
Multitape Ordinal Machines and Primitive

Recursion

Bernhard Irrgang and Benjamin Sey�erth

University of Bonn, Mathematical Institute
Beringstraÿe 1, D-53115 Bonn, Germany

irrgang@math.uni-bonn.de, benjamin.seyfferth@gmx.de

Abstract. We introduce a multitape version of the ordinal Turing ma-
chines which are de�ned in [4] as Turing machines computing on tapes
of trans�nite length in trans�nite time. These machines are used to com-
pute the primitive recursive ordinal functions which have a classical the-
ory developed by Jensen and Karp [3]. Making use of that theory we
are able to 1. identify the ∆1(Lα)-de�nable subsets of α as computable
(if α is closed with respect to primitive recursive functions) and 2. char-
acterize admissible ordinals by the means of trans�nite computations.
Similar results linking α-recursion theory and ordinal computability are
contained in [6].
Keywords: Ordinal computability, multitape Turing machine, primi-
tive recursive ordinal function, primitive recursive set function, admissi-
ble ordinal.

1 Introduction

Ordinal computability studies machine models generalized to perform computa-
tions on ordinals. Such machines have been used to compute Gödel's hierarchy
of constructible sets L ([4], [5]) and can provide a computational approach to
α-recursion theory ([6]). The α-Turing machine is a standard Turing program
computing on tapes of length a limit ordinal α using a lim inf-rule to determine
the machine con�guration at limit times. The machine is said to terminate if it
runs for less than α many steps, otherwise it diverges.

In [3] Jensen and Karp established a connection between the primitive
recursive ordinal functions (PrimO, a generalization of the usual primitive re-
cursive functions on natural numbers) and the primitive recursive set functions
(PrimS) that are used in the theory of Gödel's constructible universe ([2]).
The multitape α-Turing machines introduced in this paper are a straightfor-
ward multitape version of the α-Turing machine and are well suited to handle
the calculus of PrimO functions, i.e. every PrimO function is also multitape α-
computable (Theorem 1).

Using a result from [3] that the PrimO functions are exactly the PrimS func-
tions that map ordinals to ordinals we prove Theorem 2: If α is an ordinal closed
under PrimO functions then the ∆1(Lα[B]) de�nable subsets of α are exactly
the ones that are multitape α-computable in B. Furthermore we are able to give

a characterization of admissible ordinals by the means of multitape α-Turing
machines (Theorem 3): A limit ordinal is admissible i� there is no multitape α-
computable function mapping some β < α co�nally into α. Admissible ordinals,
which play an important role in generalizing recursion theory, are classically
de�ned by the means of de�nability over a constructible level Lα or axioma-
tized through the axioms of Kripke-Platek set theory. We hence provide an
alternative approach to admissibility from a computational perspective.

Similar theorems are already contained in [6] but obtained in a di�erent
way: A (single-tape) α-computable truth function for Lα is employed to transfer
de�nability over Lα to the computational context. The computability of this
truth function however requires α to be su�ciently closed with respect to ordinal
arithmetic. Seeing this in a talk the second author gave in a seminar on ordinal
computability in Bonn in November 2007, the �rst author suggested to make
use of the well developed theory of primitive recursive ordinal and set functions
and applied them in the proofs of Theorems 2 and 3. We kindly thank Peter

Koepke for his suggestions and support of this work.

2 Multitape α-Turing Machines

A program P for a standard Turing-machine with k tapes (each with an inde-
pendent read-write head) can be seen as a �nite subset of {0, 1}k×ω×{0, 1}k×
ω×{−1,+1}k. An element (a, s, a′, s′, d) ∈ P codes the following instruction: If
the k-many read write heads read the symbols corresponding to the entries of
the vector a ∈ {0, 1}k and the machine is in state s ∈ ω then have the heads
write the entries of a′ ∈ {0, 1}k to the respective tapes, change the machine state
to s′ ∈ ω and move the read-write heads according to the vector d ∈ {−1,+1}k.
Similarly to previous studies ([4, 6]) this can be used as a basis for the following
notion of a trans�nite computation according to P :

At successor times the program P is used as in the standard Turingmachine
case, with the single exception that when dealing with tapes of trans�nite length
a convention has to be found what should happen when a read-write-head is
being moved left from a cell indexed by a limit ordinal. In this situation we want
the head to be reset to the beginning of the tape (cell number `0').

For limit times the Turing-program cannot determine the tape content,
head positions and program state so we have to de�ne them in a sensible way.
Following the lines of [4] we use inferior limits: We want each single cell of every
tape to contain the lim inf of its previous values, the machine state to be the
lim inf of the previous machine states and every tape's read/write-head to be
located on the cell indexed by the lim inf over the positions it previously assumed
in the limit machine state, i.e. the least cell that was read co�nally often while
the machine was in the same state as at the limit time.

More formally:

De�nition 1. Let α be a limit ordinal or α = Ord. Let P ⊆ {0, 1}k × ω ×
{0, 1}k×ω×{−1, 1}k be �nite and let T0 = (T0,0, T1,0, . . . , T(k−1),0) ∈ (α{0, 1})k

be the initial tape content of the k-many tapes of length α. A triple

(Tθ,Hθ, Sθ)θ≤Θ

is a k-tape α-Turing computation by P on input T0 if the following conditions
hold:

− Θ ≤ α;
− Sθ ∈ ω for θ ≤ Θ ;
− Hθ = (H0,θ,H1,θ, . . . ,H(k−1),θ)

where Hi,θ ∈ α for 0 ≤ i < k and for θ ≤ Θ ;
− Tθ = (T0,θ, T1,θ, . . . , T(k−1),θ)

where Ti,θ : α −→ {0, 1} for 0 ≤ i < k and for θ ≤ Θ ;
− (Tθ,Hθ, Sθ)θ≤Θ is de�ned recursively in P and the initial tape contents Ti,0

in the following way:
Termination: Let θ ≤ Θ < α and let (Tθ′ ,Hθ′ , Sθ′)θ′≤θ be already de�ned.
If there is no (a, s, a′, s′, d) ∈ P where (Ti,θ(Hi,θ))i<k = a and Sθ = s then
the computation terminates, i.e. θ = Θ.
Successor step: Let θ ≤ Θ, let (Tθ′ ,Hθ′ , Sθ′)θ′≤θ be already de�ned and
let there be a c = (a, s, a′, s′, d) ∈ P where (Ti,θ(Hi,θ))i<k = a and Sθ = s.
Choose c minimally with respect to some �xed well-order on P . As usual
we want the con�guration (Tθ+1,Hθ+1, Sθ+1) to be derived from (Tθ,Hθ, Sθ)
according to the instruction c.
Let a′ = (a′0, a

′
1, . . . , a

′
k−1). For all i < k we require:

Ti,θ+1(ξ) =

{
ai , if ξ = Hi,θ

Ti,θ(ξ) , else

Hi,θ+1 =

Hi,θ + 1 , if d = +1
Hi,θ − 1 , if d = −1 and Hi,θ is a successor ordinal

0 , if d = −1 and Hi,θ is a limit ordinal

Si,θ+1 = s′.

Limit step: Now let θ ≤ Θ be a limit ordinal and let (Tθ′ ,Hθ′ , Sθ′)θ′<θ be
already de�ned. For i < k and ξ < α set

Sθ = lim inf
θ′<θ

Sθ′

Hi,θ = lim inf
θ′<θ,Sθ=Sθ′

Hi,θ′

Ti,θ(ξ) = lim inf
θ′<θ

Ti,θ′(ξ).

Note that the machine con�guration at limit times is always de�ned whenever
the con�gurations at all previous stages are de�ned. If θ = Θ = α we say
that the computation diverges.

The primitive recursive ordinal functions we want to compute are n-ary func-
tions mapping ordinals < α to α. So we de�ne:

De�nition 2. Let B ⊆ α and n ∈ ω. A function f : αn −→ α is called k-α-
computable in B if there is a k-tape Turing program P and a �nite sequence
of ordinal parameters π = (π1, π2, . . . , πm) ∈ αm s.t. k ≥ n+m+ 2 and for all
ξ = (ξ1, ξ2, . . . , ξn) ∈ αn the k-tape α-Turing computation by P with input T0

(Tθ,Hθ, Sθ)θ≤Θξ
is of the form

− Θξ < α, i.e. the computation terminates;
− for every i < n there is a read-only tape containing χ{ξi};
− for every j < m there is a read-only tape containing χ{πj};
− there is a read-only tape containing χB;
− all other tapes are initially empty;
− there is a tape that at time Θξ contains χ{f(ξ)}.

If B = ∅ we call f k-α-computable.
A function g : αn −→ α is called multitape α-computable if there is a k such
that g is k-α-computable.

The question arises which closure properties an ordinal α must have so that
the notions of α-computable in B de�ned in [6] and multitape α-computable in
B coincide. Clearly this is true for admissible ordinals, but much weaker closure
properties will certainly su�ce.

Lemma 1. Let f : αn −→ α be k-α-computable by the program P in parameters
π. Let (Tθ,Hθ, Sθ)θ≤Θξ

be the k-α-computation by P for f(ξ). Then the function
Timef : αn −→ α which maps ξ 7→ Θξ is (k + 1)-α-computable.

Proof. We extend P to a (k + 1)-tape Turing program which still computes f
but where every instruction in P additionally moves the (k + 1)-st tape's head
to the right. The computation terminates after Θξ many steps, i.e. there is no
command for the �nal con�guration. Add a new instruction for this con�guration
that writes a `1' at the current head position of the (k+1)-st tape. Since the k+1-
st tape's head now points to a `1' instead of a `0' the computation terminates
with this new instruction. It follows that Timef is (k + 1)-α-computable.

3 Primitive Recursive Functions

The familiar primitive recursive functions on natural numbers are those recursive
functions generated by a weak recursion scheme that allows recursive de�nitions
using the supremum over the previous function values. A generalization of this
concept to functions operating on the universe of sets has for instance been used
in the study of the constructible hierarchy ([2]). In [3] Jensen and Karp de�ned
the notion of primitive recursiveness for functions mapping ordinals to ordinals
and developed their theory. Following [3] we de�ne:

De�nition 3. The class PrimO(B) of primitive recursive ordinal functions in
B ⊆ Ord is de�ned as the minimal set containing all the functions of type (1)
to (5) and closed under the schemes for substitution (a) and (b) and recursion
(R).

(1) f(ξ) = χB(ξ)
(2) prn,i(ξ) = ξi, for all n ∈ ω, ξ = (ξ1, . . . , ξn) and 1 ≤ i ≤ n.
(3) f(ξ) = 0
(4) f(ξ) = ξ + 1

(5) c(ξ, ζ, γ, δ) =

{
ξ, if γ < δ

ζ, else

(a) f(ξ, ζ) = g(ξ, h(ξ), ζ)
(b) f(ξ, ζ) = g(h(ξ), ζ)
(R) f(ζ, ξ) = g(sup{f(η, ξ) | η < ζ}, ζ, ξ)

We write PrimO instead of PrimO(∅).
If B ⊆ α and α is an ordinal that is closed under PrimO(B) functions then

we call a function f : αn −→ α PrimO(B) i� it is the restriction of a PrimO(B)
function.

De�nition 3 is a special case of the following de�nition of primitive recursive
set functions also taken from [3]:

De�nition 4. Let X be a one-place set function. The class PrimS(X) of prim-
itive recursive set functions in X is de�ned as the minimal set containing all the
functions of type (1) to (5) and closed under the schemes for substitution (a)
and (b) and recursion (R).

(1) F (x) = X(x)
(2) Prn,i(x) = xi, for all n ∈ ω, x = (x1, . . . , xn) ∈ αn and 1 ≤ i ≤ n.
(3) F (x) = 0
(4) F (x, y) = x ∪ {y}

(5) C(x, y, u, v) =

{
x, if u ∈ v
y, else

(a) F (x,y) = G(x,H(x),y)
(b) F (x,y) = G(H(x),y)
(R) F (y,x) = G(sup{F (z,x) | z < y}, y,x)

We write PrimS instead of PrimS(∅).
If B is a set and X is the unary function X(x) = x ∩ B then we may write

PrimS(B) for PrimS(X).
If B ⊆ α and α is an ordinal that is closed under PrimO(B) functions then

we call a function f : αn −→ α PrimS(B) i� it is the restriction of a PrimS(B)
function.

An n-ary relation R ⊆ V n is PrimS(X) if there is a PrimS(X) function
FR : V n −→ V s.t. FR(x) = 0 i� x ∈ R.

Theorem 1. If α is closed under PrimO functions, then every PrimO(B) func-
tion f : αn −→ α is multitape α-computable in B. Furthermore there is a PrimO

function Mf that majorizes Timef , i.e. ∀ξ ∈ αn M(ξ) > Timef (ξ).

Proof. Functions (1) to (4) are easily seen to be multitape α-computable with
majorizing functions the maximum input ordinal plus 1.

(5) We de�ne a program to compute C. Move the heads of the tapes con-
taining γ and δ to the right to decide whether γ < δ. According to the outcome
move the output tape's head together with the head of the tape containing ξ
or ζ to the right until a `1' is read. Copy the `1' to the output tape and stop.
This program runs at most MC(γ, δ, ξ, ζ) = max{γ, δ} + max{ξ, ζ} + 1-many
steps. Since α is closed under PrimO functions and ordinal addition is PrimO

the program terminates and C is multitape α-computable.
(a) Let g be k-α-computable by a program Pg with parameters πg and ma-

jorizing functionMg, h l-α-computable by Ph with parameters πh and majorized
by function Mh. We de�ne a (k+ l)-tape Turing program that computes f us-
ing πg π̂h as parameters. The program �rst runs Ph to compute h(ξ). Note that
any program computing f in parameters πg π̂h uses tapes containing the com-
ponents of ξ, ζ, πh, πg and one tape containing the characteristic function of B;
these can be used as input tapes for Ph and later on for Pg respectively. After
resetting all heads to position zero the program continues with running Pg with
the output tape of Ph, now containing h(ξ), as additional input tape. Resetting
of heads takes only �nitely many machine steps thanks to the well-foundedness
of ordinals (to recognize head position `0' we may assume additional parameter
tapes containing χ{0}). So the new Program will run in less than α many steps
since addition of ordinals is PrimO and α is closed under PrimO functions. We
can set Mf = (Mg · 2) + (Mh · 2).

(b) Similarly to (a).
(R) Let g be k-α-computable by Pg in parameters πg and majorized by Mg.

We describe a (k + 2)-tape Turing program that computes f with parameters
πg. The algorithm runs through ζ-many stages. In stage η < ζ the new (k + 1)-
st tape contains the current value of sup{f(η′, ξ) | η′ < η}. Pg is called once
to compute f(η, ξ) = g(sup{f(η′, ξ) | η′ < η}, η, ξ). If necessary the value of
sup{f(η′, ξ) | η′ ≤ η} has to be updated. The stage concludes by erasing all the
work tapes used by Pg and resetting all heads to zero. We have to ensure that
for all η < ζ the following conditions hold:

(i) At the time of the call of Pg to compute f(η, ξ) the (k+1)-st tape contains
in fact sup{f(η′, ξ) | η′ ≤ η}.

(ii) The number of machine steps the program uses before entering stage η is
less than α.

For (i) use the (k + 2)-nd tape to save the value of f(η, ξ) = γ not as χ{γ}
but as χγ+1. At the beginning of every stage use tape (k+2) to write a `1' to the
sup{f(η′, ξ) | η′ ≤ η}-th cell of tape (k+1) and use this as input to Pg. (i) holds
inductively at successor stages. So let η be a limit ordinal. By the lim inf-rule
tape (k + 2) contains in fact χsup{f(η′,ξ)|η′≤η}. So (i) holds.

Stage η consists of the following operations:

− Find the �rst 0 on tape (k+2) and write a 1 to the respective cell of tape (k+
1) (note that the the �rst `0' occurs in cell number sup{f(η′, ξ) | η′ < η}+1):

As seen above the number of machine steps β�nd = sup{f(η′, ξ) | η′ < η}+2
is less than α.

− Reset tape (k + 1)'s head: This needs at most βreset(k+1) = sup{f(η′, ξ) |
η′ < η many steps.

− Run Pg to compute f(η, ξ) = g(sup{f(η′, ξ) | η′ < η}, η, ξ), the number
of steps βg = Timeg(sup{f(η′, ξ) | η′ < η}, η, ξ) is (k + 1)-α-computable
therefore < α.

− Reset the head of Pg's output tape and update tape (k+2) if necessary: This
can be decided and done in at most βupdate = f(η, ξ) · 2 < α many steps.

− Erase the work tapes used by Pg. WLOG Pg maintains a `timer' tape as in
Lemma 1 which we can use to determine up to which cell the tapes have to
be erased. Since only cells up to index βg may have been used by Pg (all
heads were at position 0 when Pg was called) this takes again at most βg · 2
many steps (·2 since we have to reset the heads before erasing the tapes).

− Reset all heads. This takes at most max{βfind, βg} many steps.

We de�ne a majorizing function Mf for Timef by PrimO recursion:

Mf (η) = sup
η′<η

Mf (η′)

+ (sup{f(η′, ξ) | η′ ≤ η}+ 2) · 2
+Mg(sup{f(η′, ξ) | η′ ≤ η}, η)
+ f(η, ξ) · 2
+Mg(sup{f(η′, ξ) | η′ ≤ η}, η) · 2
+ max{sup{f(η′, ξ) | η′ ≤ η},Mg(sup{f(η′, ξ) | η′ ≤ η}, η, ξ)}

It follows from inductive analysis of the algorithm above that Timef < Mf . Note
that as supremum of the �rst η many values of a PrimO function supη′<η Mf (η′)
is PrimO and therefore < α. So (ii) holds.

4 Applications

The following theorems are similar to Theorem 7 and 9 in [6] which provide a
connection between α-recursion theory and ordinal computability. The proofs
found in [6] explicitely give a truth function for bounded formulas in Lα which
is α-computable if α is su�ciently closed with respect to ordinal arithmetic.
Instead we use facts from the classical theory of PrimS functions to obtain these
results.

Theorem 2. If α is an ordinal closed under PrimO functions then A ⊆ α is
∆1(Lα[B]) i� A is multitape α-computable in B.

Proof. `⇐' follows from the recursion theorem as in [6].
`⇒' Let A ⊆ α be ∆1(Lα[B]) by

γ ∈ A↔ Lα[B] |= ∃xφ[x, γ,p]
γ /∈ A↔ Lα[B] |= ∃xψ[x, γ, q].

where φ, ψ are ΣB
0 formulas. So we have:

γ ∈ A↔ Lα[B] |= ∃xφ[x, γ,p]
↔ ∃x ∈ Lα[B] φ[x, γ,p]

In [3], Lemma 3.2, it is shown that there is a one-one PrimS function N mapping

the ordinals onto the constructible sets s.t. N � α : α
bij−−→ Lα. It is easily seen

that there is also a one-one PrimS(B) function N ′ mapping the ordinals onto

L[B] s.t. F = N ′ � α : α
bij−−→ Lα[B]. So we can write:

↔ ∃ξ ∈ α φ[F (ξ), γ,F (π)]

Like in [2], Lemma I.2.4, we see that every ΣB
0 relation is PrimS(B). Hence there

is a PrimS(B) function G s.t. G(z) = 0 i� φ[z]:

↔ ∃ξ ∈ α G(F (ξ), γ,F (π)) = 0
↔ ∃ξ ∈ α g(ξ, γ,π) = 0.

Where

g(ξ, γ,π) =

{
0 , if G(F (ξ), γ,F (π)) = 0
1 , else.

Since G is PrimS(B) so is g by (a) and (5). g mapping ordinals to ordinals,
B ⊂ α, and we see like in Theorem 3.5 in [3] that g is PrimO(B). Similarly we
obtain a function h for ψ. Now we can describe the following algorithm which
computes the characteristic function of A:

WHILE (g(ξ, γ,π) = 1 AND h(ξ, γ,η) = 1) DO ξ + +;
IF g(ξ, γ,π) = 0 THEN STOP = 0;
IF h(ξ, γ,π) = 0 THEN STOP = 1;

We analyse the algorithm into its stages ξ < α, each consisting mainly of one
computation for g and one for h plus some erasing of work tapes and resetting of
heads. We have to make sure that this algorithm behaves nicely at limit stages,
i.e. actually reaches every limit stage δ < α. Again it will be neccessary to store
the counter ξ as χξ+1 and to decode this into χξ at the beginning of every stage.
Similar to the proof of Theorem 1 we see that the algorithm up to stage ξ uses a
number of steps majorized by a PrimO function M(ξ). Again also supζ<δ M(ζ)
for δ < α is PrimO so the algorithm reaches every stage.

We can now give a characterization of admissible ordinals solely based on
ordinal computations.

Theorem 3. A limit ordinal α is admissible i� there is no multitape α-computable
function mapping some β < α co�nally into α.

Proof. α is admissible i� there is no Σ1(Lα)-de�nable total function that maps
some β < α co�nally into α (cf. [1], Lemma II.7.2).

If α is already closed under PrimO functions then any multitape α-computable
function f is ∆1(Lα) (and therefore Σ1(Lα)) by the recursion theorem as in [6]

(cf. Theorem 2). Conversely let α be not admissible and let f : β
cof−−→ α be a

Σ1(Lα)-de�nable total function on β. So we have:

f(γ) = δ ↔ Lα |= ∃xφ[x, γ, δ,p]
↔ ∃x ∈ Lα φ[x, γ, δ,p]

Where φ is a Σ0 function. With F : α
bij−−→ Lα PrimS from Lemma 3.2 in [3]:

↔ ∃ξ ∈ α φ[F (ξ), γ, δF (π)]

Since φ is Σ0 it is PrimS ([2], Lemma I.2.4):

↔ ∃ξ ∈ α G(F (ξ), γ, δ,F (π)) = 0
↔ ∃ξ ∈ α g(ξ, γ, δ,π) = 0.

Where

g(ξ, γ, δ,π) =

{
0 , if G(F (ξ), γ, δ,F (π)) = 0
1 , else.

Since G is PrimS so is g by (a) and (5). g is mapping ordinals to ordinals and
is therefore PrimO by Theorem 3.5 in [3]. The desired algorithm goes through
less than α many stages to compute f(γ) given γ as input. In every stage η < α
the algorithm computes the values of g(ξ, γ, δ,π) for all ξ, δ < η. g is PrimO so
Timeg is multitape α-computable majorized by Mg which in turn is PrimO. So
supξ,δ<η M(ξ, γ, δ,π) is less than α and every stage η is reached by the algorithm.
At some stage one computation for g will return 0 and the value δ = f(γ) is
found. So f is multitape α-computable as required.

In the case that α is not closed under PrimO functions we will de�ne β < α

and a multitape α-computable total function f : β
cof−−→ α.

Any limit ordinal is closed under (1)-(4) so assume in the following closure
under (1)-(4). If α is not closed under (5) then also for one instance of (5)
f(ζ0, ζ1, ζ2, ζ3) the canonical algorithm will not terminate in less than α many
steps. Analysing the algorithm in the proof of Theorem 1 we can extract two
ordinals γ, δ < α with γ + δ ≥ α (set γ = max{ζ2, ζ3} and δ = max{ζ0, ζ1}).
So there is a β ≤ δ such that the multitape α-computable function f : β −→ α,
ξ 7→ γ + ξ is co�nal in α.

If α is closed under two functions f and g so it is also closed under f(ξ, ζ) =
g(ξ, h(ξ), ζ) and under f ′(ξ, ζ) = g(h(ξ), ζ). So if α is closed under (1)-(5) but
not closed under PrimO functions it has to be not closed under (R).

Assume α closed under (1)-(5),(a),(b) but not closed under (R). Since the
PrimO functions are de�ned by recursion, there are PrimO functions f, g s.t.

f(ζ, ξ) = g(sup{f(η, ξ) | η < ζ}, ζ, ξ) is an instance of (R) and α closed un-
der g but not closed under f . Choose β minimally s.t. f(β, ξ) /∈ α. f(β, ξ) =
g(supγ<β f(γ), ξ), β, ξ) and since α is closed under g we have that supγ<β f(γ, ξ) =
α. Now f � β : β −→ α is co�nal in α.

References

1. Keith Devlin. Constructibility. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1984.

2. Keith Devlin. Aspects of Constructibility. Perspectives in Mathematical
Logic. Springer-Verlag, Berlin, Heidelberg, 1973.

3. Ronald B. Jensen and Carol Karp. Primitive recursive set functions.
In: Axiomatic Set Theory, Proceedings of Symposia in Pure Mathematics,
Volume XIII, Part I. American Mathematical Society, Providence, Rhode
Island, 1971.

4. Peter Koepke. Turing computations on ordinals. The Bulletin of Symbolic
Logic 11 (2005), 377�397.

5. Peter Koepke and Martin Koerwien. Ordinal computations. Mathe-
matical Structures in Computer Science (2006), 867�884.

6. Peter Koepke and Benjamin Seyfferth. Ordinal Machines and Admis-

sible Recursion Theory. Submitted to: Annals of Pure and Applied Logic,
CiE 2007 special volume, to be published 2008.

