Constructing (w1, 3)-morasses for wy < 3

Bernhard Irrgang
December 16, 2010

Abstract

Let k € Card and L.[X] be such that the fine structure theory, con-
densation and Card”<™) = Card N k hold. Then it is possible to prove
the existence of morasses. In particular, I will prove that there is a k-
standard morass, a notion that I introduced in a previous paper. This
shows the consistency of (w1, 3)-morasses for all > w.

1 Introduction

R. Jensen formulated in the 1970’s the concept of an (wq, 3)-morass whereby
objects of size wq 45 could be constructed by a directed system of objects of size
less than w,. He defined the notion of an (w4, 3)-morass only for the case that
0 < wq. Tintroduced in a previous paper [Irr2] a definition of an (w1, 5)-morass
for the case that wy < .

This definition of an (wi, 3)-morass for the case that w; < ( seems to be an
axiomatic description of the condensation property of Gédel’s constructible uni-
verse L and the whole fine structure theory of it. I was, however, not able to
formulate and prove this fact in form of a mathematical statement. Therefore,
I defined a seemingly innocent strengthening of the notion of an (wy, 8)-morass,
which I actually expect to be equivalent to the notion of (wy, 3)-morass. I call
this strengthening an wyg-standard morass. As will be seen, if we construct a
morass in the usual way in L, the properties of a standard morass hold auto-
matically.

Using the notion of a standard morass, I was able to prove a theorem which
can be interpreted as saying that standard morasses fully cover the condensa-
tion property and fine structure of L. More precisely, I was able to show the
following [Irr2]

Theorem
Let k > w; be a cardinal and assume that a k-standard morass exists. Then

there exists a predicate X such that Card Nk = Card™~X] and L,[X] satisfies
amenability, coherence and condensation.

Let me explain this. The predicate X is a sequence X = (X, | v € S¥)
where SX C Lim Nk, and L,[X] is endowed with the following hierarchy: Let
I, =(JX, X [v)forv e Lim—SX and I, = (JX, X | v, X,) for v € S¥ where
X, C JDX and

J&E =10



X = rud(I)

JX = U{JX | v € A} for A € Lim? := Lim(Lim),
where rud(I:X) is the rudimentary closure of JX U {JX} relative to X | v if
v € Lim — SX and relative to X | v and X, if v € SX. Now, the properties of
L, [X] are defined as follows:

(Amenability) The structures I,, are amenable.

(Coherence) If v € SX, H <; I, and A = sup(H N On), then A € SX and
X\ =X, NJx.

(Condensation) If v € SX and H <; I, then there is some p € SX such that
H=~1,

Moreover, if we let 3(v) be the least 8 such that Jéﬂrw E v singular, then
SX = {B(v) | v singular in I,;}.

As will be seen, these properties suffice to develop the fine structure theory. In
this sense, the theorem shows indeed what I claimed. In the present paper, I
shall show the converse:

Theorem

If L,[X], € Card, satisfies condensation, coherence, amenability, SX =
{B(v) | v singular in I,,} and Card™X] = Cardnk, then there is a k-standard
morass.

Since L itself satisfies the properties of L [X], this also shows that the existence
of k-standard morasses and (wq, 3)-morasses is consistent for all k£ > wo and all
B> ws.

Most results that can be proved in L from condensation and the fine structure
theory also hold in the structures L,[X] of the above form. As examples, I
proved in my dissertation the following two theorems whose proofs can also be
seen as applications of morasses:

Theorem

Let A > w; be a cardinal, SX C Lim N\, Card N X\ = Card™X] and X =
(X, | v € %) be a sequence such that amenability, coherence, condensation
and SX = {#(v) | v singular in I,;} hold. Then O, holds for all infinite cardinals
K <A

Theorem

Let S* C Lim and X = (X, | v € S¥) be a sequence such that amenability,
coherence, condensation and S* = {f(v) | v singular in L[X]} hold. Then
the weak covering lemma holds for L[X]. That is, if there is no non-trival, el-
ementary embedding 7 : L[X] — L[X], & € Card"™] — wy and 7 = (k)FX],
then

T<kt = cf(r)=card(k).

The present paper is a part of my dissertation [Irr1]. T thank Dieter Donder for
being my adviser, Hugh Woodin for an invitation to Berkeley, where part of the
work was done, and the DFG-Graduiertenkolleg “Sprache, Information, Logik“
in Munich for their support.



2 The inner model L[X]

We say a function f: V™ — V is rudimentary for some structure 20 = (W, X;)
if it is generated by the following schemata:

flay,. .. xy) =z for 1 <i<n

flz1, . zn) ={z,zj} for 1 <i,5<n
flry,..,an) =x; —ajfor 1 <i,5<n

flxr,.. o xn) = h(g1(x1, ooy &n)y ooy GulT1, .o, Tn))
where h, g1, ..., g, are rudimentary

f(y7z23~'~7xn) :U{g(z,xg,...,xn) | Zey}

where g is rudimentary
f(x1,...,2n) = XiNaj where 1 < j < n.

Lemma 1

A function is rudimentary iff it is a composition of the following functions:
Fo(x y) = {x y}

:{<uzv>|2’€xand< v) € y}
:{<zuv>|26xand< v) €y}

Proof: See, for example, in [Dev2]. O

A relation R C V" is called rudimentary if there is a rudimentary function
f: V™ =V such that R(z;) < f(x;) # 0.

Lemma 2

Every relation that is X over the considered structure is rudimentary.

Proof: Let xr be the characteristic function of R. The claim follows from the
facts (i)-(vi):

(i) R rudimentary < y g rudimentary.

<« is clear. Conversely, xp = U{9(v) | y € f(z;)} where g(y) = 1 is constant
and R(z;) < f(x;) # 0.

(ii) If R is rudimentary, then =R is also rudimentary.

Since X-R = 1-— XR-

(iii) z € y and x = y are rudimentary.

Byazd¢ye{zt-y#0, 24y e (x—y)U(y—2)#0and (ii).

(iv) If R(y,z;) is rudimentary, then (3z € y)R(z,z;) and (Vz € y)R(z,x;) are
rudimentary.



If R(y,x;) < fly,z;) # 0, then (32 € y)R(z,2;) < U{f(z,z:) | z € y} # 0.

The second claim follows from this by (ii).

(v) If Ry, Ry C V™ are rudimentary, then so are Ry V Ry and Ry A Rs.
Because f(z,y) = Uy is rudimentary, (R1 V R2)(x;) < xgr, (2:) U XR, (2:) # 0
is rudimentary. The second claim follows from that by (ii).

(vi) z € X; is rudimentary.

Since {z}NX;, #0 < x € X,;. O

For a converse of this lemma, we define:

A function f is called simple if R(f(x;), yx) is Lo for every Eg-relation R(z,yx).

Lemma 3
A function f is simple iff

(i) z € f(x) is X

(ii) A(z) is Zg = (Fz € f(z:))A(2) is .
Proof: If f is simple, then (i) and (ii) hold, because these are instances of
the definition. The converse is proved by induction on ¥y-formulas. E.g. if
R(z,yr) & 2 = yk, then R(f(z:),yx) = f(z:) = yp = (V2 € f(2:))(z € yr)
and (Vz € yi)(z € f(x;)). Thus we need (i) and (ii). The other cases are similar.
O

Lemma 4

Every rudimentary function is ¥ in the parameters X;.

Proof: By induction, one proves that the rudimentary functions that are gen-
erated without the schema f(z1,...,2,) = X; Nz, are simple. For this, one

uses lemma 3. But since the function f(z,y) = x Ny is one of those, the claim
holds. O

Thus every rudimentary relation is ¥ in the parameters X;, but not necessaryly
Yo with the X; as predicates. An example is the relation {z,y} € Xo.

A structure is said to be rudimentary closed if its underlying set is closed under
all rudimentary functions.

Lemma 5

If 97 is rudimentary closed and H <; 20, then H and the collapse of H are also
rudimentary closed.

Proof: That is clear, since the functions Fy, ..., Fo4; are ¥g with the predicates
X;. O

Let T be the set of ¥y formulae of our language {€, X1,..., Xn} having ex-
actly one free variable. By lemma 2, there is a rudimentary function f for every
Yo formula 1 such that ¢(z.) & f(z) # 0. By lemma 1, we have

zo = f(zy) = Fy, (21, x2)
where 1 = Fy, (3, 24)

ro = Fk3(1'5,m6)
and x3=...



Of course, z, appears at some point.

Therefore, we may define an effective Godel coding
Ty — G,y —u
as follows (m,n possibly = *):
(k,l,m,n) € u:s xp = Fi(Xm, Ty).

Let I:%) (u, z4) &
1y, 18 a X formula with exactly one free variable

and W = ¥, (z4).

Lemma 6
If 90 is transitive and rudimentary closed, then =g (2,y) is ¥;-definable over
5. The definition of ):g;’ (x,y) depends only on the number of predicates of
0. That is, it is uniform for all structures of the same type.
Proof: Whether 51? (u, z4) holds, may be computed directly. First, one com-
putes the zj which only depend on x,. For those k, (k,I,x,*) € u. Then
one computes the z; which only depend on x,, and x,, such that m,n € {k |
(k,1,%,%) € u} —etc. Since 20 is rudimentary closed, this process only breaks off,
when one has computed 2o = f(z,). And 3¢ (u,z,) holds iff xg = f(x,) # 0.
More formally speaking: o (u,24) holds iff there is some sequence (z; |
ied),d={k|{k1,m,n) € u} such that
(k,l,m,n) € u= x = Fi(xm,2n)
and zqg # 0.
Hence |=5 is $;. O

If 20 is a structure, then let rud(20) be the closure of W U {W} under the
functions which are rudimentary for 20.

Lemma 7
If 20 is transitive, then so is rud(20).

Proof: By induction on the definition of the rudimentary functions. O

Lemma 8

Let 20 be a transitive structure with underlying set W. Then
rud(20) N P(W) = Def(20).

Proof: First, let A € Def(20). Then A is ¥ over (WU{W}, X;), i.e. there are
parameters p; € W U {W} and some Xy formula ¢ such that z € A & ¢(z,p;).
But by lemma 2, every Xy relation is rudimentary. Thus there is a rudimentary
function f such that z € A & f(z,p;) # 0. Let g(z,2) = {z} and define
h(y,z) = U{g(z,2) | 2 € y}. Then h(f(z,p;),x) = U{g(z.2) | 2 € f(z,pi)}
is rudimentary, h(f(z,p;),z) = 0 if ¢ ¢ A and h(f(z,p;),z) = {2z} if z € A.
Finally, let H(y,p;) = U{h(f(z,p;),z) | € y}. Then H is rudimentary and
A= H(W,p;). So we are done.



Conversely, let A € rud(20)NP(W). Then there is a rudimentary function f
and some a € W such that A = f(a, W). By lemma 4 and lemma 3, there exists
a Yo formula ¢ such that z € f(a,W) < 9(x,a, W, X;). By Xy absoluteness,
A={z e W | WU{W, X;} =¢(z,a,W, X;)}, since X; C W. Therefore, there
is a formula ¢ such that A ={z € W | W |= ¢(z,a)}. O
Let k € Card — wy, S* C Lim Nk and (X, | v € S¥) be a sequence.

For v € Lim — SX, let I, = (JX, X | v) and let I, = (J)X, X | v, X,) for
v € SX such that
X, C Jlf( where
Jgt =10
X =rud(l,)
J¥ =LY | v e AYif X € Lim? := Lim(Lim).
Obviously, L.[X] = {JX | v € x}.
We say that L,.[X] is amenable if I, is rudimentary closed for all v € SX.

Lemma 9
(i) Every JX is transitive
(i) p<v=Jf eJf
(iii) rank(JX) =JXNOn=v
Proof: That are three easy proofs by induction. O
Sometimes we need levels between J;* and J;Y, . To make those transitive, we
define
Gi(x,y,2) = Fi(z,y) for i <8
Gy(z,y,z) =2nNX
Gro(z,y,2) = (z,y)

Gu(z,y,2) = z[y]

Giz2(z,y,2) = {{z,y)}

Gis(z,y,2) = (2,9, 2)

Gu(z,y,2) = {(z,y), z}.
Let

So=10

St = S ULS, UGS, U8} [ € 15)

Sx=U{S, | 1€ Atif X € Lim.
Lemma 10
The sequence (I, | p € Lim Nv) is (uniformly) ¥;-definable over I,,.
Proof: By definition Jff = S, for p € Lim, that is, the sequence <Jf |
w € Lim Nv) is the solution of the recursion defining S, restricted to Lim.
Since the recursion condition is X over I,, the solution is ;. It is X over
I, if the existential quantifier can be restricted to JX. Hence we must prove
(S, | pwer)yeJX for 7 € v. This is done by induction on v. The base case

v = 0 and the limit step are clear. For the successor step, note that S,41 is a
rudimentary function of S, and g, and use the rudimentary closedness of .J;X.
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Lemma 11
There are well-orderings <, of the sets JX such that
(i) p<v=<,C<,
(ii) <, 41 is an end-extension of <,
(iii) The sequence (<,| u € Lim Nv) is (uniformly) ,-definable over I,.
(iv) <, is (uniformly) ¥;-definable over I,,.
(v) The function pr,(z) = {z | z <, «} is (uniformly) X;-definable over I,,.
Proof: Define well-orderings <, of S,, by recursion:

ey <o=10

(II) Q) Forz,y e Sy, let s <y <,y
2)zeS,andy¢ S, = v <u11y
yeS,andxr ¢S, = y<uq T
(3) If x,y ¢ S, then there is an i € 15 and x1, x2, 23 € S, such that
x = G;i(x1,22,23). And there is a j € 15 and y1,¥2,y3 € Su
such that y = G;(y1, y2,y3). First, choose ¢ and j minimal, then
x1 and yp, then x5 and 2, and finally x3 and ys3.
Set:
() z <ppryifi<y
Y<pu+1 T lf_] <1
(b) x <py1yifi=jand xy <,y
y<uprzxifi=jand y1 <, 1
() <ptryifi=jand 1 =y and z2 <, Y2
Yy <pprxifi=7jand x1 =y and yo <, 2
(d) z <pyp1yif i =j and x1 = y1 and 2 = ys and x3 <, Y3
Yy <pyrxifi=jand vy =y and yo = x2 and y3 <, T3

1L <x=WU{<ulne A}

The properties (i) to (v) are obvious. For the 3;-definability, one needs the
argument from lemma 10. O

Lemma 12

The rudimentary closed (J:X, X | v, A) have a canonical ¥;-Skolem function h.

Proof: Let (¢; | i € w) be an effective enumeration of the ¥y formulae with
three free variables. Intuitively, we would define:

h(i,z) =~ (2)o
for
the <, -least 2z € JX suchthat (JX, X [v,A)E¥i((2)o,,(2)1).

Formally, we define:



By lemma 11 (v), let 6 be a ¥ formula such that
w={v|v<,z} & (J5 XA EGH(w,z2t).
Let u; be the Godel coding of

0((8)1,(s)o, (5)2)
A Pi(((8)o)o, (8)3, ((8)o)1) A (Vv € (8)1)=¢i((v)o, (8)3, (v)1)

and
y=h(i,z) <

B)(((so)o=y A ()a=a A Ex xpa ()
This has the desired properties. Note lemma 6! O

I will denote this ¥;-Skolem function by h, 4. Let h, := h, o.

Let us say that L,[X] has condensation if the following holds:
If v € X and H < I, then there is some p € S¥ such that H = 1,.

From now on, suppose that L.[X] is amenable and has condensation.
Set 19 = (JX, X [ v) for all v € Lim N k.

Lemma 13 (Godel’s pairing function)

There is a bijection ® : On? — On such that ®(a, 3) > «, 3 for all a, 3 and
®~! | o is uniformly X;-definable over I? for all a € Lim.

Proof: Define a well-ordering <* on On? by

(., B) <* (7,9)

iff
max(a, f) < max(y,d) or
maz(a, f) = max(y,d) and a < 7y or
max(a, 8) = max(vy,d) and o =y and < 0.
Let @ : (On?, <*) = (On, <). Then ® may be defined by the recursion
8(0,) = supl@(v,) | v < B}
O(a,3) =0(0,8) +aifa<
O(a,5) =P(0,) +a+ B if a > S.
O

So there is a uniform map from a onto a x « for all a that are closed under
Godel’s pairing function. Such a map exists for all @ € Lim. But then we have
to give up uniformity.

Lemma 14

For all a € Lim, there exists a function from « onto o X a that is X;-definable
over 0.

Proof by induction on o € Lim. If « is closed under Godel’s pairing fuction,
then lemma 13 does the job. Therefore, if & = f+ w for some 5 € Lim, we may
assume (3 # 0. But then there is some over I0 ¥;-definable bijection j : a — 3.
And by the induction hypothesis, there is an over Ig >1-definable function from

0 onto B x 8. Thus there exists a ¥; formula ¢(z,y, p) and a parameter p € Jé(
such that there is some z € f satisfying ¢(z,y,p) for all y € § x 5. So we



get an over Ig ¥1-definable injective function g : 8 x f — ( from the ;-
Skolem function. Hence f({v,7)) = g({j(v),j(7))) defines an injective function
f : a®> — 3 which is Xj-definable over I2. An h which is as needed may be
defined by

hv) = £\ () if v € rg(f)

h(v) = (0,0) else.

For rng(f) = rng(g) € JX.

Now, assume a € Lim? is not closed under Godel’s pairing function. Then
v, 7 € a for (v,7) = @ Ha), and ¢ == {z | 2 <* (v,7)} lies in JX. Thus
®~! | c:c— aisan over I9 ¥;-definable bijection. Pick a v € Lim such that
v,7 < 7. Then 7! [ a: @ — 42 is an over I? ¥-definable injective function.
Like in the first case, there exists an injective function g : v x v — 7 in JZX by
the induction hypothesis. So f((£,¢)) = g({(g®~1(¢),g®1(¢)))) defines an over
10 3j-definable bijection f : o® — d such that d := g[g[c] x g[c]]. Again, we
define h by

hE) = FE) e ed

h(&) = (0,0) else. O

Lemma 15

Let o € Lim — w + 1. Then there is some over I2 ¥;-definable function from
« onto JX. This function is uniformly definable for all a closed under Gédel’s
pairing function.

Proof: Let f: o — a X a be a surjective function which is ;-definable over
I° with parameter p. Let p be minimal with respect to the canonical well-
ordering such that such an f exists. Definef?, f! by f(v) = (f°(v), f}(v)) and,
by induction, define f; =id | a and f,11(v) = (fO(v), fn o f1(v)). Let h := hq
be the canonical ¥;-Skolem function and H = hfw x (a x {p})]. Then H is
closed under ordered pairs. For, if y13 = h(j1, (v1,p)), y2 = h(j2, (v2,p)) and
(v1,19) = f(7), then (y1,y2) is ¥1-definable over I? with the parameters 7, p.
Hence it is in H. Since H is closed under ordered pairs, we have H <; IJ. Let
oc: H— Ig be the collapse of H. Then o« = 3, because « C H and ¢ [ a =
id | a. Thus o[f] = f, and o[f] is Xi-definable over I® with the parameter
o(p). Since o is a collapse, o(p) < p. So o(p) = p by the minimality of p. In
general, w(h(i,x)) ~ h(i, 7(z)) for i-elementary «. Therefore, o(h(i, (v,p))) ~
h(i, (v,p)) holds in our case for all i € w and v € a. But then o | H =id | H
and H = JX. Thus we may define the needed surjective map by g o f3 where

g(i,v,7) =y if (32 € S:)p(2,y,4, (v, p))

g(i,v,7) =0 else.
Here, S, shall be defined as in lemma 10 and y = h(i, ) < (3t € JX)p(t,i, z,y).
O

Let (IO, A) := (JX, X | v, A).
The idea of the fine structure theory is to code %, predicates over large struc-

tures in ¥ predicates over smaller structures. In the simplest case, one codes
the ¥ information of the given structure Ig in a rudimentary closed structure

(I9, A). Le. we want to have something like:

Over Ig, there exists a ¥; function f such that

X =J5.



For the ¥; formulae ;,

(i,z)e A & Ik oi(f(x)

holds. And
(IS, A)  is rudimentary closed.

Now, suppose we have such an (I, A). Then every B C J, /;X that is ¥1-definable
over Ig is of the form

B={xz]| A(i,{(x,p))} forsome i€w,p€ Jff(.

So (I9, B) is rudimentary closed for all B € X1 (I3) NP(J,Y).

The p is uniquely determined.

Lemma 16

Let 8 > w and (Ig, B) be rudimentary closed. Then there is at most one p € Lim
such that

(I9,C) is rudimentary closed for all C' € Eﬂ([g, B)) NP(JY)
and

there is an over (Ig, B) ¥;-definable function f such that f[Jf] = J[f.
Proof: Assume p < p both had these properties. Let f be an over (Ig,B)
¥1-definable function such that f[JX] = J5 and C = {z € J} | z & f(x)}.
Then C C J¥ is ¥;-definable over (I3, B). So (I2,C) is rudimentary closed.
But then C = C'nN JPX € Jg(. Hence there is an = € JPX such that C' = f(x).
From this, the contradiction z € f(z) & x € C & z ¢ f(x) follows. O

The uniquely determined p from lemma 16 is called the projectum of (Ig, B).

If there is some over (I3, B) ¥;-definable function f such that fIIX] = Jg,
then hg glw x (J,f( x {p})] = Jé( forap e Jé(. Using the canonical function
hs B, we can define a canonical A:

Let p be minimal with respect to the canonical well-ordering such that the above
property holds. Define

A={{i,z)|i€cw and z€ J;X and (I3, B) = ¢i(z,p)}.

We say p is the standard parameter of (Ig, B) and A the standard code of it.

Lemma 17

Let 8 > 0 and (Ig,B) be rudimentary closed. Let p be the projectum and A
the standard code of it. Then for all m > 1, the following holds:

S14m (L5, B) NP(I) = S, A)).

Proof: First, let R € EHm((Ig,B)) NP(J¥) and let m be even. Let P be a
relation being ¥;-definable over (Ig, B) with parameter ¢; such that, forx € J 5( ,
R(z) holds iff JyoVy13ys ... Vym—1P(y:,z). Let f be some over (IB,B) with
parameter go ¥;-definable function such that f[J[f(] = Jé(. Define Q(z;,z) by
zi,x € J and (Jy;)(yi = f(z) and P(y;, x)). Let p be the standard parameter

10



of <Ig,B>. Then, by definition, there is some u € J/f( such that (g1, ¢s) is ¥1-
definable in (I§, B) with the parameters u,p. Le. there is some i € w such that
Q(zi,x) holds iff z;,x € JX and (Ig,B) Eoi((zi,x,u),p) — ie iff zj,z € JYF
and A(i,{z;,z,u)). Analogously there is a j € w and a v € JPX such that
z € dom(f)NJ\ iff z € J¥ and A(j, (z,v)). Abbreviate this by D(z). But then,
for z € JX, R(z) holds iff IyoVy13ys ... Vym—1(D(20) A D(22) A ... A D(Zm—2)
and (D(z1)AND(z3)A\...AD(zm-1) = Q(zi,x))). So the claim holds. If m is odd,
then we proceed correspondingly. Thus E1+m(<Ig, B)) N P(J)) C B ({19, A))
is proved.

Conversely, let ¢ be a ¥y formula and ¢ € Jj( such that, for all x € JPX,
R(x) holds iff (I}, A) |= ¢(x,q). Since (I}, A) is rudimentary closed, R(z) holds
iff (3u € JX)(3a € JX)(u transitive and © € w and q € uw and a = ANu and
(u,a) E p(x,q)). Write a = ANw as formula: (Vv € a)(v € u and v € A) and
(Vv eu)(ve A= v €a). If m=1, we are done provided we can show that this
is ¥y over (Ig, B). If m > 1, the claim follows immediately by induction. The
second part is IT;. So we only have to prove that the first part is 3o over (Ig, B).
By the definition of A, v € A is ¥;-definable over <Ig, B). Le. there is some X
formula ¢ and some parameter p such that v € A & (I§, B) = (3y)¢(v,y,p).
Now, we have two cases.

In the first case, there is no over (I, B) ¥i-definable function from some
v < p cofinal in 3. Then (Vv € a)(v € A) is ¥y over (I}, B), because some kind
of replacement axiom holds, and (Vv € a)(3y)y (v, y, p) is over <Ig, B) equivalent
to (3z)(Vv € a)(Fy € 2)¢¥(v,y,p). For p = w, this is obvious. If p # w, then
p € Lim? and we can pick a v < p such that a € JWX. Letj:v— Jf an over I
>1-definable surjection, and g an over (Ig, B) ¥i-definable function that maps
v E Jé{ to g(v) € Jg" such that (v, g(v),p) if such an element exists. We can
find such a function with the help of the ¥1-Skolem function. Now, define a
function f : v — § by

f(v) = the least 7 < 8 such that go j(v) € S; if j(v) € a

f(v) =0 else.

Since f is ¥4, there is, in the given case, a § < @ such that f[y] C §. So we have
as collecting set z = Sj, and the equivalence is clear.

Now, let us come to the second case. Let v < p be minimal such that
there is some over (I3, B) ¥i-definable function g from ~ cofinal in 3. Then
(Vv € a)(Fy)Y(v,y,p) is equivalent to (Vv € a)(Iv € v)(Fy € Syu))Y(v,y,p).
If we define a predicate C C Jff( by (v,v) € C < y € Sy and P(v,y,p),
then <Ig,B) = (Vv € a)(3y)i(v,y,p) is equivalent to (I9,C) |= (Vv € a)(3v €
¥)(3y)((v,v) € C). But this holds iff (I7,C) = (3w)(w transitive and a,y € w
and (w,C Nw) = (Vv € a)(Fv € v)(Jy)((v,v) € CNw). Since C is ¥y over
<Ig, B), <Ig, C) is rudimentary closed by the definition of the projectum. ILe.
the statement is equivalent to (I, C) | (3w)(3c)(w transitive and a,y € w
and ¢ = CNw and (w,c) = (Yv € a)(Fv € v)3y)((v,v) € ¢). So, to prove
that this is Xo, it suffices to show that ¢ = C' Nw is ¥y. In its full form, this
is (V2)(2 €a & z€wand z € C). But z € C is even Ay over (Ig, B) by the
definition. So we are finished. O

Lemma 18
a) Let 7 : (JX,X | B,B) — (J¥X,X | 3,B) be Lp-elementary and 7[3] be
B B
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cofinal in 8. Then 7 is even Yi-elementary.

(b) Let (JX, X | #, A) be rudimentary closed and 7 : (JX, X [ 7) — (JY,Y [ v)
be Yp-elementary and cofinal. Then there is a uniquely determined A C JY such
that 7 : (JX, X [ 7, A) — (JY, X | v, A) is Sp-elementary and (J)}, X | v, A) is
rudimentary closed.

Proof: (a) Let ¢ be a ¥ formula such that (J5X, X | 8, B) &= (32)p(z, w(x;)).
Since 7[f3] is cofinal in 3, there is a v € B such that (J5, X | 8,B) |= (3z €
Srwy)e(z,m(z;)). Here, the S, is defined as in lemma 10. If 7(S,) = Sx(,),
then <Jé(,X I 8,B) = (3z € n(Sy))p(z, m(x;)). So, by the ¥g-elementarity of
T, <J5(,X I B,B) = (32 € S,)¢(z,7;). Le. (Jg,X I B,B) = (32)p(2,z;). The
converse is trivial.

It remains to prove 7(S,) = Sr(,y. This is done by induction on v. If v =0

or v ¢ Lim, then the claim is obvious by the definition of S, and the induction
hypothesis. So let A € Lim and M := w(Sy). Then M is transitive by the -
elementarity of 7. And since A € Lim (i.e. Sy = J5X), (S, | v < A) is definable
over (JiX, X | A) by (the proof of) lemma 10. Let ¢ be the formula (Vz)(3v)(z €
S,). Since 7 is Xp-elementary, w | Sy : (J3, X [ A) — (M, (X | \)N M) is
elementary. Thus, if (J¥, X | \) | ¢, then also (M, (X | \) N M) |= ¢. Since
M is transitive, we get M = S; for a 7 € Lim. And, by m(\) = n(S\ N On) =
S; NOn = 7, it follows that 7(Sx) = Sr()-
(b) Since (JX, X | v, A) is rudimentary closed, ANS,, € J:X for all p < © where
S, is defined as in lemma 10. As in the proof of (a), 7(S,) = Sx(,). So we need
T(ANS,) = AN Sy, to get that 7 : (J)X, X | v, A) — (J), X | v, A) is Zo-
elementary. Since 7 is cofinal, we necessarily obtain A = (J{m(ANS,) | n < 7}.
But then (JY, X | v, A) is rudimentary closed. For, if z € JX, we can choose
some p < v such that @ € Sy(,). And 2N A =2N(ANSy) =2zNm(ANS,) €
JX. Now, let (JX, X | 7, A) |= ¢(x;) where ¢ is a ¥y formula and u € JX is
transitive such that z; € w. Then (u, X [ ?Nu, ANu) = ¢(x;) holds. Since
7 {(JX X D) — (JY,Y | v)is Sp-elementary, (7(u),Y [ vN7(u), AN7(u)) |
o(m(z;)). Because m(u) is transitive, we get (JY, X | v, A) | ¢(n(x;)). This
argument works as well for the converse. O

Write Condp(I3) if there exists for all H <, (Ij}, B) some 3 and some B such
that H = (I3, B).

Lemma 19 (Extension of embeddings)

Let 8 > w, m > 0 and (Ig, B) be arudimentary closed structure. Let Condp (Ig)
hold. Let p be the projectum of <Ig, B), A the standard code and p the standard
parameter of (Ig,B}. Then Conda(I9) holds. And if (I9, A) is rudimentary
closed and 7 : (I9, A) — (I3, A) is ¥p,-elementary, then there is an uniquely
determined %, 1-elementary extension 7 : (Ig,B) — (I3, B) of m where p is
the projectum of (Ig,B>, A is the standard code and 7~ !(p) is the standard
parameter of (Ig, B).

Proof: Let H = hg glw x (rng(m) x {p})] <1 (I3, B) and 7 : <IE,B> — (I}, B)
be the uncollapse of H.

(1) 7 is an extension of 7

Let p = sup(w[p]) and A = AN JX. Then m: (JX, X | p,A) — (JX, X |
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p, A) is Yg-elementary, and by lemma 18, it is even Yi-elementary. We have
rng(r) = H N JX. Obviously rng(m) € HNJX. Solet y € HN J5. Then
there is an ¢ € w and an x € rng(w) such that y is the unique y € Jé( that
satisfies (Ig, B) = ¢;({y,x),p). So by definition of A, y is the unique y € Jé(
such that A(i, (y,z)). But € rng(r) and = : (JX, X 1 p,A) — (JI‘SX,X I p, A)
is ¥i-elementary. Therefore y € rng(w). So we have proved that H is an &-
end-extension of rng(w). Since 7 is the collapse of rng(7) and 7 the collapse of
H, we obtain 7 C 7.

(2) 7: <IE,B> — (I3, B) is Xy, y1-clementary

We must prove H <41 (Ig, B). If m = 0, this is clear. So let m > 0 and let
y be X,,1-definable in (Ig, B) with parameters from rng(w) U {p}. Then we
have to show y € H. Let ¢ be a X, formula and x; € rng(r) such that y is
uniquely determined by (I§, B) = ¢(y, =, p). Let h((i,x)) =~ h(i, (z,p)). Then
iL[J;)X] = J5 by the definition of p. So there is a z € J,* such that y = h(z).
If such a z lies in J,X* N H, then also y € H, since z,p € H <1 (I}, B). Let
D = dom(h) N Jf. Then it suffices to show

() (320 € D)(Va1 € D). (I3 B) b= $(h(=), h(2), 21, )

for some z € HN Jj( where 1) is 31 for even m and II; for odd m such that
oy, zi,p) & <IB,B> E (320)(Vz1) ... 9¥(2, ¥, 2, p). First, let m be even. Since
A'is the standard code, there is an iy € w such that z € D < A(ig, x) holds for all
z € J¥ —and a jo € w such that, for all z;, z € D, (I3, B) = ¥(h(z:), h(2), i, p)
iff A(jo, (2i,2,7:)). Thus (x) is, for 2 € JX, equivalent with an obvious %,,
formula. If m is odd, then write in (x) .. .—|<Ig, B) E —(...). Then - is 34
and we can proceed as above. Eventually 7 : (I9, A) — (I0, A) is ¥,,-elementary
by the hypothesis and = C @ by (1) —i.e. HNJX <, (I9, A). Since there is a
z € J;X which satisfies (x) and z;,p € HNJX, there exists such a z € HNJX.
Let H <4 (IS, A). Let 7w be the uncollapse of H. Then 7 has a ¥;-elementary
extension 7 : (Ig,B) — <Ig,B>. So H = (I}, A) for some p and A. Le.
Cond ().

(3) A={(i,z) |i €cwand x € JX and (Ig,B) E oi(z, 77 1(p))}

Since m : (I3, A) — (I9, A) is Xo-elementary, A(i,z) < A(i, n(z)) for z € J5.
Since A is the standard code of <Ig,_B>, A, m(x)) < (Ig,B) = @i(w(x_),p).
Finally, (I3, B) = wi(n(2),p) < (I% B) = ¢i(a, 7 (p), because 7 : (19, B) —
<Ig, B) is ¥1-elementary.

(4) p is the projectum of (I, B)

By the definition of H, Jg = h@g[u} X (Jlgx x {771 (p)})]. So f({i,x)) ~
hs (i, (z, 71 (p))) is a over <Ig,B> ¥;-definable function such that f[JﬁX]_:
Jé{. It remains to prove that (19, C) is rudimentary closed for all C' € ¥, ((Ig, B))N
‘B(Jg(). By the definition of H, there exists an ¢ € w and a y € Jg( such
that z € g’ & <Ig,§> = oi((z,y), 7 (p)) for all 2 € JX. Thus, by (3),
x € C s A(i,(z,y)). Foru € Jfgx, let v = {{i,(z,y)) | © € u}. Then v € J,gX
and ANwv e Jg(7 because (Ig, A) is rudimentary closed by the hypothesis. But
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z € CNu holds iff (i,(x,y)) € ANwv. Finally, JX is rudimentary closed and
therefore C'Nu € J[gX.

(5) @~ 1(p) is the standard parameter of <Ig, B)
By the definition of H, Jg = hg glw x (JX x {771(p)})] and, by (4), p is the
projectum of (Ig,B). So we just have to prove that 7~ !(p) is the least with
this property. Suppose that < 7 !(p) had this property as well. Then
there were an ¢ € w and an z € JX such that 7' (p) = hgs p(i, (x,7')).
Since 7 : <Ig,B> — <Ig,B> is Yj-elementary, we had p = hg g(i, (z,p’)) for
P/ =7(p') <p. And so also hg glw x (JX x {p'})] = Jg. That contradicts the
definition of p.
(6) Uniqueness
Assume <IgO,BO> and <I21,Bl> both have p as projectum and A as standard
code. Let p; be the standard parameter of (IﬁQi7Bi>. Then, for all j € w
and x € JX, (IgO,B()) E oj(x,po) iff A(j,x) iff <I§1a31> E ¢j(z,p1). So
o(hg, B, (,P0))) = hj, 5, (J, (x,p1)) defines an isomorphism o : (IgO,B’O> =
<I§O,Bo>, because, for both 4, hj, p.[w % (JX x {p;})] = Jg holds. But since
both structures are transitive, ¢ must be the identity. Finally, let 7 : (IﬁQ, B) —
(I3, B) and 7 : <IE,B> — (I3, B) be ¥;-elementary extensions of 7. Let p be
the standard parameter of <Ig, B). Then, for every y € Jg, there is an z € Jg(
and a j € w such that y = ha’g(j, (,p)) — and 7o(y) = hg,g(j,m(x),7(p)) =
71(y). Thus 71g = 7;. O
To code the Y, information of Iz where 8 € S¥ in a structure (IS,A), one
iterates this process.
For n >0, 3 € SX, let

PP =8,p"=0, A% = Xz

p" ! = the projectum of (I9., A™)

p"t! = the standard parameter of (I9., A™)

A" = the standard code of (ID., A™).
Call

p"™ the n-th projectum of 3,

p" the n-th (standard) parameter of 3,

A™ the n-th (standard) code of 3.
By lemma 17, A™ C Jp)i, is X,-definable over Iz and, for all m > 1,

Snim(13) NVBTR) = Sm(I, A™)).

From lemma 19, we get by induction:

For f>w,n > 1, m >0, let p" be the n-th projectum and A™ be the n-th code
of 8. Let (I7, A) be a rudimentary closed structure and 7 : (I9, A) — (I}, A™)
be ¥,,-elementary. Then:

(1) There is a unique [ > p such that p is the n-th projectum and A is the n-th
code of 3.

For k <n let
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p* be the k-th projectum of (3,
p"* the k-th parameter of 3,
AF the k-th code of 8

and
p* the k-th projectum of 3,
p"* the k-th parameter of 3,
AF the k-th code of 3.

(2) There exists a unique extension 7 of 7 such that, for all 0 < k <mn,
7| Jgi : <I§k,flk> — (ng,Ak> is 34— k-elementary
and 7(p*) = p*.

Lemma 20

Let w < 3 € SX. Then all projecta of 3 exist.

Proof by induction on n. That p" exists is clear. So suppose that the first pro-
jecta p, ..., p" "1, p:= p", the parameters p°, ..., p" and the codes A°,... A""1 A :=
A™ of 3 exist. Let v € Lim be minimal such that there is some over <I2,A>
¥1-definable function f such that f[JX] = JX. Let C € %1((I3, A)) N P(J).
We have to prove that <IS, C) is rudimentary closed. If v = w, then J,f =H,,
and this is obvious. If v > w, then v € Lim? by the definition of . Then it
suffices to show C' N JX € Jf for § € LimN+~. Let B := C' N J& be definable
over (IS, A) with parameter ¢. Since obviously v < p, C'N Jg( is X,-definable
over Iz with parameters pq,...,p", ¢ by lemma 17. So let ¢ be a 3, formula
such that z € C & I5 = p(z,pt,...,p" q). Let

Hor i= hy ol  (JX % {q})]

Hy, = hpn1 an-1w x (Hp x {p"})]

Hyq = hyn—2 gn—2[w X (Hyp_1 X {P" 1]

etc.
Since L[X] has condensation, there is an I, such that H; = I,. Let 7 be the
uncollapse of H;. Then 7 is the extension of the collapse of H,,; defined in
the proof of lemma 19. Therefore it is ¥,;1-elementary. Since B C Ji* and
mlJ¥ =id | ¥, weget x € B& I, = plz,n  (ph),..., 7 (p"), 7 (q)).
So B is indeed already X,,-definable over I,,. Thus B € J;ﬁl by lemma 8. But
now we are done because pu < p. For, if

hnt1((i, ) = hor an (i, (z, p))

hn ({2, 2)) = hpn—1, an—1 (i, (2, p"))

etc.
then the function h = hyo...0hy 1 is 3y 1-definable over Ig. Thus the function
h = x[hN (Hy x Hy)] is $,,41-definable over I, and h[J] = J,j(. So hN (J;()Q
is ¥;-definable over (I, A) by lemma 17 and lemma 19. And by the definition
of 7, there is an over (I9, A) ¥;-definable function f such that f[JX] = J.X. So
if we had p > p, then f o h was an over (127 A) ¥1-definable function such that

(foh)[J¥] = JX. That contradicts the minimality of 5. O

Let w < v € SX, p" the n-th projectum of v, p” the n-th parameter and A™
the n-th Code. Let

hpt1(2, @) = hpn an (i, )

hn (2, 2)) = hgn—1 an-1 (i, (2, p™))
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etc.
Then define
h:’+1 = hl Oo... Ohn+1.

We have:
(1) hY is X,,-definable over I,
(2) W' w x Q] <n I, if Q C Jlffb,l is closed under ordered pairs.

Lemma 21

Let w < 8 € SX and n > 1. Then

(1) the least ordinal v € Lim such that there is a over Ig X,-definable function

[ such that f[JX] = J,

(2) the last ordinal v € Lim such that (I9,C) is rudimentary closed for all

X

C e Xn(lp) NPT,

(3) the least ordinal v € Lim such that PB(v) N, (Ig) € Jg,

is the n-th projectum of 5.

Proof:

(1) By the definition of the n-th projectum, there is an over (ISH_I,A”’1> -

definable f™ such that f"[in] = J;ﬁ,l, an over <Ign,2,A"_2> ¥, -definable

f7~ 1 such that f”’l[Jan_l] = Jgi,_Q, etc. But then f* is ¥j-definable over I

by lemma 17. So f = flo f20...0 f" is &,,-definable over I and f[J,fﬂ] = Jff.
On the other hand, the projectum p of a rudimentary closed structure <Ig, B)

is the least § such that there is an over (Ij, B) Xj-definable function f such

that f[Jg] = Jg. For, suppose there is no such p < p such that such an f,

f[J[f(] = Jé(’ exists. Then the proof of lemma 16 provides a contradiction. So

if there was a v < p" such that there is an over Ig X,-definable function f

such that f[JX] = J5°, then g := f N (Jp)fb,l)2 would be an over <ISH,I7A"_1>

¥1-definable function such that g[J:X] = J;fh,l. But this is impossible.

(2) By the definition of the n-th projectum, (I%.,C) is rudimentary closed for
all C' € 21(<ISW,_1,A”*1>) NP(J%). But by lemma 17, El(<I2n_1,A”*1>) =
E.(Ig)N ‘B(J;fl,l). So, since p" < p"~ !, (I}, C) is rudimentary closed for all
CeXn(lg) NP(Ix).

Assume v were a larger ordinal € Lim having this property. Let f be,

by (1), an over Iz X,-definable function such that f[J%] = JF. Set C =
{fue % | ué¢ fu} Then C is ¥,-definable over Iz and C C JN.. So
(JX,C) was rudimentary closed. And therefore C = C'NJX € JX C Jé(
and C = f(u) for some u € JX. But this implies the contradiction that
u€ flu)euelCesud flu).
(3) Let p := p™ and f by (1) an over I X,-definable function such that f[J,X] =
Jé(. Let j be an over I) ¥i-definable function from p onto JpX. Let C ={v e
plv ¢ foj(v)}. Then C is an over I X,-definable subset of p. If C' € JZ, then
there would be a v € p such that C' = f o j(v), and we had the contradiction
veCsvrvé fojw)evé¢C. Thus P(p) N X, (Ig) ¢ J5. Butify € Limnp
and D € P(y)NS,(I5), then D = DNJX € JX C J¥. So B(7)NZn(I5) C JX.
O
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3 Morasses

Let w; < B, S =LimNuwiig and k := wi43.
We write Card for the class of cardinals and RCard for the class of regular
cardinals.
Let < be a binary relation on S such that:
(a) f v <7, thenv < 7.

For all v € S — RCard, {7 | v < 7} is closed.

For v € S — RCard, there is a largest p such that v < pu.
Let p, be this largest p with v < p.
Let

vCr:eveLim({o|d<rh)U{d|d 7}

(b) C is a (many-rooted) tree.
Hence, if v ¢ RCard is a successor in [, then p, is the largest p such that
v C p. To see this, let p’ be the largest p such that v T p. It is clear that
ty < pk,since v < p implies v C p. So assume that p, < pf. Then v 4 uf by
the definition of p,. Hence v € Lim({§ | § < u*}) and v € Lim({d | § C u*}).
Therefore, v € Lim(C) since C is a tree. That contradicts our assumption that
v is a successor in L.
For ac € S, let || be the rank of « in this tree. Let

St :={v e S|visasuccessor in C}

SV :={a €S |l|al =0}

St = {ur | 7€ ST — RCard}

S = {pr | 7€ S — RCard}.
Let S, := {v € S| v is a direct successor of a in C}. For v € ST, let a, be
the direct predecessor of v in C. For v € S, let a,, := 0. For v ¢ ST U S°, let
oy = V.
(c) For v,7 € (ST U S%) — RCard such that a, = ., suppose:

v<T = W <T.

For all o € S, suppose:

(d) Sq is closed
(e) card(Sy) < at
card(Sy) < card(a) if card(a) < «
(f) w1 =max(SY) = sup(S° Nw)
wiyit1 = max(Sy,.,,) = sup(Su,,, Nwitiy1) for all i < 5.

Let D=(D, |v € §> be a sequence such that D, C JP. To simplify matters,
my definition of JP is such that JP? N On = v (see section 3 or [SchZe]).

Let an (S, <, D)-maplet f be a triple (7, |f|,v) such that 7,v € S — RCard and
lf]: J£_/ — Jlﬁ.

Let f = (7,|f],v) be an (S, <, D)-maplet. Then we define d(f) and r(f) by
d(f) = v and r(f) = v. Set f(z) := [f|(x) for x € J2 and f(up) := .
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But dom(f), rng(f), f | X, etc. keep their usual set-theoretical meaning, i.e.

dom(f) = dom(|f]), rng(f) = rng(|f]), f I X = |f| I X, etc.

For 7 < pp, let f7) = (7,|f| | J2,7) where 7 = f(7). Of course, f*) needs
not to be a maplet. The same is true for the following definitions. Let f~! =
(v, |f‘_1,ﬂ>. For g = (v, |g|,v') and f = (7,|f],v), let go f = (v,|g|o|f],V"). If
g = (V,lg|l,vy and f = (v,|f],v) such that rng(f) C rng(g), then set g7 f =
(,g|=* | f|,¥/). Finally set id, = (v,id | J2 ,v).

Let § be a set of (S, <1, D)-maplets f = (v, |f],v) such that the following
holds:

(0) f(7) =v, flap) = ay, and | f] is order-preserving.

(1) For f # idy, there is some 8 C «; such that f [ §=1id | § and f(3) > 0.
(2) If 7 € S* and ¥ C 7 C pp, then f(7) € 3.

(3) If f,g € § and d(g) =r(f), then go f € F.

(4

VIt f,g €35, r(g) =r(f) and rng(f) C rng(g), then g~'o f € §.

We write f: v = vif f = (7,|f|,v) €F. If f € F and r(f) = v, then we write
f = v. The uniquely determined 3 in (1) shall be denoted by 5(f).

Say f € § is minimal for a property P(f) if P(f) holds and P(g) implies
g 'fES.
Let
f(u,e,v) = the unique minimal f € § for f = v and w U {2} C rng(f),
if such an f exists. The axioms of the morass will guarantee that f(, . . always

exists if v € S — RCard"~IP!. Therefore, we will always assume and explicitly
mention that v € S — RCard"~P! when fu,z,v) is mentioned.

Say v € S — RCard®™~P! is independent if d(f(3,0,,)) <, holds for all 5 < a,.

For 7 C v € S — RCard"~P], say v is é&-dependent on 7 if Jlar ) = idy.

For f € §, let A(f) = sup(f[d(f)]).
For v € S — RCard“~P] let

Co =N <vlf=v}

Az, v) = {Mfgaew) <V|B<v}
It will be shown that C, and A(z,v) are closed in v.
Recursively define a function g, : k, + 1 — On, where k, € w:
q,(0) =0
0k +1) = maa(Agy T (k+1),0))

if max(A(q, | (k+1),v)) exists. The axioms will guarantee that this recursion
breaks off (see lemma 4 below), i.e. there is some k, such that either

May [ (b +1),v)=0
or

A(qy 1 (ky +1),v) is unbounded in v.

Define by recursion on 1 < n € w, simultaneouly for all v € S — RCard"~P],
fevandxeJ fy the following notions:
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1 —
f(ﬁ,r,u) - f(ﬂ,m,y)
7(n,v) = the least 7 € S°U S+ U S such that for some z € Jp

e idy

(O“rvfrvy) =

z(n,v) = the least z € J such that f&7<7L, id,

KICL = {d(f&'},m(nvyxu)) < aT(”,V) | 5 < I/}
f=nviff f=rvandforalll <m<n

,/)7:67V) -

T?’Lg(f) N JD <1 <JD D f aT(m,I/)7KIZn>

Ar(m,v) Ar(m,v)’

z(m,v) € rng(f)
f(’iw) = the minimal f =, v such that v C rng(f)

FB.a) = Fautarm)
fiv=pvie f=,vand f: U=

Here definitions are to be understood in Kleene’s sense, i.e., that the left side is
defined iff the right side is, and in that case, both are equal.

Let
n, = the least n such that f(’ZY o) is confinal in v for some x € J#DV, yCv
xz, = the least = such that f
Let

(07

ny s
(vt = -

=, ifre St
ap = supfa <v|B(f(y,, .) =atifvé STt.
Let P, :={z, |[vETC pp,7€ST}U{z,}.

We say that 9 = (S, <,§, D) is an (wy, 8)-morass if the following axioms hold:

(MP — minimum principle)
If v € S — RCard™<P! and z € ‘];?w then f(g ;) exists.
(LP1 — first logical preservation axiom)
If f: 0= v, then |f]: <J£7,D I o) — (J;Z,D [ 1y) is Yp-elementary.
(LP2 — second logical preservation axiom)
Let f: 7= v and f(Z) = x. Then
(f197):(J7, D [0, M, 2)) = (J, D [ v, Az, v))

is Xg-elementary.

(CP1 — first continuity principle)

Fori < j < A let f; : v; = v and g;; : v; = v; such that g;; = fj_lfi. Let
(gi | © < A) be the transitive, direct limit of the directed system (g;; |2 < j < A)
and hg; = f; for all i < A\. Then g;,h € §.
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(CP2 — second continuity principle)
Let f: 7 = v and A\ = sup(f[p]). If, for some A, h : <J/—\D,D> — (JP,D 1\ is

Y1-elementary and rng(f | J2) C rng(h), then there is some g : A = \ such
that g | J/—\D = h.

(CP3 — third continuity principle)

If C, = {\(f) < v | f= v}is unbounded in v € S — RCard*~IP!, then the
following holds for all = € J, ;ﬁ :

7Ang(f(o,ac,l/)) = U{Tng(f(o,:c,)\)) | A€ CV}

(DP1 — first dependency axiom)
If p, < pa, , then v € § — RCard*~IP! is independent.

(DP2 — second dependency axiom)

If v € S — RCard™*P! is n-dependent on 7 C v, 7 € St, f: 0= v, f(7) =7
and n € rng(f), then f(7) : 7 = 7.

(DP3 — third dependency axiom)

For v € § — RCard“~IP) and 1 < n € w, the following holds:

(a) If flo wy =idy, T € ST U S% and 7 C v, then p, = jur.

(b) If B < @r(n), then also d(f(%)m(n’y)w)) < Qr(p,)-

(DF — definability axiom)

(a) If f0,29,v) = id, for some v € S — RCard~IP) and Zo € wa then

{<Z7'T7f(07z,l/)(x)> | z € J/fnx S dom(f(o,z,l/))}

is uniformly definable over (ny D p,,Dy,).
(b) For all v € S — RCard™~1P! € JP

Hy?

the following holds:

foww) = J6 oz Py

This finishes the definition of an (w;, 3)-morass.
A consequence of the axioms is (x) by [Irr2]:
Theorem
{<Za7—axa f(O,z,T) (l‘)> | TV, by =V,2 € J}ﬁ,]} € dom(f(o,z,‘r))}
U{<Z7x7f(0,z,z/)(x)> l By =V,2 € J;fnx € dom(f((),z,l/))}

u(c Nv?)
is for all v € S uniformly definable over (JP, D | v, D,).

A structure M = (S, 1, F, D) is called an wq4g-standard morass if it satifies all
axioms of an (wy, 3)-morass except (DF) which is replaced by:
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v <71 = v is regular in JP

and there are functions o, ) for v € Sandz € JP such that:
(MP)*

@)Wl =rn9(f(0,0,0))

(CP1)*

If f:v=vand f(Z) =2, then 0(;,) = f o0z

(CP3)*

If C, is unbounded in v, then o(, ) = U{o@w ) | A € Cy € JP}.
(DF)*

(a) If f(0,2,) = id, for some z € J2, then

{(i,z,a(z,y)(i» | z € JyD,i S dom(o(zm)}

is uniformly definable over (J2, D | p,,D,, ).

(b) If C, is unbounded in v, then D, = C,. If it is bounded, then D, =
(i, 00, (D)) | i € dom(o(g, 1))}

Now, I am going to construct a k-standard morass.

Let B(v) be the least 5 such that Jé:_l = v singular.

Let L,[X] satisfy amenability, condensation and coherence such that SX =
{B(v) | v singular in L,[X]} and Card"~X] = Card N k.

Let
v47 & v regularin I,.
Let
E = Lim — RCard"~1X],
For v e E, let

B(v) = the least 8 such that there is a cofinal f : @ — v € Def(Ig) and
aCv <v

n(v) = the least n > 1 such that such an f is ¥,-definable over Iy,
p(v) = the (n(v) — 1)-th projectum of I,

A, = the (n(v) — 1)-th standard code of Iy,

v(v) = the n(v)-th projectum of I3,).

If v € ST —Card, then the n(v)-th projectum ~ of 3(v) is less or equal a,, := the
largest cardinal in I,,: Since «,, is the largest cardinal in I,,, there is, by definition
of 3(v) and n(v), some over Ig(,) X, ,)-definable function f such that fla,] is
cofinal in v. But, since v is regular in S(v), f cannot be an element of Jg(y). So

Pvxv)NE,0)Isw)) € Jé((y). By lemma 14, also B(v) N E,) (L)) € Jé((y).
Using lemma 21 (3), we get v < v. Le. there is an over Ig(,) X,(,)-definable
function g such that g[v] = J Ig{(,}). On the other hand, there is, for every 7 < v
in JX, a surjection from a, onto 7, because a, is the largest cardinal in I,.
Let fr be the <,-least such. Define ji(0,7) = ff(;)(0) for o,7 < v. Then j

is 3,,(,)-definable over Ig(,y and ji[oy, X o] = v. By lemma 15, we obtain an
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over Ig(,) Xy, (,)-definable function jo from a subset of a,, onto v. Thus go js is
an over Ig(,) ¥, (,)-definable map such that g o ja[a, ] = Jg(u).

Moreover, a,, < v < p(v): By definition of p(v), there is an over Iy Xy )-1-
definable function f such that f[p(v)] = B(v) if n(r) > 1. But v is X,,)_1-
regular over Ig(,). Thus v < p(v). If n(v) = 1, then p(v) = B(v) > v.

By the first inequality, there is a ¢ such that every x € J ;gu) is 31-definable in

(Ig(y), A,) with parameters from a, U {q}. Let p, be the <,,)-least such.

p(v
Obviously, p, <p, if v C 7 C p,.

Thus P, :={p, |v E 7 C p,, 7 € ST} is finite.

Now, let v € E — S*. By definition of 5(v), there exists no cofinal f:a — v in
J/B such that a C v/ < v. So ‘,B(V x V)N Yoy Ipwy) € J, ﬁ(u) Then, by lemma

14, Bv) N Znw)(Ipw)) € J5,)- Hence, by lemma 21 (3),

() < v

Assume p(v) < v. Then there was an over Iy, %,,,)—1-definable f such that
flp(v)] = v. But this contradicts the definition of n(v). So

v < p(v).

Using lemma 21 (1), it follows from the first inequality that there is some over
I5(,) Sn()-definable function f such that f[J;X] = Jg((l,). So thereisap € ijl,)
such that every z € Jﬁy) is Xi-definable in (IS(V),A,,> with parameters from
v U{p}. Let p, be the least such.

Let

o = sup{a < v | hypya,lwx (JX x {p,})]Nv=a}.

Then o < v because, by definition of 3(v), there exists a2’ < vandap € JX o)

such that h,.y 4, [w % (J5 x {p})] Nv is cofinal in v. But p is in k) 4, [w %
(J:¥ x {pv})]- So there is an o < v such that h,y 4, [w % (JE x {p,})]Nvis
cofinal in v. Thus o < a < v.

If v € ST, then we set o = a,.
Forv e F, letf'ﬂéyiff for some f*,

() f=@ f 17,

(2) f*: 1, — 1, is ¥,(,)-elementary,
(3) ag, pus P € rng(f*),

(4) verng(f *) if v < p,,

(5) f7)=vandve ST s rveSt.
By this, § is defined.
Set D = X.
Let P} be minimal such that h}jﬁ”*l(z‘ Pi)y=P, forani € w.

Let at* be minimal such that hp =, ) = aj, for some i € w.
Set
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v =vifv < p(v).

For 7 € On, let S, be defined as in lemma 10. For 7 € On, E; C S, and a X
formula ¢, let

hf,Ef, (z1,...,2Tm) the least g € S; w.r.t. the canonical well-ordering such that
(Sr, E;) = ¢(x;) if such an element exists,

and

hY g, (x1,. . 2m) = 0 else.

For 7 € On such that v*,a;,p,, ", Py € Sy, let H,(a,7) be the closure of
So U{v*, a5, py,aff Py} under all hY g 4 g . Then Hy(a,7) <1 (S-, X N
Sy, ANS, {v*, o, pu, al, Pr}) by the definition of hf,XﬂST,AUOST' Let M (o, T)

be the collapse of H, («, 7). Let 70 be the minimal 7 such that v*, a3, p,, )7, P*
S:. Define by induction for 7o <7 < p(v):
o) = a,

a(r +1) = sup(My(a(r), 7+ 1) Nv)
a(N) = sup{a(r) | T < A} if A € Lim.
Set

B, = {{a(1), My (a(7), 7)) | 0 < T € p(v)} if v < p(v),

B, ={0} x A, U{(1,v*,a},p,,a;:, P))} else.
Lemma 22
B, C JX and (I, B,) is rudimentary closed.
Proof: If v = p(v), then both claims are clear. Otherwise, we first prove
M¥(a,7) € JX for all @ < v and all T € p(v) such that 70 < 7 < p(v). Let
such a 7 be given and 7 € p( ) — Lim be such that X NS, A, NS, € S
(rudimentary closedness of (19 (1)’ ,AL)). Let n:= sup(r' N Lim). Let H be the
closure of a U {v*,a},p,,a;", Py, X NS, 8-, A, NSy, n} under all h%,. Let
o : H = S be the collapse of H and o(n) = 7. If n € SX, then S = S+ for some
7 by the condensation property of L[X]. If n ¢ SX, then S = S;f " for some 7/
where S " is defined like S7 with X | 7 instead of X. The reason is that, even
ifn¢ SX it is the supremum of points in SX, because S* = {3(v) | v singular
in LK[X]}. In both cases, S € JX and there is a function in I, that maps
aU{o(v*),o(a;),0(pu),0(ayt), a(Py),a(XNS;),0(Sr),0(A,NS7),a(n)} onto
S. So v would be singular in Jp)i if v < 7. But this contradicts the definition of
B(v). Therefore, o(v*),o(;),a(p,),0(ay:),o(P)),o(X N S:),0(S:), (A, N
S.),o(n) € JX. Let H,(a,7) be the closure of S, U {o(v*),c(at),o(p,),
o(ayr),o(Py),0(XNS;),0(S:),0(A,NS;),a(n)} under all ho’(S o (XNS.).0(AyNS.)
where these are defined like 7Y ;. but with o(S;) instead of S;. Then Hy (o, T) <4
(0(S,).0(X N S;),0(A, N S, ) {o(v*).0(az),0(p). o(agr),o(P),0(X NS,
0(S;),0(A, N S;),a(n)}) and M, (a,7) is the collapse of H,(«, 7). Since v <
p(v) and v is a cardinal in I5(,), J;X = ZF~. So we can form the collapse inside
JX. Thus M, (a,7) € JX.

Now, we turn to rudimentary closedness. Since B, is unbounded in v, it
suffices to prove that the initial segments of B, are elements of Jf. Such an
initial segment is of the form (M, (a(7),7) | 7 < 7) where v < p(v), and we
have H,(a(7),0;) = H,(a(7), ) where ¢, is for 7 < «y the least n > 7 such that
n € Hy(a(r),vy) U{y}. Since 6, € H,(a(7),7) <1 (S5, X NSy, A, NSy, {...}),
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(H,(a(7),6,)) @) = H,(a(r),7). Let 7 : M,(a(y),7) — S, be the un-
collapse of H,(a(vy),7). Then, by the ¥j-elementarity of =, M, (a(7),7) =
M, (a(7),6,) is the collapse of (H(ca(7), 7~ 1(5,)))M» (@) So (M, (a(7), )
T < ) is definable from M, (a(y),v) € JX. O

Lemma 23

For z,y; € JX, the following are equivalent:

(i) x is Xq-definable in (Ig(y), Ay) with the parameters y;, v*, a;, pu, a)t, P
(i) x is X;-definable in (I, B,) with the parameters y;.

Proof: For v = p(v), this is clear. Otherwise, let first = be uniquely determined
in (IS(V),AZ,> by (32)¢(z,x, (yi, v*, a5, pu, i, Py)) where ¢ is a ¥ formula.
That is equivalent to (37)(3z € S:)¥(z,, (yi,v*, o), py, ), P))) and that
again to (37)H,(a(7),7) E (32)Y(z, 2, (yi, v, o, p, a7, B))). If 7 is large
enough, the y; are not moved by the collapsing map, since then y; € Jff(T) -
H,(a(r),7). Let 7, p, &, P be the images of v*, o}, p,, o/ , P; under the col-
lapse. Then (37)(y; € Jo)f(T) and M, (a(1),7) E (32)V(z, 2, (y;, 7, a,p, &', P)))
defines z. So it is definable in (I°, B, ).

Since B, and the satisfaction relation of (19, B) are X -definable over (Ig(y), A,
the converse is clear. O

Lemma 24

Let H <1 (I),B,) for av € E and 7 : (I}, B) — (I), B,) be the uncollapse of
H. Then pp € E and B = B,,.

Proof: First, we extend 7 like in lemma 19. Let

M={ze J;fu) | z is ¥1-definable in <Ig(
{pV7V*7a;7aZT,7P:} }

Then rng(r) = M N JX. For, if x € M N JX, then there are by definition
of M y; € rng(m) such that = is ¥;-definable in (Ig(u),Ay> with the parame-
ters y; and p,,v*, o, i, Pr. Thus it is ¥;-definable in (I, B,) with the y;
by lemma 23. Therefore, z € rng(m) because y; € rng(m) <1 (I3, B,). Let
1 (1), A) — (I}, Ay) be the uncollapse of M. Then 7 is an extension of T,

since M N JX is an €-initial segment of M and rng(m) = M N JX. In addition,
there is by lemma 19 a 3,,(,)- elementary extension 7 : Ig — Ig(,) such that p
is the (n(v) — 1)-th projectum of Ig and A is the (n(v) — 1)-th standard code
of it. Let 7(p) = p, and 7(a) = . And we have 7(u) = v if v < S(v). In this
case, v € rng(m) by the definition of v*. Since 7 is X;-elementary, cardinals of
Jj{ are mapped on cardinals of J.X.

Assume v € ST. Suppose there was a cardinal 7 > « of Jlf(. Then 7(7) > -
was a cardinal in JX. But this is a contradiction.

Next, we note that p is ¥,(,)-singular over Ig. If v € ST, then, by the
definition of p,, JX = hy alw x (o x {p})] is clear. So there is an over (I7, A)
31-definable function from « cofinal into . But since p is the (n(v) — 1)-th
projectum and A is the (n(v) — 1)-th code of it, this function is X, -definable
over Ig. Now, suppose v ¢ S*. Let A := sup(m[u]). Since A > «}, there is a
v < A such that

b)) A,) with parameters from rng(m) U

sup(hp),a, [w X (J,f x{q ] Nv) > A
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And since rng(m) is cofinal in A, there is such a v € rng(n). Let v = 7(¥). By
the ¥-elementarity of 7, ¥ < u and setting 7(¢) = g, we have for every n <

(1o, A) E Bz € J5)(30)hp,a(i, (2, p)) > 1.

Hence hy alw x (JX x {q})] is cofinal in y1. This shows € E.

On the other hand, y is ¥,(,)_;-regular over I if n(v) > 1. Assume there
was an over Ig X, (,)_i-definable function f and some x € p such that f[z]
was cofinal in p. Ie. (Vy € p)(3z € z)(f(z) > y) would hold in Ig. Over
Ig, (3z € z)(f(2) > y) is Bp)—1. So it is Xg over (IJ, A). But then also
(Vy € u)(3z € 2)(f(2) > y) is Bg over (I, A) if u < p. Hence it is ¥y,
over I5. But then the same would hold for 7(x) in Ig(,). This contradicts the
definition of n(v)! Now, let 1 = p. Since « is the largest cardinal in I,,, we
had in f also an over I3 X,,(,)_1-definable function from a onto p and therefore
one from « onto 5. But this contradicts lemma 21 and the fact that p is the
(n(v) — 1)-th projectum of 3. If n(v) = 1, then we get with the same argument
that  is regular in Ig.

The previous two paragraphs show 8 = B(u) and n(u) = n(v). We are done
if we can also show that o = o, w(a}") = aj" . p = py, m(P);) = P}, because &

o
is Y1-elementary, ﬁ(hf,XﬂST,Ams, (z;)) = h (x;) for all 3y

)
ﬁ(T),XﬁS;r(T),A,,ﬂS;r(T)
formulas ¢ and x; € S;.

For v € S*, a = «a, was shown above. So let v ¢ ST. By the ¥;-

elementarity of 7, we have for all a € u

hpalw > (J& < {pPINp=a & hypya,lw x (Ja) x {p )] Nv =7(a).

The same argument proves 7 (") = aj;. Finally, p = p, and n(P}) = P} can
be shown as in (5) in the proof of lemma 19. O

Lemma 25

Let H <1 (I2,B,) and A = sup(HNv) forav € E. Then A € E and B,NJJX =
Bi.
Proof: Let 7o : (I}, B,) — (I3, B, N J5X) be the uncollapse of H and let m :
(I3, B, N JX) — (1%, B,) be the identity. Since L[X] has coherence, my and m;
are Yp-elementary. By lemma 18, 7 is even Y;-elementary, because it is cofinal.
To show By = B, N J5¥, we extend mp and m; to 7 : <I,?(#)7Au> — <IS7A) and
T (1D, A) — (Ig(y), A,) in such a way that #p is ¥j-elementary and #; is Yo-
elementary. Then we know from lemma 19 that p is the (n(v) — 1)-th projectum
of some 3 and A is the (n(v) — 1)-th code of it. So there is a ¥,,(,)-elementary
extension of 7p : Iz — Ig. We can again use the argument from lemma 24 to
show that A is X,,(,)_1-regular over I5. But on the other hand, A is as supremum
of H N On ¥,,)-singular over Iz. From this, we conclude as in the proof of
lemma 24 that By, = B, N Jf.

First, suppose v € S*. Since a, € H <1 (I%,B,), a,, < A < v. Since
I, = (o, is the largest cardinal), we therefore have A ¢ Card. In addition, o,
is the largest cardinal in I). Assume 7 was the next larger cardinal. Then 7
was X1-definable in I, with parameter o, and some 7 € H and hence it was in
H. By the Zj-elementarity of o, 7 ' (7) > 7 () = @, was also a cardinal
in I,,. But this contradicts the definition of a,.
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But now to By = B, N J/{(. First, assume v ¢ ST. Let m = 7 o7 :
(I, B,) — (I9,B,) and 7 : (IS(#),AH> — (IS(V),A,,> be the extension con-
structed in the proof of lemma 24. Let v = sup(rng(#)). Then 7’ = &N (J;fu) X
JX): <I£(u)’A#> — (19, A, NJY) is Lo-elementary, by coherence of L,[X], and
cofinal. Thus 7" is ¥i-elementary. Let H' = h, 4,q5x[w X (J¥ x {p,})] and
71 (1D, A) — (IS(V),AI,> be the uncollapse of H'. Then H = rng(#') C H'.
To see this, let z € rng(7’) and z = 7'(y). Then by definition of p,, there
isan z € Jf and an i € w such that y = hy,a, (4, (z,pu)). By the ¥i-
elementarity of #', we therefore have z = h, 4,nyx (i, (7'(2), 7' (py))). But
#'(pp) = #(py) = pv and 7' (z) € J.

In addition, sup(H' Nv) = A. That sup(H' Nv) > A is clear. Conversely,
let z € H Nv, ie. © = h,Y’AmE((i,(y,pV)) for some 1 € w and a y € Jf.
Then z is uniquely determined by (19,4, N JX) = (32)¢i(z,z, (y,p.)). But
such a z exists already in a H?(«, 7) where H)(c, 7) is the closure of S,, under
all hY yvng a,ng,.- Since v = sup(rng(7)) and A = sup(rng(m)) we can pick
such 7 € rng(#) and o € rng(w). Let 7 = #71(7) and @ = 7~} (a). Let ¥ =
sup(vN H(a, 7)) and ¥ = sup(pN Hp)(a,T)). Since v is regular in I, ¥ < v.
Analogously, ¥ < p. But of course #(J) = 9. So z < ¥ = 7(¥) < sup(7[u]) = .

If v € ST, we may define H' as oy, n0x [wx (JX x{py})] and still conclude
that H = rng(#’) C H' and sup(H' Nv) = A by the definition of p,.

By lemma 19, 7 : <I2,A) — (IS(V),AV> may be extended to a 3,(,)_1-
elementary embedding 7 : Ig — I, such that p is the (n(r) —1)-th projectum
of I3 and A is the (n(v) — 1)-th standard code of it. Let 79 = #; ' o #. Then
o ¢ (I, Au) — (1), A) is To-elementary, by the coherence of L,[X], and
cofinal. Thus it is 3j-elementary by lemma 18. Applying again lemma 19, we
get a ¥, (,)-elementary 7o : Ig(,) — Ig.

As in lemma 24, it suffices to prove § = B(A), n(v) = n(A), p = p(N),
A=Ay, 77 (py) = pa, 71 (P)) = P§, o = o and 77 ' (af) = ajt. So, if
n(v) > 1, we have to show that A is ¥,,(,)_;-regular over I. If n(v) = 1, then
I3 = (X regular) suffices. In addition, A must be X,,(,-singular over Ig. For
regularity, consider 7y and, as in lemma 24, the least € X\ proving the opposite
if such an z exists. This is again X,-definable and therefore in rng(7g). But
then 7o !(x) had the same property in I 3(u)- Contradiction!

Now, assume v € ST. Since I, | (a, is the largest cardinal), H' Nv is
transitive. Thus H' N = A. Since 7y : (I9, A) — (19, AN J:X) is ¥i-elementary
and A C H' = rng(#1), we have A = AN h, alw x (JX x {#7'(p,)})]. Le. there
is a Xi-map over (I,, A) from a,, onto A. But this is then ¥, ,-definable over
Ig and A is ¥, (,)-singular over Ig.

If v ¢ ST, then the fact that X is Ynwy-singular over Ig, a; = a) and
ﬁfl(a;j) = a;;; may be seen as in lemma 24 because mo(a},) = a; € rng(mo).

That 7, ' (p,) = p and 7] ' (P}) = P§ can again be proved as in (5) in the
proof of lemma 19. O

Lemma 26

Let v € E and A(&,v) = {sup(hyB,[w x (J5* x {E}]Nv) <v | B € LimNv}.
Let 7 < 7 and 7 : (I, B) — (I9, B,) be Xi-elementary. Then A(,7) N7 € JX
and 7(A(E,7) N17) = A(€,v) 1 7(7) where 7(€) = € and 7(7) = 1.
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Proof:
(1) Let A € A(&,v). Then A(§,A) = A&, v)NA
Let By be minimal such that
sup(hy, g, [w (Jé(i x {&H]Nv) = A
Then, by lemma 25, for all § < Gy
hosa [w X (T x {€})] = hup, [w x (T3 x {£})]
and for all By < 0
hopy [w > (T35 x {€D] € ha g, [w x (J5 x {€})]
C hup, lw x (T3 x {&})].
So A(E,N) = A&, v)NA
(2) A€ m) N7 € TY
Let A := sup(A(¢,7) N7+ 1). Then, by (1), A(§,7) N7+ 1 = A(, A) U{A}. But
A(€,)) is definable over Ig(xy- Since B(A) < v, we get AED)Np+ 1€ JX.
(3) Let sup(hs, B, [w x (Jé( x {€})]) < 7 and 7(B3) = 3. Then
m(sup(ho,p,[w x (J5 x {ENIN D)) = sup(hu b, [w x (T x {g})]Nv).
Let A := sup(hs g, [w % (Jé( x {€}H] N ). Then (I, B;) = -3\ < 0)(3i €
w)(3& < B)O = hop, (i, (6, €)))- So (I}, B,) = (A1 < 0)(3i € w)(3& <

B3)(0 = h, B, (i, (§,,£>)) where 7(A) = A. Le. sup(h, p, [w ¥ (JB x{&H]Nv) < A
But (7 | J5X) : (I2, Bx) — (I, By) is elementary. So, if (I9, Bx) = (Vn)(3¢; €

B)3En € w)(n < hX,B)\( ,(€,.€))), then (I3, By) = (V) (3¢ € B)(Fn € w)(n <
ha.By (1, (€,€))). But by lemma 25, hy p, [w x (JF x {£})] € hy,, [w x (J5 x
{€D)]- Le. it is indeed X = sup(h,, B, [w x (JF x {£})] Nw).
(4) m(A(E, 7)) N7p) = A& v) N7 (i)
For A\ € A(¢, D),
m(A(E,7) N A)

by (1)
= m(A(E,N))

by ¥i-elementarity of m
—A(E, (M)

by (1) and (3)
= A& v)N7(N).
(

nm
So, if A(&,7) is cofinal in 7, then we are finished. But if there exists A :
maz(A(§, 7)), then, by (1) and (2), A({,7) € J¥, and it suffices to show
m(A(§,7)) = A(&,v). To this end, let 3 be maximal such that A = sup(hs B, [w x
(J3 JX x {EP] N D). Le. hpp,[w (Jg:_l x {€})] is cofinal in ¥. So, since
[hu B, [wx (S5, DN € ho g, [wx (T3, x{€})] where () = 3, sup(rng(m)N
v) < sup(hy p,[w X (Jng x {€})] Nv). Hence indeed m(A(€,7)) = A(&,v). O
Lemma 27
Letv € E, H <1 (I%, B,) and A = sup(HNv). Let h : IO — 1Y be ¥;-elementary
and H C rng(h). Then A € E and h : (I3, Bx) — (I3, Bk> is 21 elementary.

Proof: By lemma 25, By = B, N Jff. So it suffices, by lemma 24, to show
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rng(h) <1 (IY,B)). Let z; € rng(h) and (I}, B)) = (32)¢(z, ;) for a o
formula ¢. Then we have to prove that there exists a z € rng(h) such that
(I9,B)) E ¥(z,2;). Since A = sup(H Nv), there is a n € H N Lim such that
(ID, BANJ;X) |= (32)¢(z,2:). Andsince H <y (I}, B,), we have (I0, Bx\N.J,X) €
H C rng(h). So also

rng(h) = (1), Bx N J)\) = (32)¥(2, 7))

because rng(h) <1 I3. Hence there is a z € rng(h) such that (I, By N J;X) =
P(z,x;). Le. (I3, By) E ¥(z,2;). O

Lemma 28
Let f:v=v,vCTCpupand f(7)=7. f 7€ ST U S is independent, then
(f1JD):(J2 Do, Kz) — (JP D, ,K:) is £1-elementary.
Proof: If 7 = pz < pgp, then the claim holds since | f |: I,, — I, is Xi-
elementary. If pu, = p, and n(r) = n(v), then P, C P,. Le. 7 is dependent
on v. Thus 7 is not independent. So let p := pu, = py, n:=n(r) < n(r) and
7€ 8tUS be independent. Then, by the definition of the parameters, c. is
the n-th projectum of pu.
Let
Vg = crit(figo,m) < or

for a B and

Hpg := the ¥,-hull of SU P, U{aj, 7} in I,
Le. Hp = hillw x (J5 x {a),, 7', P/})] where

), = minimal such that h};(i,a),) = o, for an i € w

P} := minimal such that hj,(i, P}) = P, for an i € w
/

7' := minimal such that h};(i,7’) = 7 for an i € w (rsp. 7" := 0 for 7 = p).
For the standard parameters are in P;.
so Hp is ¥,-definable over I, with the parameters {3, 7,a;} U Pr . Let

p := a; = the n-th projectum of u

A := the n-th standard code of u

p = (), ™, P).
So HﬂﬂJpX is Xg-definable over (IS, A) with parameters § and p. (fine structure
theory!)

And 3 is defined by
Vs & Hp and (V0 € yp)(6 € Hp).

Le. 73 is also Xy-definable over (Ig,A} with parameters 8 and p.
Let fo := fgo,~ for a B, 7o := d(fo) < ar and v := crit(fo) < a,. Let
f1 = f@Bqr)s T1oi= d(f1) < o and § = crit(f1) < ar. Then pz is the
direct successor of pr, in K;. So fg 7)) = idr. Hence yu,, = pz, holds for the
minimal n € S* U SY such that v < C §. Thus

W e K=K, — (Lim(K,)U{min(K,)})

=
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(38,7, 6,m)(y = g and 6 = Y(y,41)
and n € St U S° minimal such that v < n Z 6 and ' = p,)
Therefore, K1 is Y;-definable over (IB, A) with parameter p.

Now, consider (I ,K,) | ¢(x) where ¢ is a X1 formula. Then, since K is
unbounded in «,,

(Ia. . Kz) = o(2)

=

@)y € KF and {12, K,) = ().

So (I3 ,K;) = ¢(x) is ¥y over <IS,A> with parameter p, rsp. X,41 over I,
with parameters aj, 7, Pr. But since n = n(r) < n(v), f is at least ¥,41-
elementary. In addition f(af) =k, f(7) =7, f(P;) = P:. So, for x € rng(f),
(10 Kz) = (f~(2)) holds iff (IS K,) = (). O
Theorem 29
M := (S, <,F, D) is a k-standard morass.
Proof: Set
06 (i) = hy M0, (€ o) pu)).

Then D is uniquely determined by the axioms of standard morasses and

(1) DV is uniformly definable over (JX, X | v, X,)

(2) X, is uniformly definable over (J? D,, D¥).

(1) is clear. For (2), assume first that v € § and f,q,v) = id,. Since the set
{i | (g (i) € X0} is 5y,(,)-definable over (J;X, X | v, X,) with the parameters
Du, O, qu, there is a j € w such that
O(qu)((1,7)) existiert < o, (1) € X,
Using this j, we have
X, = {0, (1) | (i,5) € dom(o(g, 1))}

So, in case that f(o id,, there is the desired definition of X,,.

1w V) =

Let v € §, f0,qu,v) : ¥ = v cofinal and f(q) = q,. Then f 55 = idy. And by
lemma 6 (b) of [Irr2], ¢ = g5. So, if ¥ = v, then f(o 4, ) = id,. Thus let 7 < v.
Then f(o,q,,,) (%) =y is defined by: There is a 7 < v such that, for all ,5 € w,

T (q5,7) (1) < 0(g5,9)(8) € 0(q,,0) () < 0 (g, (8)

holds and for all z € JX there is an s € w such that

z= J(Qmﬁ)(s)

and there is an s € w such that

U(qa,ﬁ)(s) =T < O'(qu,l/)(s) =Yy
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And since (JX, X,)) is rudimentary closed,
X, = | ) | 0 < ).
Finally, if v € S and J(0,4,,v) 18 nOt cofinal in v, then €, is unbounded in v and

X, = J{xa1rec}

by the coherence of L.[X].
So (2) holds. From this, (DF)* follows.
By (1) and (2), JX = JP for all v € Lim, and for all H C JX = JP

H =< (JX, X vy e H =< (JP,D,).

Now, we check the axioms.
(MP) and (MP)*
| fo,e0) | is the uncollapse of hzl[,y) [w x {&*v* ap, a5k, Py <] where £ is
minimal such that A" 7! (i, £*) = €. Therefore, (MP) and (MP)* hold.
(LP1)
holds by (2) above.
(LP2)
This is lemma 26.
(CP1) and (CP1)™
This follows from lemma 24 and the definition of o ¢ ;).
(CP2)
This is lemma 27.
(CP3) and (CP3)™
Let z € J)X, i € wand y = h, g, (i,z). Since C, is unbounded in v, there is a
A € C, such that z,y € Jf. By lemma 25, By = B, N J;\X. So y = hy,p, (4, z).
(DP1)
holds by the definition of p,,.
(DF)
Let p:= py, k:=n(u) and
m(n, B,€) := the uncollapse of hf*"[w x (Jé( x {ar*, py, 1<)
where

£€* := minimal such that A} T"1(i,£*) = £ for an i € w

p;, = minimal such that hﬁ“‘”_l(i,p:) = p,, for some i € w

o* := minimal such that A"~ (i, o

Prove

*k

w¥) = a, for some i € w.

| f(lggu) |=m(n, B,§).
for all n € w by induction.

For n = 0, this holds by definition of f(lﬁygyﬂ) = f(3,e,u)-S0 assume that |
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f(”g,g,#) |= w(m — 1,8,€) is already proved for all 1 < m < n. Then, by
definition of 7(m, u),
Qr(m,u) = the (k +m — 1)-th projectum of u.
Let w(n,3,€) : I — I,,. Then
(x)  &(myp) =m(n,B,£)E(m, i) for all 1 <m < n:
Let 7 = 7(1, 6,£), @ i= 1 gy N 119(m)], p 1= ()
r := minimal such that hﬁ""”_g(i, r) =p, foraniecw
o/ := minimal such that h¥+*™~2(i, /) = a, for an i € w

p := the (k +m — 1)-th parameter of u

and 7(7) = r, m(p) = p, 7(&@') = /. Let £ := &(m, fi). Thenp = hl’ffm*l(i, (Z,&, 7, a

for a z € JZ, because & = @ (). SO p = hﬁ*m’l(i,<x,§7na’>) where
7(z) = = and 7(§) = & Thus hffm*l[w X (in(m’“) x {a/,r, E}<9)] = Jlf(

by definition of p. So &{(m,pu) < & Assume {(m,p) < & Then I, = (In <

§3Fi € w) Bz € JX)E = P16, (2, ). So In | (3n < §(Fi €

w)(Fz € JX) (€ = bt (i, (x,m,7,@’)). But this contradicts the definition of
So, forall 1 <m <n,

§(m, p) € rng(w(n, 8,€)).

In addition, for all 8 < ar(m ),

A 60mmy.m) < Or(m.p0):
Consider 7 := w(m —1,5,¢) =| T | where £ = §(m,p). Then 7 : I — I,
is the uncollapse of hE+™ 1w x (3 x {£,/,r}<)] where
r := minimal such that hjt"™=2(i,r) = p,, for some i € w
o := minimal such that h*™~2(i,a’) = o, for some i € w.

And h/’;“'m_l[u} x (B x {&a,7}<¥)] = JX where n(§) = &, n(a’) = o’ and
7(r) = r. Assume a,(p ) < fi < p. Then there were a function over I from
B < Qr(m,u) ONLO Qr(y ). This contradicts the fact that o, ) is a cardinal
inI,. If i = p, then f(TZ,E,u) = id,,. This contadicts the minimality of 7(m, p).

Since £(m, u) € rng(mw(n, 3,£)), we can prove

rng(m(n, 3,£)) N JD =<1 <JaDT(m,u)aDaT(m,u)vKLn>

Qs (m, )
for all 1 < m < n as in lemma 28.

We still must prove minimality.. Let f = p and U {{} C rng(f) such that

rng(f) N JP =< (JP D K™)

Qr(m, ) QA (m,p)? " Xr(m,u)) "

§(m, p) € rng(f)

holds for all 1 < m < n. Show that f is Xy, -elementary and that the first
standard parameters including the (k + n — 1)-th are in rng(f). That suffices
because 7(n, 5, £) is minimal.

Let pi*™ be the (k + m)-th standard parameter of .
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Prove, by induction on 0 < m < n,

f is Tx4m-elementary

Ppo- > PRI € rg(f).
For m = 0, this is clear because f = . So assume it to be proved for m < n
already. Then let o := @ (i1, and @ = f~'a Nrag(f)]. Consider 7 :=
(f1J2): (JP,Da, K) — (J2, Dy, K]I). Construct a ¥ppq1-elementary
extension 7 of m. To do so, set

f8 = F{G kim0
1(B) = d(fs)
1 = i fslrng(m) nB) | 5 < .

Then H N JP = rng(r). For, rng(r) C H N JP is clear because fz | Jéj =id |

JﬁD. Solet y € HNJP. Le. y = fs(x) for some x € rng(r) and a B < a. Let

K+ = Kt — Lim(K;+) and B(n) = sup{B | f{5 el i1 7 idn}. Then
(12 Do, K;P) = (39) (30 € KN = S5 etmirmm (@) € Thin)-

Since rng(rw) <1 (J2, Do, K1), y = f{g:g%m_i_lm)m)(z) € rng(n) if x € rng(m)
for such an 7. But since y = f(?},—g(lmﬂ,n),n)(x) € Jéj(n), we get fg(z) =

1
TG etm1,m . (@) € Tg (7).

Show H <jtm41 I,. Since f(’gjg’lu) = 7m(m,B,8), ar(ms1,u) is the (k4 m)-th
projectum of u. Like in (x) above, we can show that the (k 4+ m)-th standard

parameter pit™ of p is in rng(fg). Now, let I, = (3z)p(x,y,p), ..., pET™)

where ¢ is a Ilj 4, formula and y € H N JP. Since f5 i Xg4m-elementary, the
following holds:

L= Ga)p(z,y,phy -0y ™™) & (3y € K (Ea) (I = ez, y,ph, . p5T™).

And since rng(m) <1 (JL, Do, K1),

rng(r) = (3y € K Ga)(I b o(e,yph, o™,

Thus there is such an z in rng(r) and therefore in H.

Let 7 be the uncollapse of H. Then 7 is ¥j4.,,-elementary and, since p}“ ey pﬁ*m €
rng(fs) for all f < a, we have p,... ,pﬁ"’m € rng(m) = H. In addition, by
the induction hypothesis, f is Xk -elementary and p}t, e ,pﬁ*m’l € rng(f).
Again as in (x) above, we can show that pi*™ € rng(f) using £(m + 1,u) €
rng(f). But since 7 and f are the same on the (k + m)-th projectum, we get
T=f.

(SP) follows from | f(lggu) |= m(n, B,&), because for all v C 7 C p, such that
7€ ST (rsp. 7 =v) the following holds:

pr € rng(m(n, 5,€)) < & € rng(w(n, 5,)).

This may again be shown as (x).
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(DP2)

is like (%) in (DF).

(DP3)

(a) is clear.

(b) was already proved with (DF)*.
|

Theorem 30

Let (X, | v € S¥) be such that
(1) LIX] |= 8% = {8(v) | » singular}
(2) L[X] is amenable
(3) L[X] has condensation
(4) LIX]

Then there is a sequence C' = (C,, | v € 5) such that
(1) L[C] = L[X]

2) L[C] has condensation

has coherence.

)
(2)

(3) C, is club in JS w.r.t. the canonical well-ordering <, of J¢
(4) otp({(Cy, <)) >w=0C, Cv

(5) pe Lim(C)) = C, =C, Ny,

(6) otp(Cy) <v.

Proof: First, construct from L[X] a standard morass as in theorem 29. Then
construct a inner model L[C] from it as in [Irr2]. O
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