF + \neg AC_{\omega} + 2^{\aleph_n} = \aleph_{n+1}$ for every $n < \omega + There$ is an injection from $\aleph_{\omega+2}$ into $\wp(\aleph_{\omega}) + \aleph_{\omega+1}$ satisfies the tree property).

We remark that in Theorem 1, \aleph_1 satisfies the tree property. This contrasts with the situation

in ZFC, where \aleph_1 carries an Aronszajn tree. Further, Theorem 1 represents an improvement over an earlier model in which every successor cardinal satisfied the tree property, but in which AC_{ω} failed and which was constructed from hypotheses in consistency strength between a supercompact limit of supercompact cardinals and an almost huge cardinal. Finally, in Theorem 2, there is nothing special about $\aleph_{\omega+2}$. It is also possible to get an injection from larger cardinals into $\wp(\aleph_{\omega})$.

We now sketch the proofs of Theorems 1 and 2. For Theorem 1, suppose $V \models$ "ZFC + There is a proper class of supercompact cardinals". Without loss of generality, we assume that each supercompact cardinal κ has been made indestructible under κ -directed closed forcing, and that there is no inaccessible limit of supercompact cardinals. Let $K = \{\omega\} \cup \{\kappa \mid \kappa \text{ is either a supercompact}$ cardinal or the successor of a limit of supercompact cardinals}. Assume that $\langle \kappa_i \mid i \in \text{Ord} \rangle$ enumerates K in increasing order. For each $i \in \text{Ord}$, let $\mathbb{P}_i = \text{Coll}(\kappa_i, \langle \kappa_{i+1} \rangle)$, i.e., \mathbb{P}_i is the Lévy collapse of all cardinals in the open interval (κ_i, κ_{i+1}) to κ_i . Let $\mathbb{P} = \prod_{i \in \text{Ord}} \mathbb{P}_i$ be the countable support proper class product, and let G be V-generic over \mathbb{P} .

V[G], being a model of AC, is not our desired choiceless inner model N witnessing the conclusions of Theorem 1. In order to define N, we first note that by the Product Lemma, for $i \in \text{Ord}$, G_i , the projection of G onto \mathbb{P}_i , is Vgeneric over \mathbb{P}_i . Next, let $\mathcal{F} = \prod_{i \in \text{Ord}}(\kappa_i, \kappa_{i+1})$ be the countable support product of the open intervals (κ_i, κ_{i+1}) . For each $f \in \mathcal{F}$, $f = \langle \alpha_i |$ $i < \omega \rangle$, define $G \upharpoonright f = \prod_{i < \omega} (G_i \upharpoonright \alpha_i)$. In other words, every f is a countable sequence of ordinals each of whose elements is a member of a unique interval of the form $(\kappa_{j(i)}, \kappa_{j(i)+1})$, and every $G_i \upharpoonright \alpha_i$ collapses each cardinal in the open interval $(\kappa_{j(i)}, \alpha_i)$ to $\kappa_{j(i)}$. N can now be intuitively described as the least model of ZF extending V which contains, for each $f \in \mathcal{F}$, the set $G \upharpoonright f$.

It can be shown that $N \models$ "ZF + DC + Every successor cardinal is regular + Every limit cardinal is singular". Our sketch of the proof of Theorem 1 is therefore completed by the following lemma.

Lemma 1: $N \vDash$ "Every successor cardinal satisfies the tree property".

Sketch of proof: Suppose $N \vDash$ " κ is a successor cardinal and \mathfrak{T} is a κ -tree". By the construction of N, κ must either be a ground model supercompact cardinal, or a ground

model successor of a singular limit of supercompact cardinals. In either situation, since \mathfrak{T} may be coded by a set of ordinals, we can

assume that $\mathfrak{T} \in V[G_1 \times G_2]$. Here, G_2 is Vgeneric over a partial ordering of the form $\operatorname{Coll}(\kappa, <\lambda)$ for some cardinal λ , and G_1 is Vgeneric over a countable product of Lévy collapses based on cardinals less than κ .

If κ is a ground model successor of a singular limit of supercompact cardinals, then because each ground model supercompact cardinal is indestructible and each Lévy collapse is appropriately directed closed and of small enough cardinality, κ is in $V[G_1 \times G_2]$ a successor of a singular limit of supercompact cardinals. Thus, by Shelah's theorem, κ satisfies the tree property in $V[G_1 \times G_2]$. This means that in $V[G_1 \times G_2] \subseteq N$, there is a branch of length κ through \mathfrak{T} . If, however, κ is a ground model supercompact cardinal, then by indestructibility, κ remains supercompact in $V[G_2]$.

Since under these circumstances, G_1 is generic over a partial ordering having cardinality less than κ , by the Lévy-Solovay results, κ remains supercompact in $V[G_2 \times G_1] = V[G_1 \times G_2]$. Because κ is supercompact in $V[G_1 \times G_2]$, κ is weakly compact in this model as well and hence satisfies the tree property in $V[G_1 \times G_2]$. As before, this means that in $V[G_1 \times G_2] \subseteq N$, there is a branch of length κ through \mathfrak{T} . Therefore, in either situation, $N \models$ " κ satisfies the tree

property". This completes the proof sketch of both Lemma 1 and Theorem 1. \Box

Turning to our sketch of the proof of Theorem 2, suppose $V' \vDash$ "ZFC + There exist ω many supercompact cardinals". Without loss of generality, we assume that V' has been generically extended to Neeman's model V. In particular, we may assume that $V \vDash$ "ZFC + κ is a limit of ω many strongly inaccessible cardinals $\langle \kappa_i \mid i < \omega \rangle$ (where $\kappa_0 = \omega$) + $2^{\kappa} = \kappa^{++} + \kappa^+$ satisfies the tree property".

We define the partial ordering \mathbb{P} used in the proof of Theorem 2. For each $i < \omega$, let $\mathbb{P}_i = \operatorname{Coll}(\kappa_i, <\kappa_{i+1})$. Let $\mathbb{P} = \prod_{i < \omega} \mathbb{P}_i$ be the full support product, and let G be V-generic over \mathbb{P} . Once again, V[G], being a model of AC, is not our desired choiceless inner model N witnessing the conclusions of Theorem 2. In order to define N, as before, we note that G_i , the projection of G onto \mathbb{P}_i , is V-generic over \mathbb{P}_i . Next, for $n < \omega$, define $G^n = \prod_{i \leq n} G_i$. N can now be intuitively described as the least model of ZF extending V which contains, for each $n < \omega$, the set G^n .

It can be shown that $N \models "ZF + \neg AC_{\omega} + GCH$ holds below $\kappa = \aleph_{\omega} +$ There is an injection from $\aleph_{\omega+2}$ into $\wp(\aleph_{\omega})$ ". Our sketch of the proof of Theorem 2 will be completed by the following two lemmas.

Lemma 2: Suppose $V \vDash ``\lambda$ is a regular cardinal satisfying the tree property $+ \mathbb{Q}$ is a partial

ordering such that $|\mathbb{Q}| < \lambda$ ". Then $V^{\mathbb{Q}} \models$ " λ is a regular cardinal satisfying the tree property".

Sketch of proof: Standard arguments show that $V^{\mathbb{Q}} \models ``\lambda$ is a regular cardinal''. To see that $V^{\mathbb{Q}} \models ``\lambda$ satisfies the tree property'', suppose that $p \Vdash ``\dot{\mathfrak{T}}$ is a λ -tree''. There must be some q extending p such that for λ many pairs $\langle \alpha, \beta \rangle$, $q \Vdash ``\langle \alpha, \beta \rangle \in \dot{\mathfrak{T}}$ ''. Otherwise, by the regularity of λ , there is a set $A \in V$, $|A| < \lambda$ such that $p \Vdash ``\dot{\mathfrak{T}} \subseteq A$ ''.

For such a q, define the set $\mathfrak{T}^* \in V$ by $\langle \alpha, \beta \rangle \in \mathfrak{T}^*$ iff $q \Vdash ``\langle \alpha, \beta \rangle \in \mathfrak{T}''$. Since $q \Vdash ``\mathfrak{T}$ is a λ -tree'', \mathfrak{T}^* is a λ -tree in V. Because $V \vDash ``\lambda$ satisfies the tree property'', $V \vDash ``There$ is some branch b^* through \mathfrak{T}^* having length λ'' . But then $q \Vdash ``b^*$ generates a branch \dot{b} through \mathfrak{T} having length λ'' .

Lemma 3: $N \vDash "\kappa^+ = \aleph_{\omega+1}$ satisfies the tree property".

Sketch of proof: Suppose $N \models ``\mathfrak{T}$ is a κ^+ tree". Because \mathfrak{T} may be coded by a set of ordinals, $\mathfrak{T} \in V[G^n]$ for some $n < \omega$. Since G^n is V-generic over a partial ordering having cardinality less than κ^+ , by Lemma 2, $V[G^n] \models ``\kappa^+$ satisfies the tree property". As $V[G^n] \models ``\mathfrak{T}$ is a κ^+ -tree", it follows that in $V[G^n] \subseteq N$, there is a branch of length κ^+ through \mathfrak{T} . Thus, $N \models$ $``\kappa^+ = \aleph_{\omega+1}$ satisfies the tree property". This completes the proof sketch of both Lemma 3 and Theorem 2.

We conclude by asking the following questions:

- Is it possible to establish analogues of Theorems 1 and 2 in a model of ZFC (thereby completely answering Questions 1 and 2)?
- Is it possible to establish a version of Theorem 2 with a surjective failure of SCH?

- Is it possible to establish a version of Theorem 2 in which some of the Axiom of Choice is true?
- What is the exact consistency strength of each of the patterns involving the tree property mentioned previously?