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Abstract

Let κ ∈ Card and Lκ[X] be such that the fine structure theory, con-
densation and CardLκ[X] = Card ∩ κ hold. Then it is possible to prove
the existence of morasses. In particular, I will prove that there is a κ-
standard morass, a notion that I introduced in a previous paper. This
shows the consistency of (ω1, β)-morasses for all β ≥ ω1.

1 Introduction

R. Jensen formulated in the 1970’s the concept of an (ωα, β)-morass whereby
objects of size ωα+β could be constructed by a directed system of objects of size
less than ωα. He defined the notion of an (ωα, β)-morass only for the case that
β < ωα. I introduced in a previous paper [Irr2] a definition of an (ω1, β)-morass
for the case that ω1 ≤ β.
This definition of an (ω1, β)-morass for the case that ω1 ≤ β seems to be an
axiomatic description of the condensation property of Gödel’s constructible uni-
verse L and the whole fine structure theory of it. I was, however, not able to
formulate and prove this fact in form of a mathematical statement. Therefore,
I defined a seemingly innocent strengthening of the notion of an (ω1, β)-morass,
which I actually expect to be equivalent to the notion of (ω1, β)-morass. I call
this strengthening an ω1+β-standard morass. As will be seen, if we construct a
morass in the usual way in L, the properties of a standard morass hold auto-
matically.
Using the notion of a standard morass, I was able to prove a theorem which
can be interpreted as saying that standard morasses fully cover the condensa-
tion property and fine structure of L. More precisely, I was able to show the
following [Irr2]

Theorem

Let κ ≥ ω1 be a cardinal and assume that a κ-standard morass exists. Then
there exists a predicate X such that Card ∩ κ = CardLκ[X] and Lκ[X] satisfies
amenability, coherence and condensation.

Let me explain this. The predicate X is a sequence X = 〈Xν | ν ∈ SX〉
where SX ⊆ Lim ∩ κ, and Lκ[X] is endowed with the following hierarchy: Let
Iν = 〈JXν , X � ν〉 for ν ∈ Lim−SX and Iν = 〈JXν , X � ν,Xν〉 for ν ∈ SX where
Xν ⊆ JXν and

JX0 = ∅
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JXν+ω = rud(IXν )
JXλ =

⋃
{JXν | ν ∈ λ} for λ ∈ Lim2 := Lim(Lim),

where rud(IXν ) is the rudimentary closure of JXν ∪ {JXν } relative to X � ν if
ν ∈ Lim− SX and relative to X � ν and Xν if ν ∈ SX . Now, the properties of
Lκ[X] are defined as follows:
(Amenability) The structures Iν are amenable.
(Coherence) If ν ∈ SX , H ≺1 Iν and λ = sup(H ∩ On), then λ ∈ SX and
Xλ = Xν ∩ JXλ .
(Condensation) If ν ∈ SX and H ≺1 Iν , then there is some µ ∈ SX such that
H ∼= Iµ.
Moreover, if we let β(ν) be the least β such that JXβ+ω |= ν singular, then
SX = {β(ν) | ν singular in Iκ}.

As will be seen, these properties suffice to develop the fine structure theory. In
this sense, the theorem shows indeed what I claimed. In the present paper, I
shall show the converse:

Theorem

If Lκ[X], κ ∈ Card, satisfies condensation, coherence, amenability, SX =
{β(ν) | ν singular in Iκ} and CardLκ[X] = Card∩ κ, then there is a κ-standard
morass.

Since L itself satisfies the properties of Lκ[X], this also shows that the existence
of κ-standard morasses and (ω1, β)-morasses is consistent for all κ ≥ ω2 and all
β ≥ ω1.
Most results that can be proved in L from condensation and the fine structure
theory also hold in the structures Lκ[X] of the above form. As examples, I
proved in my dissertation the following two theorems whose proofs can also be
seen as applications of morasses:

Theorem

Let λ ≥ ω1 be a cardinal, SX ⊆ Lim ∩ λ, Card ∩ λ = CardLλ[X] and X =
〈Xν | ν ∈ SX〉 be a sequence such that amenability, coherence, condensation
and SX = {β(ν) | ν singular in Iκ} hold. Then 2κ holds for all infinite cardinals
κ < λ.

Theorem

Let SX ⊆ Lim and X = 〈Xν | ν ∈ SX〉 be a sequence such that amenability,
coherence, condensation and SX = {β(ν) | ν singular in L[X]} hold. Then
the weak covering lemma holds for L[X]. That is, if there is no non-trival, el-
ementary embedding π : L[X] → L[X], κ ∈ CardL[X] − ω2 and τ = (κ+)L[X],
then

τ < κ+ ⇒ cf(τ) = card(κ).

The present paper is a part of my dissertation [Irr1]. I thank Dieter Donder for
being my adviser, Hugh Woodin for an invitation to Berkeley, where part of the
work was done, and the DFG-Graduiertenkolleg “Sprache, Information, Logik“
in Munich for their support.
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2 The inner model L[X]

We say a function f : V n → V is rudimentary for some structure W = 〈W,Xi〉
if it is generated by the following schemata:

f(x1, . . . , xn) = xi for 1 ≤ i ≤ n
f(x1, . . . , xn) = {xi, xj} for 1 ≤ i, j ≤ n
f(x1, . . . , xn) = xi − xj for 1 ≤ i, j ≤ n
f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gn(x1, . . . , xn))
where h, g1, . . . , gn are rudimentary
f(y, x2, . . . , xn) =

⋃
{g(z, x2, . . . , xn) | z ∈ y}

where g is rudimentary
f(x1, . . . , xn) = Xi ∩ xj where 1 ≤ j ≤ n.

Lemma 1

A function is rudimentary iff it is a composition of the following functions:
F0(x, y) = {x, y}
F1(x, y) = x− y
F2(x, y) = x× y
F3(x, y) = {〈u, z, v〉 | z ∈ x and 〈u, v〉 ∈ y}
F4(x, y) = {〈z, u, v〉 | z ∈ x and 〈u, v〉 ∈ y}
F5(x, y) =

⋃
x

F6(x, y) = dom(x)
F7(x, y) =∈ ∩(x× x)
F8(x, y) = {x[{z}] | z ∈ y}
F9+i(x, y) = x∩Xi for the predicatesXi of the structure under consideration.

Proof: See, for example, in [Dev2]. 2

A relation R ⊆ V n is called rudimentary if there is a rudimentary function
f : V n → V such that R(xi)⇔ f(xi) 6= ∅.

Lemma 2

Every relation that is Σ0 over the considered structure is rudimentary.
Proof: Let χR be the characteristic function of R. The claim follows from the
facts (i)-(vi):
(i) R rudimentary ⇔ χR rudimentary.
⇐ is clear. Conversely, χR =

⋃
{g(y) | y ∈ f(xi)} where g(y) = 1 is constant

and R(xi) ⇔ f(xi) 6= ∅.
(ii) If R is rudimentary, then ¬R is also rudimentary.
Since χ¬R = 1− χR.
(iii) x ∈ y and x = y are rudimentary.
By x /∈ y ⇔ {x} − y 6= ∅ , x 6= y ⇔ (x− y) ∪ (y − x) 6= ∅ and (ii).
(iv) If R(y, xi) is rudimentary, then (∃z ∈ y)R(z, xi) and (∀z ∈ y)R(z, xi) are
rudimentary.

3



If R(y, xi) ⇔ f(y, xi) 6= ∅, then (∃z ∈ y)R(z, xi) ⇔
⋃
{f(z, xi) | z ∈ y} 6= ∅.

The second claim follows from this by (ii).
(v) If R1, R2 ⊆ V n are rudimentary, then so are R1 ∨R2 and R1 ∧R2.
Because f(x, y) = x∪ y is rudimentary, (R1 ∨R2)(xi) ⇔ χR1(xi)∪χR2(xi) 6= ∅
is rudimentary. The second claim follows from that by (ii).
(vi) x ∈ Xi is rudimentary.
Since {x} ∩Xi 6= ∅ ⇔ x ∈ Xi. 2

For a converse of this lemma, we define:
A function f is called simple if R(f(xi), yk) is Σ0 for every Σ0-relation R(z, yk).

Lemma 3
A function f is simple iff

(i) z ∈ f(xi) is Σ0

(ii) A(z) is Σ0 ⇒ (∃z ∈ f(xi))A(z) is Σ0.
Proof: If f is simple, then (i) and (ii) hold, because these are instances of
the definition. The converse is proved by induction on Σ0-formulas. E.g. if
R(z, yk) :⇔ z = yk, then R(f(xi), yk) ⇔ f(xi) = yk ⇔ (∀z ∈ f(xi))(z ∈ yk)
and (∀z ∈ yk)(z ∈ f(xi)). Thus we need (i) and (ii). The other cases are similar.
2

Lemma 4
Every rudimentary function is Σ0 in the parameters Xi.
Proof: By induction, one proves that the rudimentary functions that are gen-
erated without the schema f(x1, . . . , xn) = Xi ∩ xj are simple. For this, one
uses lemma 3. But since the function f(x, y) = x ∩ y is one of those, the claim
holds. 2

Thus every rudimentary relation is Σ0 in the parameters Xi, but not necessaryly
Σ0 with the Xi as predicates. An example is the relation {x, y} ∈ X0.

A structure is said to be rudimentary closed if its underlying set is closed under
all rudimentary functions.

Lemma 5
If W is rudimentary closed and H ≺1 W, then H and the collapse of H are also
rudimentary closed.
Proof: That is clear, since the functions F0, . . . , F9+i are Σ0 with the predicates
Xi. 2

Let TN be the set of Σ0 formulae of our language {∈, X1, . . . , XN} having ex-
actly one free variable. By lemma 2, there is a rudimentary function f for every
Σ0 formula ψ such that ψ(x?) ⇔ f(x?) 6= ∅. By lemma 1, we have

x0 = f(x?) = Fk1(x1, x2)
where x1 = Fk2(x3, x4)

x2 = Fk3(x5, x6)
and x3 = . . .
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Of course, x? appears at some point.

Therefore, we may define an effective Gödel coding

TN → G,ψu 7→ u

as follows (m,n possibly = ?):

〈k, l,m, n〉 ∈ u :⇔ xk = Fl(xm, xn).

Let |=Σ0
W (u, x?) :⇔

ψu is a Σ0 formula with exactly one free variable
and W |= ψu(x?).

Lemma 6

If W is transitive and rudimentary closed, then |=Σ0
W (x, y) is Σ1-definable over

W. The definition of |=Σ0
W (x, y) depends only on the number of predicates of

W. That is, it is uniform for all structures of the same type.
Proof: Whether |=Σ0

W (u, x?) holds, may be computed directly. First, one com-
putes the xk which only depend on x?. For those k, 〈k, l, ?, ?〉 ∈ u. Then
one computes the xi which only depend on xm and xn such that m,n ∈ {k |
〈k, l, ?, ?〉 ∈ u} – etc. Since W is rudimentary closed, this process only breaks off,
when one has computed x0 = f(x?). And |=Σ0

W (u, x?) holds iff x0 = f(x?) 6= ∅.
More formally speaking: |=Σ0

W (u, x?) holds iff there is some sequence 〈xi |
i ∈ d〉, d = {k | 〈k, l,m, n〉 ∈ u} such that
〈k, l,m, n〉 ∈ u ⇒ xk = Fl(xm, xn)
and x0 6= ∅.

Hence |=Σ0
W is Σ1. 2

If W is a structure, then let rud(W) be the closure of W ∪ {W} under the
functions which are rudimentary for W.

Lemma 7

If W is transitive, then so is rud(W).
Proof: By induction on the definition of the rudimentary functions. 2

Lemma 8

Let W be a transitive structure with underlying set W . Then

rud(W) ∩P(W ) = Def(W).

Proof: First, let A ∈ Def(W). Then A is Σ0 over 〈W ∪{W}, Xi〉, i.e. there are
parameters pi ∈W ∪ {W} and some Σ0 formula ϕ such that x ∈ A ⇔ ϕ(x, pi).
But by lemma 2, every Σ0 relation is rudimentary. Thus there is a rudimentary
function f such that x ∈ A ⇔ f(x, pi) 6= ∅. Let g(z, x) = {x} and define
h(y, x) =

⋃
{g(z, x) | z ∈ y}. Then h(f(x, pi), x) =

⋃
{g(z, x) | z ∈ f(x, pi)}

is rudimentary, h(f(x, pi), x) = ∅ if x /∈ A and h(f(x, pi), x) = {x} if x ∈ A.
Finally, let H(y, pi) =

⋃
{h(f(x, pi), x) | x ∈ y}. Then H is rudimentary and

A = H(W,pi). So we are done.
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Conversely, let A ∈ rud(W)∩P(W ). Then there is a rudimentary function f
and some a ∈W such that A = f(a,W ). By lemma 4 and lemma 3, there exists
a Σ0 formula ψ such that x ∈ f(a,W ) ⇔ ψ(x, a,W,Xi). By Σ0 absoluteness,
A = {x ∈ W | W ∪ {W,Xi} |= ψ(x, a,W,Xi)}, since Xi ⊆ W . Therefore, there
is a formula ϕ such that A = {x ∈W |W |= ϕ(x, a)}. 2

Let κ ∈ Card− ω1, SX ⊆ Lim ∩ κ and 〈Xν | ν ∈ SX〉 be a sequence.
For ν ∈ Lim − SX , let Iν = 〈JXν , X � ν〉 and let Iν = 〈JXν , X � ν,Xν〉 for
ν ∈ SX such that
Xν ⊆ JXν where

JX0 = ∅
JXν+ω = rud(Iν)
JXλ =

⋃
{JXν | ν ∈ λ} if λ ∈ Lim2 := Lim(Lim).

Obviously, Lκ[X] =
⋃
{JXν | ν ∈ κ}.

We say that Lκ[X] is amenable if Iν is rudimentary closed for all ν ∈ SX .

Lemma 9

(i) Every JXν is transitive
(ii) µ < ν ⇒ JXµ ∈ JXν
(iii) rank(JXν ) = JXν ∩On = ν

Proof: That are three easy proofs by induction. 2

Sometimes we need levels between JXν and JXν+ω. To make those transitive, we
define

Gi(x, y, z) = Fi(x, y) for i ≤ 8
G9(x, y, z) = x ∩X
G10(x, y, z) = 〈x, y〉
G11(x, y, z) = x[y]
G12(x, y, z) = {〈x, y〉}
G13(x, y, z) = 〈x, y, z〉
G14(x, y, z) = {〈x, y〉, z}.

Let
S0 = ∅
Sµ+1 = Sµ ∪ {Sµ} ∪

⋃
{Gi[(Sµ ∪ {Sµ})3] | i ∈ 15}

Sλ =
⋃
{Sµ | µ ∈ λ} if λ ∈ Lim.

Lemma 10

The sequence 〈Iµ | µ ∈ Lim ∩ ν〉 is (uniformly) Σ1-definable over Iν .
Proof: By definition JXµ = Sµ for µ ∈ Lim, that is, the sequence 〈JXµ |
µ ∈ Lim ∩ ν〉 is the solution of the recursion defining Sµ restricted to Lim.
Since the recursion condition is Σ0 over Iν , the solution is Σ1. It is Σ1 over
Iν if the existential quantifier can be restricted to JXν . Hence we must prove
〈Sµ | µ ∈ τ〉 ∈ JXν for τ ∈ ν. This is done by induction on ν. The base case
ν = 0 and the limit step are clear. For the successor step, note that Sµ+1 is a
rudimentary function of Sµ and µ, and use the rudimentary closedness of JXν .
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Lemma 11
There are well-orderings <ν of the sets JXν such that

(i) µ < ν ⇒ <µ⊆<ν
(ii) <ν+1 is an end-extension of <ν
(iii) The sequence 〈<µ| µ ∈ Lim ∩ ν〉 is (uniformly) Σ1-definable over Iν .
(iv) <ν is (uniformly) Σ1-definable over Iν .
(v) The function prν(x) = {z | z <ν x} is (uniformly) Σ1-definable over Iν .

Proof: Define well-orderings <µ of Sµ by recursion:

(I) <0= ∅

(II) (1) For x, y ∈ Sµ, let x <µ+1 y ⇔ x <µ y
(2) x ∈ Sµ and y /∈ Sµ ⇒ x <µ+1 y

y ∈ Sµ and x /∈ Sµ ⇒ y <µ+1 x
(3) If x, y /∈ Sµ, then there is an i ∈ 15 and x1, x2, x3 ∈ Sµ such that

x = Gi(x1, x2, x3). And there is a j ∈ 15 and y1, y2, y3 ∈ Sµ
such that y = Gj(y1, y2, y3). First, choose i and j minimal, then
x1 and y1, then x2 and y2, and finally x3 and y3.
Set:
(a) x <µ+1 y if i < j

y <µ+1 x if j < i
(b) x <µ+1 y if i = j and x1 <µ y1

y <µ+1 x if i = j and y1 <µ x1

(c) x <µ+1 y if i = j and x1 = y1 and x2 <µ y2

y <µ+1 x if i = j and x1 = y1 and y2 <µ x2

(d) x <µ+1 y if i = j and x1 = y1 and x2 = y2 and x3 <µ y3

y <µ+1 x if i = j and x1 = y1 and y2 = x2 and y3 <µ x3

(III) <λ=
⋃
{<µ| µ ∈ λ}

The properties (i) to (v) are obvious. For the Σ1-definability, one needs the
argument from lemma 10. 2

Lemma 12
The rudimentary closed 〈JXν , X � ν,A〉 have a canonical Σ1-Skolem function h.

Proof: Let 〈ψi | i ∈ ω〉 be an effective enumeration of the Σ0 formulae with
three free variables. Intuitively, we would define:

h(i, x) ' (z)0

for

the <ν -least z ∈ JXν such that 〈JXν , X � ν,A〉 |= ψi((z)0, x, (z)1).

Formally, we define:
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By lemma 11 (v), let θ be a Σ0 formula such that

w = {v | v <ν z} ⇔ 〈JXν , X � ν,A〉 |= (∃t)θ(w, z, t).

Let ui be the Gödel coding of

θ((s)1, (s)0, (s)2)

∧ ψi(((s)0)0, (s)3, ((s)0)1) ∧ (∀v ∈ (s)1)¬ψi((v)0, (s)3, (v)1)

and
y = h(i, x) ⇔

(∃s)(((s0)0 = y ∧ (s)3 = x ∧ |=Σ0
〈JXν ,X�ν,A〉 (ui, s)).

This has the desired properties. Note lemma 6! 2

I will denote this Σ1-Skolem function by hν,A. Let hν := hν,∅.

Let us say that Lκ[X] has condensation if the following holds:
If ν ∈ SX and H ≺1 Iν , then there is some µ ∈ SX such that H ∼= Iµ.

From now on, suppose that Lκ[X] is amenable and has condensation.

Set I0
ν = 〈JXν , X � ν〉 for all ν ∈ Lim ∩ κ.

Lemma 13 (Gödel’s pairing function)
There is a bijection Φ : On2 → On such that Φ(α, β) ≥ α, β for all α, β and
Φ−1 � α is uniformly Σ1-definable over I0

α for all α ∈ Lim.
Proof: Define a well-ordering <? on On2 by
〈α, β〉 <? 〈γ, δ〉

iff
max(α, β) < max(γ, δ) or
max(α, β) = max(γ, δ) and α < γ or
max(α, β) = max(γ, δ) and α = γ and β < δ.

Let Φ : 〈On2, <?〉 ∼= 〈On,<〉. Then Φ may be defined by the recursion
Φ(0, β) = sup{Φ(ν, ν) | ν < β}
Φ(α, β) = Φ(0, β) + α if α < β
Φ(α, β) = Φ(0, α) + α+ β if α ≥ β.

2

So there is a uniform map from α onto α × α for all α that are closed under
Gödel’s pairing function. Such a map exists for all α ∈ Lim. But then we have
to give up uniformity.

Lemma 14
For all α ∈ Lim, there exists a function from α onto α× α that is Σ1-definable
over I0

α.
Proof by induction on α ∈ Lim. If α is closed under Gödel’s pairing fuction,
then lemma 13 does the job. Therefore, if α = β+ω for some β ∈ Lim, we may
assume β 6= 0. But then there is some over I0

α Σ1-definable bijection j : α→ β.
And by the induction hypothesis, there is an over I0

β Σ1-definable function from
β onto β×β. Thus there exists a Σ1 formula ϕ(x, y, p) and a parameter p ∈ JXβ
such that there is some x ∈ β satisfying ϕ(x, y, p) for all y ∈ β × β. So we
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get an over I0
β Σ1-definable injective function g : β × β → β from the Σ1-

Skolem function. Hence f(〈ν, τ〉) = g(〈j(ν), j(τ)〉) defines an injective function
f : α2 → β which is Σ1-definable over I0

α. An h which is as needed may be
defined by

h(ν) = f−1(ν) if ν ∈ rng(f)
h(ν) = 〈0, 0〉 else.

For rng(f) = rng(g) ∈ JXα .
Now, assume α ∈ Lim2 is not closed under Gödel’s pairing function. Then

ν, τ ∈ α for 〈ν, τ〉 = Φ−1(α), and c := {z | z <? 〈ν, τ〉} lies in JXα . Thus
Φ−1 � c : c→ α is an over I0

α Σ1-definable bijection. Pick a γ ∈ Lim such that
ν, τ < γ. Then Φ−1 � α : α → γ2 is an over I0

α Σ1-definable injective function.
Like in the first case, there exists an injective function g : γ × γ → γ in JXα by
the induction hypothesis. So f(〈ξ, ζ〉) = g(〈gΦ−1(ξ), gΦ−1(ζ))〉) defines an over
I0
α Σ1-definable bijection f : α2 → d such that d := g[g[c] × g[c]]. Again, we

define h by
h(ξ) = f−1(ξ) if ξ ∈ d
h(ξ) = 〈0, 0〉 else. 2

Lemma 15

Let α ∈ Lim − ω + 1. Then there is some over I0
α Σ1-definable function from

α onto JXα . This function is uniformly definable for all α closed under Gödel’s
pairing function.
Proof: Let f : α → α × α be a surjective function which is Σ1-definable over
I0
α with parameter p. Let p be minimal with respect to the canonical well-

ordering such that such an f exists. Definef0, f1 by f(ν) = 〈f0(ν), f1(ν)〉 and,
by induction, define f1 = id � α and fn+1(ν) = 〈f0(ν), fn ◦ f1(ν)〉. Let h := hα
be the canonical Σ1-Skolem function and H = h[ω × (α × {p})]. Then H is
closed under ordered pairs. For, if y1 = h(j1, 〈ν1, p〉), y2 = h(j2, 〈ν2, p〉) and
〈ν1, ν2〉 = f(τ), then 〈y1, y2〉 is Σ1-definable over I0

α with the parameters τ, p.
Hence it is in H. Since H is closed under ordered pairs, we have H ≺1 I

0
α. Let

σ : H → I0
β be the collapse of H. Then α = β, because α ⊆ H and σ � α =

id � α. Thus σ[f ] = f , and σ[f ] is Σ1-definable over I0
α with the parameter

σ(p). Since σ is a collapse, σ(p) ≤ p. So σ(p) = p by the minimality of p. In
general, π(h(i, x)) ' h(i, π(x)) for Σ1-elementary π. Therefore, σ(h(i, 〈ν, p〉)) '
h(i, 〈ν, p〉) holds in our case for all i ∈ ω and ν ∈ α. But then σ � H = id � H
and H = JXα . Thus we may define the needed surjective map by g ◦ f3 where

g(i, ν, τ) = y if (∃z ∈ Sτ )ϕ(z, y, i, 〈ν, p〉)
g(i, ν, τ) = ∅ else.

Here, Sτ shall be defined as in lemma 10 and y = h(i, x)⇔ (∃t ∈ JXα )ϕ(t, i, x, y).
2

Let 〈I0
ν , A〉 := 〈JXν , X � ν,A〉.

The idea of the fine structure theory is to code Σn predicates over large struc-
tures in Σ1 predicates over smaller structures. In the simplest case, one codes
the Σ1 information of the given structure I0

β in a rudimentary closed structure
〈I0
ρ , A〉. I.e. we want to have something like:

Over I0
β , there exists a Σ1 function f such that

f [JXρ ] = JXβ .
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For the Σ1 formulae ϕi,

〈i, x〉 ∈ A ⇔ I0
β |= ϕi(f(x))

holds. And
〈I0
ρ , A〉 is rudimentary closed.

Now, suppose we have such an 〈I0
ρ , A〉. Then every B ⊆ JXρ that is Σ1-definable

over I0
β is of the form

B = {x | A(i, 〈x, p〉)} for some i ∈ ω, p ∈ JXρ .

So 〈I0
ρ , B〉 is rudimentary closed for all B ∈ Σ1(I0

β) ∩P(JXρ ).
The ρ is uniquely determined.

Lemma 16

Let β > ω and 〈I0
β , B〉 be rudimentary closed. Then there is at most one ρ ∈ Lim

such that
〈I0
ρ , C〉 is rudimentary closed for all C ∈ Σ1(〈I0

β , B〉) ∩P(JXρ )
and

there is an over 〈I0
β , B〉 Σ1-definable function f such that f [JXρ ] = JXβ .

Proof: Assume ρ < ρ̄ both had these properties. Let f be an over 〈I0
β , B〉

Σ1-definable function such that f [JXρ ] = JXβ and C = {x ∈ JXρ | x 6∈ f(x)}.
Then C ⊆ JXρ is Σ1-definable over 〈I0

β , B〉. So 〈I0
ρ̄ , C〉 is rudimentary closed.

But then C = C ∩ JXρ ∈ JXρ̄ . Hence there is an x ∈ JXρ such that C = f(x).
From this, the contradiction x ∈ f(x) ⇔ x ∈ C ⇔ x 6∈ f(x) follows. 2

The uniquely determined ρ from lemma 16 is called the projectum of 〈I0
β , B〉.

If there is some over 〈I0
β , B〉 Σ1-definable function f such that f [JXρ ] = JXβ ,

then hβ,B [ω × (JXρ × {p})] = JXβ for a p ∈ JXβ . Using the canonical function
hβ,B , we can define a canonical A:
Let p be minimal with respect to the canonical well-ordering such that the above
property holds. Define

A = {〈i, x〉 | i ∈ ω and x ∈ JXρ and 〈I0
β , B〉 |= ϕi(x, p)}.

We say p is the standard parameter of 〈I0
β , B〉 and A the standard code of it.

Lemma 17

Let β > 0 and 〈I0
β , B〉 be rudimentary closed. Let ρ be the projectum and A

the standard code of it. Then for all m ≥ 1, the following holds:

Σ1+m(〈I0
β , B〉) ∩P(JXρ ) = Σm(〈I0

ρ , A〉).

Proof: First, let R ∈ Σ1+m(〈I0
β , B〉) ∩P(JXρ ) and let m be even. Let P be a

relation being Σ1-definable over 〈I0
β , B〉 with parameter q1 such that, for x ∈ JXρ ,

R(x) holds iff ∃y0∀y1∃y3 . . . ∀ym−1P (yi, x). Let f be some over 〈I0
β , B〉 with

parameter q2 Σ1-definable function such that f [JXρ ] = JXβ . Define Q(zi, x) by
zi, x ∈ JXρ and (∃yi)(yi = f(zi) and P (yi, x)). Let p be the standard parameter
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of 〈I0
β , B〉. Then, by definition, there is some u ∈ JXρ such that 〈q1, q2〉 is Σ1-

definable in 〈I0
β , B〉 with the parameters u, p. I.e. there is some i ∈ ω such that

Q(zi, x) holds iff zi, x ∈ JXρ and 〈I0
β , B〉 |= ϕi(〈zi, x, u〉, p) – i.e. iff zi, x ∈ JXρ

and A(i, 〈zi, x, u〉). Analogously there is a j ∈ ω and a v ∈ JXρ such that
z ∈ dom(f)∩JXρ iff z ∈ JXρ and A(j, 〈z, v〉). Abbreviate this by D(z). But then,
for x ∈ JXρ , R(x) holds iff ∃y0∀y1∃y3 . . . ∀ym−1(D(z0) ∧D(z2) ∧ . . . ∧D(zm−2)
and (D(z1)∧D(z3)∧. . .∧D(zm−1)⇒ Q(zi, x))). So the claim holds. If m is odd,
then we proceed correspondingly. Thus Σ1+m(〈I0

β , B〉) ∩P(JXρ ) ⊆ Σm(〈I0
ρ , A〉)

is proved.
Conversely, let ϕ be a Σ0 formula and q ∈ JXρ such that, for all x ∈ JXρ ,

R(x) holds iff 〈I0
ρ , A〉 |= ϕ(x, q). Since 〈I0

ρ , A〉 is rudimentary closed, R(x) holds
iff (∃u ∈ JXρ )(∃a ∈ JXρ )(u transitive and x ∈ u and q ∈ u and a = A ∩ u and
〈u, a〉 |= ϕ(x, q)). Write a = A ∩ u as formula: (∀v ∈ a)(v ∈ u and v ∈ A) and
(∀v ∈ u)(v ∈ A⇒ v ∈ a). If m = 1, we are done provided we can show that this
is Σ2 over 〈I0

β , B〉. If m > 1, the claim follows immediately by induction. The
second part is Π1. So we only have to prove that the first part is Σ2 over 〈I0

β , B〉.
By the definition of A, v ∈ A is Σ1-definable over 〈I0

β , B〉. I.e. there is some Σ0

formula ψ and some parameter p such that v ∈ A ⇔ 〈I0
β , B〉 |= (∃y)ψ(v, y, p).

Now, we have two cases.
In the first case, there is no over 〈I0

β , B〉 Σ1-definable function from some
γ < ρ cofinal in β. Then (∀v ∈ a)(v ∈ A) is Σ2 over 〈I0

β , B〉, because some kind
of replacement axiom holds, and (∀v ∈ a)(∃y)ψ(v, y, p) is over 〈I0

β , B〉 equivalent
to (∃z)(∀v ∈ a)(∃y ∈ z)ψ(v, y, p). For ρ = ω, this is obvious. If ρ 6= ω, then
ρ ∈ Lim2 and we can pick a γ < ρ such that a ∈ JXγ . Let j : γ → JXγ an over Iγ
Σ1-definable surjection, and g an over 〈I0

β , B〉 Σ1-definable function that maps
v ∈ JXβ to g(v) ∈ JXβ such that ψ(v, g(v), p) if such an element exists. We can
find such a function with the help of the Σ1-Skolem function. Now, define a
function f : γ → β by

f(ν) = the least τ < β such that g ◦ j(ν) ∈ Sτ if j(ν) ∈ a
f(ν) = 0 else.

Since f is Σ1, there is, in the given case, a δ < β such that f [γ] ⊆ δ. So we have
as collecting set z = Sδ, and the equivalence is clear.

Now, let us come to the second case. Let γ < ρ be minimal such that
there is some over 〈I0

β , B〉 Σ1-definable function g from γ cofinal in β. Then
(∀v ∈ a)(∃y)ψ(v, y, p) is equivalent to (∀v ∈ a)(∃ν ∈ γ)(∃y ∈ Sg(ν))ψ(v, y, p).
If we define a predicate C ⊆ JXρ by 〈v, ν〉 ∈ C ⇔ y ∈ Sg(ν) and ψ(v, y, p),
then 〈I0

β , B〉 |= (∀v ∈ a)(∃y)ψ(v, y, p) is equivalent to 〈I0
ρ , C〉 |= (∀v ∈ a)(∃ν ∈

γ)(∃y)(〈v, ν〉 ∈ C). But this holds iff 〈I0
ρ , C〉 |= (∃w)(w transitive and a, γ ∈ w

and 〈w,C ∩ w〉 |= (∀v ∈ a)(∃ν ∈ γ)(∃y)(〈v, ν〉 ∈ C ∩ w). Since C is Σ1 over
〈I0
β , B〉, 〈I0

ρ , C〉 is rudimentary closed by the definition of the projectum. I.e.
the statement is equivalent to 〈I0

ρ , C〉 |= (∃w)(∃c)(w transitive and a, γ ∈ w
and c = C ∩ w and 〈w, c〉 |= (∀v ∈ a)(∃ν ∈ γ)(∃y)(〈v, ν〉 ∈ c). So, to prove
that this is Σ2, it suffices to show that c = C ∩ w is Σ2. In its full form, this
is (∀z)(z ∈ a ⇔ z ∈ w and z ∈ C). But z ∈ C is even ∆1 over 〈I0

β , B〉 by the
definition. So we are finished. 2

Lemma 18

(a) Let π : 〈JX
β̄
, X � β̄, B̄〉 → 〈JXβ , X � β,B〉 be Σ0-elementary and π[β̄] be
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cofinal in β. Then π is even Σ1-elementary.
(b) Let 〈JXν̄ , X � ν̄, Ā〉 be rudimentary closed and π : 〈JXν̄ , X � ν̄〉 → 〈JYν , Y � ν〉
be Σ0-elementary and cofinal. Then there is a uniquely determined A ⊆ JYν such
that π : 〈JXν̄ , X � ν̄, Ā〉 → 〈JYν , X � ν,A〉 is Σ0-elementary and 〈JYν , X � ν,A〉 is
rudimentary closed.
Proof: (a) Let ϕ be a Σ0 formula such that 〈JXβ , X � β,B〉 |= (∃z)ϕ(z, π(xi)).
Since π[β̄] is cofinal in β, there is a ν ∈ β̄ such that 〈JXβ , X � β,B〉 |= (∃z ∈
Sπ(ν))ϕ(z, π(xi)). Here, the Sν is defined as in lemma 10. If π(Sν) = Sπ(ν),
then 〈JXβ , X � β,B〉 |= (∃z ∈ π(Sν))ϕ(z, π(xi)). So, by the Σ0-elementarity of
π, 〈JX

β̄
, X � β̄, B̄〉 |= (∃z ∈ Sν)ϕ(z, xi). I.e. 〈JX

β̄
, X � β̄, B̄〉 |= (∃z)ϕ(z, xi). The

converse is trivial.
It remains to prove π(Sν) = Sπ(ν). This is done by induction on ν. If ν = 0

or ν /∈ Lim, then the claim is obvious by the definition of Sν and the induction
hypothesis. So let λ ∈ Lim and M := π(Sλ). Then M is transitive by the Σ0-
elementarity of π. And since λ ∈ Lim (i.e. Sλ = JXλ ), 〈Sν | ν < λ〉 is definable
over 〈JXλ , X � λ〉 by (the proof of) lemma 10. Let ϕ be the formula (∀x)(∃ν)(x ∈
Sν). Since π is Σ0-elementary, π � Sλ : 〈JXλ , X � λ〉 → 〈M, (X � λ) ∩M〉 is
elementary. Thus, if 〈JXλ , X � λ〉 |= ϕ, then also 〈M, (X � λ) ∩M〉 |= ϕ. Since
M is transitive, we get M = Sτ for a τ ∈ Lim. And, by π(λ) = π(Sλ ∩ On) =
Sτ ∩On = τ , it follows that π(Sλ) = Sπ(λ).
(b) Since 〈JXν̄ , X � ν̄, Ā〉 is rudimentary closed, Ā∩Sµ ∈ JXν̄ for all µ < ν̄ where
Sµ is defined as in lemma 10. As in the proof of (a), π(Sµ) = Sπ(µ). So we need
π(Ā ∩ Sµ) = A ∩ Sπ(µ) to get that π : 〈JXν̄ , X � ν̄, Ā〉 → 〈JYν , X � ν,A〉 is Σ0-
elementary. Since π is cofinal, we necessarily obtain A =

⋃
{π(Ā∩Sµ) | µ < ν̄}.

But then 〈JYν , X � ν,A〉 is rudimentary closed. For, if x ∈ JXν , we can choose
some µ < ν̄ such that x ∈ Sπ(µ). And x∩A = x∩ (A∩Sπ(µ)) = x∩π(Ā∩Sµ) ∈
JXν . Now, let 〈JXν̄ , X � ν̄, Ā〉 |= ϕ(xi) where ϕ is a Σ0 formula and u ∈ JXν̄ is
transitive such that xi ∈ u. Then 〈u,X � ν̄ ∩ u,A ∩ u〉 |= ϕ(xi) holds. Since
π : 〈JXν̄ , X � ν̄〉 → 〈JYν , Y � ν〉 is Σ0-elementary, 〈π(u), Y � ν∩π(u), A∩π(u)〉 |=
ϕ(π(xi)). Because π(u) is transitive, we get 〈JYν , X � ν,A〉 |= ϕ(π(xi)). This
argument works as well for the converse. 2

Write CondB(I0
β) if there exists for all H ≺1 〈I0

β , B〉 some β̄ and some B̄ such
that H ∼= 〈I0

β̄
, B̄〉.

Lemma 19 (Extension of embeddings)
Let β > ω, m ≥ 0 and 〈I0

β , B〉 be a rudimentary closed structure. Let CondB(I0
β)

hold. Let ρ be the projectum of 〈I0
β , B〉, A the standard code and p the standard

parameter of 〈I0
β , B〉. Then CondA(I0

ρ) holds. And if 〈I0
ρ̄ , Ā〉 is rudimentary

closed and π : 〈I0
ρ̄ , Ā〉 → 〈I0

ρ , A〉 is Σm-elementary, then there is an uniquely
determined Σm+1-elementary extension π̃ : 〈I0

β̄
, B̄〉 → 〈I0

β , B〉 of π where ρ̄ is
the projectum of 〈I0

β̄
, B̄〉, Ā is the standard code and π̃−1(p) is the standard

parameter of 〈I0
β̄
, B̄〉.

Proof: Let H = hβ,B [ω× (rng(π)× {p})] ≺1 〈I0
β , B〉 and π̃ : 〈I0

β̄
, B̄〉 → 〈I0

β , B〉
be the uncollapse of H.
(1) π̃ is an extension of π
Let ρ̃ = sup(π[ρ̄]) and Ã = A ∩ JXρ̃ . Then π : 〈JXρ̄ , X � ρ̄, Ā〉 → 〈JXρ̃ , X �
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ρ̃, Ã〉 is Σ0-elementary, and by lemma 18, it is even Σ1-elementary. We have
rng(π) = H ∩ JXρ̃ . Obviously rng(π) ⊆ H ∩ JXρ̃ . So let y ∈ H ∩ JXρ̃ . Then
there is an i ∈ ω and an x ∈ rng(π) such that y is the unique y ∈ JXβ that
satisfies 〈I0

β , B〉 |= ϕi(〈y, x〉, p). So by definition of A, y is the unique y ∈ JX
β̄

such that Ã(i, 〈y, x〉). But x ∈ rng(π) and π : 〈JXρ̄ , X � ρ̄, Ā〉 → 〈JXρ̃ , X � ρ̃, Ã〉
is Σ1-elementary. Therefore y ∈ rng(π). So we have proved that H is an ∈-
end-extension of rng(π). Since π is the collapse of rng(π) and π̃ the collapse of
H, we obtain π ⊆ π̃.
(2) π̃ : 〈I0

β̄
, B̄〉 → 〈I0

β , B〉 is Σm+1-elementary

We must prove H ≺m+1 〈I0
β , B〉. If m = 0, this is clear. So let m > 0 and let

y be Σm+1-definable in 〈I0
β , B〉 with parameters from rng(π) ∪ {p}. Then we

have to show y ∈ H. Let ϕ be a Σm+1 formula and xi ∈ rng(π) such that y is
uniquely determined by 〈I0

β , B〉 |= ϕ(y, xi, p). Let h̃(〈i, x〉) ' h(i, 〈x, p〉). Then
h̃[JXρ ] = JXβ by the definition of p. So there is a z ∈ JXρ such that y = h̃(z).
If such a z lies in JXρ ∩ H, then also y ∈ H, since z, p ∈ H ≺1 〈I0

β , B〉. Let
D = dom(h̃) ∩ JXρ . Then it suffices to show

(?) (∃z0 ∈ D)(∀z1 ∈ D) . . . 〈I0
β , B〉 |= ψ(h̃(zi), h̃(z), xi, p)

for some z ∈ H ∩ JXρ where ψ is Σ1 for even m and Π1 for odd m such that
ϕ(y, xi, p) ⇔ 〈I0

β , B〉 |= (∃z0)(∀z1) . . . ψ(zi, y, xi, p). First, let m be even. Since
A is the standard code, there is an i0 ∈ ω such that z ∈ D ⇔ A(i0, x) holds for all
z ∈ JXρ – and a j0 ∈ ω such that, for all zi, z ∈ D, 〈I0

β , B〉 |= ψ(h̃(zi), h̃(z), xi, p)
iff A(j0, 〈zi, z, xi〉). Thus (?) is, for z ∈ JXρ , equivalent with an obvious Σm
formula. If m is odd, then write in (?) . . .¬〈I0

β , B〉 |= ¬ψ(. . .). Then ¬ψ is Σ1

and we can proceed as above. Eventually π : 〈I0
ρ̄ , Ā〉 → 〈I0

ρ , A〉 is Σm-elementary
by the hypothesis and π ⊆ π̃ by (1) – i.e. H ∩ JXρ ≺m 〈I0

ρ , A〉. Since there is a
z ∈ JXρ which satisfies (?) and xi, p ∈ H ∩ JXρ , there exists such a z ∈ H ∩ JXρ .
Let H ≺1 〈I0

ρ , A〉. Let π be the uncollapse of H. Then π has a Σ1-elementary
extension π̃ : 〈I0

β̄
, B̄〉 → 〈I0

β , B〉. So H ∼= 〈I0
ρ̄ , Ā〉 for some ρ̄ and Ā. I.e.

CondA(I0
ρ).

(3) Ā = {〈i, x〉 | i ∈ ω and x ∈ JXρ̄ and 〈I0
β̄
, B̄〉 |= ϕi(x, π̃−1(p))}

Since π : 〈I0
ρ̄ , Ā〉 → 〈I0

ρ , A〉 is Σ0-elementary, Ā(i, x) ⇔ A(i, π(x)) for x ∈ JXρ̄ .
Since A is the standard code of 〈I0

β , B〉, A(i, π(x)) ⇔ 〈I0
β , B〉 |= ϕi(π(x), p).

Finally, 〈I0
β , B〉 |= ϕi(π(x), p) ⇔ 〈I0

β̄
, B̄〉 |= ϕi(x, π̃−1(p)), because π̃ : 〈I0

β̄
, B̄〉 →

〈I0
β , B〉 is Σ1-elementary.

(4) ρ̄ is the projectum of 〈I0
β̄
, B̄〉

By the definition of H, JX
β̄

= hβ̄,B̄ [ω × (JXρ̄ × {π̃−1(p)})]. So f(〈i, x〉) '
hβ̄,B̄(i, 〈x, π̃−1(p)〉) is a over 〈I0

β̄
, B̄〉 Σ1-definable function such that f [JXρ̄ ] =

JX
β̄

. It remains to prove that 〈I0
ρ̄ , C〉 is rudimentary closed for all C ∈ Σ1(〈I0

β̄
, B̄〉)∩

P(JXρ̄ ). By the definition of H, there exists an i ∈ ω and a y ∈ JXρ̄ such
that x ∈ C ⇔ 〈I0

β̄
, B̄〉 |= ϕi(〈x, y〉, π̃−1(p)) for all x ∈ JXρ̄ . Thus, by (3),

x ∈ C ⇔ Ā(i, 〈x, y〉). For u ∈ JXρ̄ , let v = {〈i, 〈x, y〉〉 | x ∈ u}. Then v ∈ JXρ̄
and Ā ∩ v ∈ JXρ̄ , because 〈I0

ρ̄ , Ā〉 is rudimentary closed by the hypothesis. But
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x ∈ C ∩ u holds iff 〈i, 〈x, y〉〉 ∈ Ā ∩ v. Finally, JXρ̄ is rudimentary closed and
therefore C ∩ u ∈ JXρ̄ .

(5) π̃−1(p) is the standard parameter of 〈I0
β̄
, B̄〉

By the definition of H, JX
β̄

= hβ̄,B̄ [ω × (JXρ̄ × {π̃−1(p)})] and, by (4), ρ̄ is the
projectum of 〈I0

β̄
, B̄〉. So we just have to prove that π̃−1(p) is the least with

this property. Suppose that p̄′ < π̃−1(p) had this property as well. Then
there were an i ∈ ω and an x ∈ JXρ̄ such that π̃−1(p) = hβ̄,B̄(i, 〈x, p̄′〉).
Since π̃ : 〈I0

β̄
, B̄〉 → 〈I0

β , B〉 is Σ1-elementary, we had p = hβ,B(i, 〈x, p′〉) for
p′ = π(p̄′) < p. And so also hβ,B [ω × (JXρ × {p′})] = JXβ . That contradicts the
definition of p.
(6) Uniqueness
Assume 〈I0

β̄0
, B̄0〉 and 〈I0

β̄1
, B̄1〉 both have ρ̄ as projectum and Ā as standard

code. Let p̄i be the standard parameter of 〈I0
β̄i
, B̄i〉. Then, for all j ∈ ω

and x ∈ JXρ̄ , 〈I0
β̄0
, B̄0〉 |= ϕj(x, p̄0) iff Ā(j, x) iff 〈I0

β̄1
, B̄1〉 |= ϕj(x, p̄1). So

σ(hβ̄0,B̄0
(j, 〈x, p̄0〉)) ' hβ̄1,B̄1

(j, 〈x, p̄1〉) defines an isomorphism σ : 〈I0
β̄0
, B̄0〉 ∼=

〈I0
β̄0
, B̄0〉, because, for both i, hβ̄i,B̄i [ω × (JXρ̄ × {p̄i})] = JX

β̄i
holds. But since

both structures are transitive, σ must be the identity. Finally, let π̃0 : 〈I0
β̄
, B̄〉 →

〈I0
β , B〉 and π̃1 : 〈I0

β̄
, B̄〉 → 〈I0

β , B〉 be Σ1-elementary extensions of π. Let p̄ be
the standard parameter of 〈I0

β̄
, B̄〉. Then, for every y ∈ JX

β̄
, there is an x ∈ JXρ̄

and a j ∈ ω such that y = hβ̄,B̄(j, 〈x, p̄〉) – and π̃o(y) = hβ,B(j, π(x), π(p)) =
π̃1(y). Thus π̃0 = π̃1. 2

To code the Σn information of Iβ where β ∈ SX in a structure 〈I0
ρ , A〉, one

iterates this process.
For n ≥ 0, β ∈ SX , let

ρ0 = β, p0 = ∅, A0 = Xβ

ρn+1 = the projectum of 〈I0
ρn , A

n〉
pn+1 = the standard parameter of 〈I0

ρn , A
n〉

An+1 = the standard code of 〈I0
ρn , A

n〉.
Call

ρn the n-th projectum of β,
pn the n-th (standard) parameter of β,
An the n-th (standard) code of β.

By lemma 17, An ⊆ JXρn is Σn-definable over Iβ and, for all m ≥ 1,

Σn+m(Iβ) ∩P(JXρn) = Σm(〈I0
ρn , A

n〉).

From lemma 19, we get by induction:
For β > ω, n ≥ 1, m ≥ 0, let ρn be the n-th projectum and An be the n-th code
of β. Let 〈I0

ρ̄ , Ā〉 be a rudimentary closed structure and π : 〈I0
ρ̄ , Ā〉 → 〈I0

ρn , A
n〉

be Σm-elementary. Then:
(1) There is a unique β̄ ≥ ρ̄ such that ρ̄ is the n-th projectum and Ā is the n-th
code of β̄.
For k ≤ n let
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ρk be the k-th projectum of β,
pk the k-th parameter of β,
Ak the k-th code of β

and
ρ̄k the k-th projectum of β̄,
p̄k the k-th parameter of β̄,
Āk the k-th code of β̄.

(2) There exists a unique extension π̃ of π such that, for all 0 ≤ k ≤ n,
π̃ � JXρ̄k : 〈I0

ρ̄k , Ā
k〉 → 〈I0

ρk , A
k〉 is Σm+n−k-elementary

and π̃(p̄k) = pk.

Lemma 20

Let ω < β ∈ SX . Then all projecta of β exist.
Proof by induction on n. That ρ0 exists is clear. So suppose that the first pro-
jecta ρ0, . . . , ρn−1, ρ := ρn, the parameters p0, . . . , pn and the codesA0, . . . An−1, A :=
An of β exist. Let γ ∈ Lim be minimal such that there is some over 〈I0

ρ , A〉
Σ1-definable function f such that f [JXγ ] = JXρ . Let C ∈ Σ1(〈I0

ρ , A〉) ∩P(JXγ ).
We have to prove that 〈I0

γ , C〉 is rudimentary closed. If γ = ω, then JXγ = Hω,
and this is obvious. If γ > ω, then γ ∈ Lim2 by the definition of γ. Then it
suffices to show C ∩ JXδ ∈ JXγ for δ ∈ Lim ∩ γ. Let B := C ∩ JXδ be definable
over 〈I0

ρ , A〉 with parameter q. Since obviously γ ≤ ρ, C ∩ JXδ is Σn-definable
over Iβ with parameters p1, . . . , p

n, q by lemma 17. So let ϕ be a Σn formula
such that x ∈ C ⇔ Iβ |= ϕ(x, p1, . . . , pn, q). Let

Hn+1 := hρn,An [ω × (JXδ × {q})]
Hn := hρn−1,An−1 [ω × (Hn × {pn})]
Hn−1 := hρn−2,An−2 [ω × (Hn−1 × {pn−1})]
etc.

Since L[X] has condensation, there is an Iµ such that H1
∼= Iµ. Let π be the

uncollapse of H1. Then π is the extension of the collapse of Hn+1 defined in
the proof of lemma 19. Therefore it is Σn+1-elementary. Since B ⊆ JXδ and
π � JXδ = id � JXδ , we get x ∈ B ⇔ Iµ |= ϕ(x, π−1(p1), . . . , π−1(pn), π−1(q)).
So B is indeed already Σn-definable over Iµ. Thus B ∈ JXµ+1 by lemma 8. But
now we are done because µ < ρ. For, if

hn+1(〈i, x〉) = hρn,An(i, 〈x, p〉)
hn(〈i, x〉) = hρn−1,An−1(i, 〈x, pn〉)
etc.

then the function h = h1◦. . .◦hn+1 is Σn+1-definable over Iβ . Thus the function
h̄ = π[h ∩ (H1 ×H1)] is Σn+1-definable over Iµ and h̄[JXδ ] = JXµ . So h̄ ∩ (JXρ )2

is Σ1-definable over 〈I0
ρ , A〉 by lemma 17 and lemma 19. And by the definition

of γ, there is an over 〈I0
ρ , A〉 Σ1-definable function f such that f [JXγ ] = JXρ . So

if we had µ ≥ ρ, then f ◦ h̄ was an over 〈I0
ρ , A〉 Σ1-definable function such that

(f ◦ h̄)[JXδ ] = JXρ . That contradicts the minimality of γ. 2

Let ω < ν ∈ SX , ρn the n-th projectum of ν, pn the n-th parameter and An

the n-th Code. Let
hn+1(i, x) = hρn,An(i, x)
hn(〈i, x〉) = hρn−1,An−1(i, 〈x, pn〉)

15



etc.
Then define

hn+1
ν = h1 ◦ . . . ◦ hn+1.

We have:
(1) hnν is Σn-definable over Iν
(2) hnν [ω ×Q] ≺n Iν , if Q ⊆ JXρn−1 is closed under ordered pairs.

Lemma 21

Let ω < β ∈ SX and n ≥ 1. Then
(1) the least ordinal γ ∈ Lim such that there is a over Iβ Σn-definable function
f such that f [JXγ ] = JXβ ,

(2) the last ordinal γ ∈ Lim such that 〈I0
γ , C〉 is rudimentary closed for all

C ∈ Σn(Iβ) ∩P(JXγ ),

(3) the least ordinal γ ∈ Lim such that P(γ) ∩ Σn(Iβ) * JXβ ,
is the n-th projectum of β.
Proof:

(1) By the definition of the n-th projectum, there is an over 〈I0
ρn−1 , An−1〉 Σ1-

definable fn such that fn[JXρn ] = JXρn−1 , an over 〈I0
ρn−2 , An−2〉 Σ1-definable

fn−1 such that fn−1[JXρn−1 ] = JXρn−2 , etc. But then fk is Σk-definable over Iβ
by lemma 17. So f = f1 ◦ f2 ◦ . . . ◦ fn is Σn-definable over Iβ and f [JXρn ] = JXβ .

On the other hand, the projectum ρ̄ of a rudimentary closed structure 〈I0
β , B〉

is the least ρ̄ such that there is an over 〈I0
β , B〉 Σ1-definable function f such

that f [JXρ̄ ] = JXβ . For, suppose there is no such ρ < ρ̄ such that such an f ,
f [JXρ ] = JXβ , exists. Then the proof of lemma 16 provides a contradiction. So
if there was a γ < ρn such that there is an over Iβ Σn-definable function f
such that f [JXγ ] = JXβ , then g := f ∩ (JXρn−1)2 would be an over 〈I0

ρn−1 , An−1〉
Σ1-definable function such that g[JXγ ] = JXρn−1 . But this is impossible.

(2) By the definition of the n-th projectum, 〈I0
ρn , C〉 is rudimentary closed for

all C ∈ Σ1(〈I0
ρn−1 , An−1〉) ∩ P(JXρn). But by lemma 17, Σ1(〈I0

ρn−1 , An−1〉) =
Σn(Iβ) ∩P(JXρn−1). So, since ρn ≤ ρn−1, 〈I0

ρn , C〉 is rudimentary closed for all
C ∈ Σn(Iβ) ∩P(JXρn).

Assume γ were a larger ordinal ∈ Lim having this property. Let f be,
by (1), an over Iβ Σn-definable function such that f [JXρn ] = JXβ . Set C =
{u ∈ JXρn | u /∈ f(u)}. Then C is Σn-definable over Iβ and C ⊆ JXρn . So
〈JXγ , C〉 was rudimentary closed. And therefore C = C ∩ JXρn ∈ JXγ ⊆ JXβ
and C = f(u) for some u ∈ JXρn . But this implies the contradiction that
u ∈ f(u)⇔ u ∈ C ⇔ u /∈ f(u).
(3) Let ρ := ρn and f by (1) an over Iβ Σn-definable function such that f [JXρ ] =
JXβ . Let j be an over I0

ρ Σ1-definable function from ρ onto JXρ . Let C = {ν ∈
ρ | ν /∈ f ◦j(ν)}. Then C is an over Iβ Σn-definable subset of ρ. If C ∈ JXβ , then
there would be a ν ∈ ρ such that C = f ◦ j(ν), and we had the contradiction
ν ∈ C ⇔ ν /∈ f ◦ j(ν)⇔ ν /∈ C. Thus P(ρ) ∩Σn(Iβ) * JXβ . But if γ ∈ Lim ∩ ρ
and D ∈ P(γ)∩Σn(Iβ), then D = D∩JXγ ∈ JXρ ⊆ JXβ . So P(γ)∩Σn(Iβ) ⊆ JXβ .
2
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3 Morasses

Let ω1 ≤ β, S = Lim ∩ ω1+β and κ := ω1+β .
We write Card for the class of cardinals and RCard for the class of regular
cardinals.
Let C be a binary relation on S such that:
(a) If ν C τ , then ν < τ .

For all ν ∈ S −RCard, {τ | ν C τ} is closed.
For ν ∈ S −RCard, there is a largest µ such that ν E µ.

Let µν be this largest µ with ν E µ.
Let

ν v τ :⇔ ν ∈ Lim({δ | δ C τ}) ∪ {δ | δ E τ}.

(b) v is a (many-rooted) tree.
Hence, if ν /∈ RCard is a successor in @, then µν is the largest µ such that
ν v µ. To see this, let µ∗ν be the largest µ such that ν v µ. It is clear that
µν ≤ µ∗ν , since ν E µ implies ν v µ. So assume that µν < µ∗ν . Then ν 6C µ∗ν by
the definition of µν . Hence ν ∈ Lim({δ | δ C µ∗ν}) and ν ∈ Lim({δ | δ v µ∗ν}).
Therefore, ν ∈ Lim(v) since v is a tree. That contradicts our assumption that
ν is a successor in @.
For α ∈ S, let |α| be the rank of α in this tree. Let

S+ := {ν ∈ S | ν is a successor in @}
S0 := {α ∈ S | |α| = 0}
Ŝ+ := {µτ | τ ∈ S+ −RCard}
Ŝ := {µτ | τ ∈ S −RCard}.

Let Sα := {ν ∈ S | ν is a direct successor of α in @}. For ν ∈ S+, let αν be
the direct predecessor of ν in @. For ν ∈ S0, let αν := 0. For ν 6∈ S+ ∪ S0, let
αν := ν.
(c) For ν, τ ∈ (S+ ∪ S0)−RCard such that αν = ατ , suppose:

ν < τ ⇒ µν < τ.

For all α ∈ S, suppose:

(d) Sα is closed
(e) card(Sα) ≤ α+

card(Sα) ≤ card(α) if card(α) < α

(f) ω1 = max(S0) = sup(S0 ∩ ω1)
ω1+i+1 = max(Sω1+i) = sup(Sω1+i ∩ ω1+i+1) for all i < β.

Let D = 〈Dν | ν ∈ Ŝ〉 be a sequence such that Dν ⊆ JDν . To simplify matters,
my definition of JDν is such that JDν ∩On = ν (see section 3 or [SchZe]).

Let an 〈S,C, D〉-maplet f be a triple 〈ν̄, |f |, ν〉 such that ν̄, ν ∈ S−RCard and
|f | : JDµν̄ → JDµν .
Let f = 〈ν̄, |f |, ν〉 be an 〈S,C, D〉-maplet. Then we define d(f) and r(f) by
d(f) = ν̄ and r(f) = ν. Set f(x) := |f |(x) for x ∈ JDµν̄ and f(µν̄) := µν .
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But dom(f), rng(f), f � X, etc. keep their usual set-theoretical meaning, i.e.
dom(f) = dom(|f |), rng(f) = rng(|f |), f � X = |f | � X, etc.
For τ̄ ≤ µν̄ , let f (τ̄) = 〈τ̄ , |f | � JDµτ̄ , τ〉 where τ = f(τ̄). Of course, f (τ̄) needs
not to be a maplet. The same is true for the following definitions. Let f−1 =
〈ν, |f |−1, ν̄〉. For g = 〈ν, |g|, ν′〉 and f = 〈ν̄, |f |, ν〉, let g ◦ f = 〈ν̄, |g| ◦ |f |, ν′〉. If
g = 〈ν′, |g|, ν〉 and f = 〈ν̄, |f |, ν〉 such that rng(f) ⊆ rng(g), then set g−1f =
〈ν̄, |g|−1 | f |, ν′〉. Finally set idν = 〈ν, id � JDµν , ν〉.
Let F be a set of 〈S,C, D〉-maplets f = 〈ν̄, |f |, ν〉 such that the following
holds:
(0) f(ν̄) = ν, f(αν̄) = αν and |f | is order-preserving.
(1) For f 6= idν̄ , there is some β v αν̄ such that f � β = id � β and f(β) > β.
(2) If τ̄ ∈ S+ and ν̄ @ τ̄ v µν̄ , then f (τ̄) ∈ F.
(3) If f, g ∈ F and d(g) = r(f), then g ◦ f ∈ F.
(4) If f, g ∈ F, r(g) = r(f) and rng(f) ⊆ rng(g), then g−1 ◦ f ∈ F.
We write f : ν̄ ⇒ ν if f = 〈ν̄, |f |, ν〉 ∈ F. If f ∈ F and r(f) = ν, then we write
f ⇒ ν. The uniquely determined β in (1) shall be denoted by β(f).
Say f ∈ F is minimal for a property P (f) if P (f) holds and P (g) implies
g−1f ∈ F.
Let

f(u,x,ν) = the unique minimal f ∈ F for f ⇒ ν and u ∪ {x} ⊆ rng(f),
if such an f exists. The axioms of the morass will guarantee that f(u,x,ν) always
exists if ν ∈ S − RCardLκ[D]. Therefore, we will always assume and explicitly
mention that ν ∈ S −RCardLκ[D] when f(u,x,ν) is mentioned.

Say ν ∈ S −RCardLκ[D] is independent if d(f(β,0,ν)) < αν holds for all β < αν .

For τ v ν ∈ S −RCardLκ[D], say ν is ξ-dependent on τ if f(ατ ,ξ,ν) = idν .

For f ∈ F, let λ(f) := sup(f [d(f)]).

For ν ∈ S −RCardLκ[D] let

Cν = {λ(f) < ν | f ⇒ ν}

Λ(x, ν) = {λ(f(β,x,ν)) < ν | β < ν}.

It will be shown that Cν and Λ(x, ν) are closed in ν.
Recursively define a function qν : kν + 1→ On, where kν ∈ ω:

qν(0) = 0
qν(k + 1) = max(Λ(qν � (k + 1), ν))

if max(Λ(qν � (k + 1), ν)) exists. The axioms will guarantee that this recursion
breaks off (see lemma 4 below), i.e. there is some kν such that either

Λ(qν � (kν + 1), ν) = ∅
or

Λ(qν � (kν + 1), ν) is unbounded in ν.

Define by recursion on 1 ≤ n ∈ ω, simultaneouly for all ν ∈ S − RCardLκ[D],
β ∈ ν and x ∈ JDµν the following notions:
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f1
(β,x,ν) = f(β,x,ν)

τ(n, ν) = the least τ ∈ S0 ∪ S+ ∪ Ŝ such that for some x ∈ JDµν

fn(ατ ,x,ν) = idν

x(n, ν) = the least x ∈ JDµν such that fn(ατ(n,ν),x,ν) = idν

Kn
ν = {d(fn(β,x(n,ν),ν)) < ατ(n,ν) | β < ν}

f ⇒n ν iff f ⇒ ν and for all 1 ≤ m < n

rng(f) ∩ JDατ(m,ν)
≺1 〈JDατ(m,ν)

, D � ατ(m,ν),K
m
ν 〉

x(m, ν) ∈ rng(f)

fn(u,ν) = the minimal f ⇒n ν such that u ⊆ rng(f)
fn(β,x,ν) = fn(β∪{x},ν)

f : ν̄ ⇒n ν :⇔ f ⇒n ν and f : ν̄ ⇒ ν.

Here definitions are to be understood in Kleene’s sense, i.e., that the left side is
defined iff the right side is, and in that case, both are equal.

Let
nν = the least n such that fn(γ,x,µν) is confinal in ν for some x ∈ JDµν , γ @ ν

xν = the least x such that fnν(αν ,x,µν) = idµν .
Let

α∗ν = αν if ν ∈ S+

α∗ν = sup{α < ν | β(fnν(α,xν ,µν)) = α} if ν /∈ S+.

Let Pν := {xτ | ν @ τ v µν , τ ∈ S+} ∪ {xν}.

We say that M = 〈S,C,F, D〉 is an (ω1, β)-morass if the following axioms hold:

(MP – minimum principle)

If ν ∈ S −RCardLκ[D] and x ∈ JDµν , then f(0,x,ν) exists.

(LP1 – first logical preservation axiom)

If f : ν̄ ⇒ ν, then |f | : 〈JDµν̄ , D � µν̄〉 → 〈J
D
µν , D � µν〉 is Σ1-elementary.

(LP2 – second logical preservation axiom)

Let f : ν̄ ⇒ ν and f(x̄) = x. Then

(f � JDν̄ ) : 〈JDν̄ , D � ν̄,Λ(x̄, ν̄)〉 → 〈JDν , D � ν,Λ(x, ν)〉

is Σ0-elementary.

(CP1 – first continuity principle)

For i ≤ j < λ, let fi : νi ⇒ ν and gij : νi ⇒ νj such that gij = f−1
j fi. Let

〈gi | i < λ〉 be the transitive, direct limit of the directed system 〈gij | i ≤ j < λ〉
and hgi = fi for all i < λ. Then gi, h ∈ F.
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(CP2 – second continuity principle)

Let f : ν̄ ⇒ ν and λ = sup(f [ν̄]). If, for some λ̄, h : 〈JD̄
λ̄
, D̄〉 → 〈JDλ , D � λ〉 is

Σ1-elementary and rng(f � JDν̄ ) ⊆ rng(h), then there is some g : λ̄ ⇒ λ such
that g � JD̄

λ̄
= h.

(CP3 – third continuity principle)

If Cν = {λ(f) < ν | f ⇒ ν} is unbounded in ν ∈ S − RCardLκ[D], then the
following holds for all x ∈ JDµν :

rng(f(0,x,ν)) =
⋃
{rng(f(0,x,λ)) | λ ∈ Cν}.

(DP1 – first dependency axiom)

If µν < µαν , then ν ∈ S −RCardLκ[D] is independent.

(DP2 – second dependency axiom)

If ν ∈ S − RCardLκ[D] is η-dependent on τ v ν, τ ∈ S+, f : ν̄ ⇒ ν, f(τ̄) = τ
and η ∈ rng(f), then f (τ̄) : τ̄ ⇒ τ .

(DP3 – third dependency axiom)

For ν ∈ Ŝ −RCardLκ[D] and 1 ≤ n ∈ ω, the following holds:
(a) If fn(ατ ,x,ν) = idν , τ ∈ S+ ∪ S0 and τ v ν, then µν = µτ .

(b) If β < ατ(n,ν), then also d(fn(β,x(n,ν),ν)) < ατ(n,ν).

(DF – definability axiom)

(a) If f(0,z0,ν) = idν for some ν ∈ Ŝ −RCardLκ[D] and z0 ∈ JDµν , then

{〈z, x, f(0,z,ν)(x)〉 | z ∈ JDµν , x ∈ dom(f(0,z,ν))}

is uniformly definable over 〈JDµν , D � µν , Dµν 〉.
(b) For all ν ∈ S −RCardLκ[D], x ∈ JDµν , the following holds:

f(0,x,ν) = fnν(0,〈x,ν,α∗ν ,Pν〉,µν).

This finishes the definition of an (ω1, β)-morass.

A consequence of the axioms is (×) by [Irr2]::

Theorem

{〈z, τ, x, f(0,z,τ)(x)〉 | τ < ν, µτ = ν, z ∈ JDµτ , x ∈ dom(f(0,z,τ))}

∪{〈z, x, f(0,z,ν)(x)〉 | µν = ν, z ∈ JDµν , x ∈ dom(f(0,z,ν))}

∪(@ ∩ν2)

is for all ν ∈ S uniformly definable over 〈JDν , D � ν,Dν〉.

A structure M = 〈S,C,F, D〉 is called an ω1+β-standard morass if it satifies all
axioms of an (ω1, β)-morass except (DF) which is replaced by:
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ν C τ ⇒ ν is regular in JDτ

and there are functions σ(x,ν) for ν ∈ Ŝ and x ∈ JDν such that:

(MP)+

σ(x,ν)[ω] = rng(f(0,x,ν))

(CP1)+

If f : ν̄ ⇒ ν and f(x̄) = x, then σ(x,ν) = f ◦ σ(x̄,ν̄).

(CP3)+

If Cν is unbounded in ν, then σ(x,ν) =
⋃
{σ(x,λ) | λ ∈ Cν , x ∈ JDλ }.

(DF)+

(a) If f(0,x,ν) = idν for some x ∈ JDν , then

{〈i, z, σ(z,ν)(i)〉 | z ∈ JDν , i ∈ dom(σ(z,ν))}

is uniformly definable over 〈JDµν , D � µν , Dµν 〉.
(b) If Cν is unbounded in ν, then Dν = Cν . If it is bounded, then Dν =
{〈i, σ(qν ,ν)(i)〉 | i ∈ dom(σ(qν ,ν))}.

Now, I am going to construct a κ-standard morass.
Let β(ν) be the least β such that JXβ+1 |= ν singular.

Let Lκ[X] satisfy amenability, condensation and coherence such that SX =
{β(ν) | ν singular in Lκ[X]} and CardLκ[X] = Card ∩ κ.

Let
ν C τ :⇔ ν regular in Iτ .

Let
E = Lim−RCardLκ[X].

For ν ∈ E, let
β(ν) = the least β such that there is a cofinal f : a → ν ∈ Def(Iβ) and

a ⊆ ν′ < ν

n(ν) = the least n ≥ 1 such that such an f is Σn-definable over Iβ(ν)

ρ(ν) = the (n(ν)− 1)-th projectum of Iβ(ν)

Aν = the (n(ν)− 1)-th standard code of Iβ(ν)

γ(ν) = the n(ν)-th projectum of Iβ(ν).

If ν ∈ S+−Card, then the n(ν)-th projectum γ of β(ν) is less or equal αν := the
largest cardinal in Iν : Since αν is the largest cardinal in Iν , there is, by definition
of β(ν) and n(ν), some over Iβ(ν) Σn(ν)-definable function f such that f [αν ] is
cofinal in ν. But, since ν is regular in β(ν), f cannot be an element of JXβ(ν). So
P(ν× ν)∩Σn(ν)(Iβ(ν)) * JXβ(ν). By lemma 14, also P(ν)∩Σn(ν)(Iβ(ν)) * JXβ(ν).
Using lemma 21 (3), we get γ ≤ ν. I.e. there is an over Iβ(ν) Σn(ν)-definable
function g such that g[ν] = JXβ(ν). On the other hand, there is, for every τ < ν

in JXν , a surjection from αν onto τ , because αν is the largest cardinal in Iν .
Let fτ be the <ν-least such. Define j1(σ, τ) = ff(τ)(σ) for σ, τ < ν. Then j1
is Σn(ν)-definable over Iβ(ν) and j1[αν × αν ] = ν. By lemma 15, we obtain an
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over Iβ(ν) Σn(ν)-definable function j2 from a subset of αν onto ν. Thus g ◦ j2 is
an over Iβ(ν) Σn(ν)-definable map such that g ◦ j2[αν ] = JXβ(ν).

Moreover, αν < ν ≤ ρ(ν): By definition of ρ(ν), there is an over Iβ(ν) Σn(ν)−1-
definable function f such that f [ρ(ν)] = β(ν) if n(ν) > 1. But ν is Σn(ν)−1-
regular over Iβ(ν). Thus ν ≤ ρ(ν). If n(ν) = 1, then ρ(ν) = β(ν) ≥ ν.
By the first inequality, there is a q such that every x ∈ JXρ(ν) is Σ1-definable in
〈I0
ρ(ν), Aν〉 with parameters from αν ∪ {q}. Let pν be the <ρ(ν)-least such.

Obviously, pτ ≤ pν if ν v τ v µν .
Thus Pν := {pτ | ν v τ v µν , τ ∈ S+} is finite.
Now, let ν ∈ E − S+. By definition of β(ν), there exists no cofinal f : a→ ν in
JXβ such that a ⊆ ν′ < ν. So P(ν × ν) ∩ Σn(ν)(Iβ(ν)) 6⊆ JXβ(ν). Then, by lemma
14, P(ν) ∩ Σn(ν)(Iβ(ν)) 6⊆ JXβ(ν). Hence, by lemma 21 (3),

γ(ν) ≤ ν.

Assume ρ(ν) < ν. Then there was an over Iβ(ν) Σn(ν)−1-definable f such that
f [ρ(ν)] = ν. But this contradicts the definition of n(ν). So

ν ≤ ρ(ν).

Using lemma 21 (1), it follows from the first inequality that there is some over
Iβ(ν) Σn(ν)-definable function f such that f [JXν ] = JXβ(ν). So there is a p ∈ JXρ(ν)

such that every x ∈ JXρ(ν) is Σ1-definable in 〈I0
ρ(ν), Aν〉 with parameters from

ν ∪ {p}. Let pν be the least such.
Let

α∗ν = sup{α < ν | hρ(ν),Aν [ω × (JXα × {pν})] ∩ ν = α}.

Then α∗ν < ν because, by definition of β(ν), there exists a ν′ < ν and a p ∈ JXρ(ν)

such that hρ(ν),Aν [ω × (JXν′ × {p})] ∩ ν is cofinal in ν. But p is in hρ(ν),Aν [ω ×
(JXν × {pν})]. So there is an α < ν such that hρ(ν),Aν [ω × (JXα × {pν})] ∩ ν is
cofinal in ν. Thus α∗ν < α < ν.
If ν ∈ S+, then we set α∗ν := αν .
For ν ∈ E, let f : ν̄ ⇒ ν iff, for some f∗,

(1) f = 〈ν̄, f∗ � JDµν̄ , ν〉,
(2) f∗ : Iµν̄ → Iµν is Σn(ν)-elementary,
(3) α∗ν , pν , α∗µν , Pν ∈ rng(f∗),
(4) ν ∈ rng(f∗) if ν < µν ,
(5) f(ν̄) = ν and ν̄ ∈ S+ ⇔ ν ∈ S+.

By this, F is defined.

Set D = X.

Let P ∗ν be minimal such that hn(ν)−1
µν (i, P ∗ν ) = Pν for an i ∈ ω.

Let α∗∗µν be minimal such that hn(ν)−1
µν (i, α∗∗µν ) = α∗µν for some i ∈ ω.

Set
ν∗ = ∅ if ν = ρ(ν)
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ν∗ = ν if ν < ρ(ν).

For τ ∈ On, let Sτ be defined as in lemma 10. For τ ∈ On, Ei ⊆ Sτ and a Σ0

formula ϕ, let
hϕτ,Ei(x1, . . . , xm) the least x0 ∈ Sτ w.r.t. the canonical well-ordering such that
〈Sτ , Ei〉 |= ϕ(xi) if such an element exists,
and
hϕτ,Ei(x1, . . . , xm) = ∅ else.
For τ ∈ On such that ν∗, α∗ν , pν , α

∗∗
µν , P

∗
ν ∈ Sτ , let Hν(α, τ) be the closure of

Sα ∪ {ν∗, α∗ν , pν , α∗∗µν , P
∗
ν } under all hϕτ,X∩Sτ ,Aν∩Sτ . Then Hν(α, τ) ≺1 〈Sτ , X ∩

Sτ , Aν∩Sτ , {ν∗, α∗ν , pν , α∗∗µν , P
∗
ν }〉 by the definition of hϕτ,X∩Sτ ,Aν∩Sτ . LetMν(α, τ)

be the collapse ofHν(α, τ). Let τ0 be the minimal τ such that ν∗, α∗ν , pν , α
∗∗
µν , P

∗
ν ∈

Sτ . Define by induction for τ0 ≤ τ < ρ(ν):
α(τ0) = αν

α(τ + 1) = sup(Mν(α(τ), τ + 1) ∩ ν)
α(λ) = sup{α(τ) | τ < λ} if λ ∈ Lim.

Set
Bν = {〈α(τ),Mν(α(τ), τ)〉 | τ0 < τ ∈ ρ(ν)} if ν < ρ(ν),
Bν = {0} ×Aν ∪ {〈1, ν∗, α∗ν , pν , α∗∗µν , P

∗
ν 〉} else.

Lemma 22

Bν ⊆ JXν and 〈I0
ν , Bν〉 is rudimentary closed.

Proof: If ν = ρ(ν), then both claims are clear. Otherwise, we first prove
Mν(α, τ) ∈ JXν for all α < ν and all τ ∈ ρ(ν) such that τ0 ≤ τ < ρ(ν). Let
such a τ be given and τ ′ ∈ ρ(ν) − Lim be such that X ∩ Sτ , Aν ∩ Sτ ∈ Sτ ′

(rudimentary closedness of 〈I0
ρ(ν), Aν〉). Let η := sup(τ ′ ∩ Lim). Let H be the

closure of α ∪ {ν∗, α∗ν , pν , α∗∗µν , P
∗
ν , X ∩ Sτ , Sτ , Aν ∩ Sτ , η} under all hϕτ ′ . Let

σ : H ∼= S be the collapse of H and σ(η) = η̄. If η ∈ SX , then S = Sτ̄ ′ for some
τ̄ ′ by the condensation property of L[X]. If η 6∈ SX , then S = SX�η̄

τ̄ ′ for some τ̄ ′

where SX�η̄
τ̄ ′ is defined like Sτ̄ ′ with X � η̄ instead of X. The reason is that, even

if η /∈ SX , it is the supremum of points in SX , because SX = {β(ν) | ν singular
in Lκ[X]}. In both cases, S ∈ JXν and there is a function in Iη̄+ω that maps
α∪{σ(ν∗), σ(α∗ν), σ(pν), σ(α∗∗µν ), σ(P ∗ν ), σ(X∩Sτ ), σ(Sτ ), σ(Aν∩Sτ ), σ(η)} onto
S. So ν would be singular in JXρν if ν ≤ τ̄ ′. But this contradicts the definition of
β(ν). Therefore, σ(ν∗), σ(α∗ν), σ(pν), σ(α∗∗µν ), σ(P ∗ν ), σ(X ∩ Sτ ), σ(Sτ ), σ(Aν ∩
Sτ ), σ(η) ∈ JXν . Let H̄ν(α, τ) be the closure of Sα ∪ {σ(ν∗), σ(α∗ν), σ(pν),
σ(α∗∗µν ), σ(P ∗ν ), σ(X∩Sτ ), σ(Sτ ), σ(Aν∩Sτ ), σ(η)} under all hϕσ(Sτ ),σ(X∩Sτ ),σ(Aν∩Sτ )

where these are defined like hϕτ,Ei but with σ(Sτ ) instead of Sτ . Then H̄ν(α, τ) ≺1

〈σ(Sτ ), σ(X ∩ Sτ ), σ(Aν ∩ Sτ ), {σ(ν∗), σ(α∗ν), σ(pν), σ(α∗∗µν ), σ(P ∗ν ), σ(X ∩ Sτ ),
σ(Sτ ), σ(Aν ∩ Sτ ), σ(η)}〉 and Mν(α, τ) is the collapse of H̄ν(α, τ). Since ν <
ρ(ν) and ν is a cardinal in Iβ(ν), JXν |= ZF−. So we can form the collapse inside
JXν . Thus Mν(α, τ) ∈ JXν .

Now, we turn to rudimentary closedness. Since Bν is unbounded in ν, it
suffices to prove that the initial segments of Bν are elements of JXν . Such an
initial segment is of the form 〈Mν(α(τ), τ) | τ < γ〉 where γ < ρ(ν), and we
have Hν(α(τ), δτ ) = Hν(α(τ), τ) where δτ is for τ < γ the least η ≥ τ such that
η ∈ Hν(α(τ), γ) ∪ {γ}. Since δτ ∈ Hν(α(τ), γ) ≺1 〈Sγ , X ∩ Sγ , Aν ∩ Sγ , {. . .}〉,
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(Hν(α(τ), δτ ))Hν(α(γ),γ) = Hν(α(τ), τ). Let π : Mν(α(γ), γ) → Sγ be the un-
collapse of Hν(α(γ), γ). Then, by the Σ1-elementarity of π, Mν(α(τ), τ) =
Mν(α(τ), δτ ) is the collapse of (H(α(τ), π−1(δτ )))Mν(α(γ),γ). So 〈Mν(α(τ), τ) |
τ < γ〉 is definable from Mν(α(γ), γ) ∈ JXν . 2

Lemma 23

For x, yi ∈ JXν , the following are equivalent:
(i) x is Σ1-definable in 〈I0

ρ(ν), Aν〉 with the parameters yi, ν∗, α∗ν , pν , α
∗∗
µν , P

∗
ν .

(ii) x is Σ1-definable in 〈I0
ν , Bν〉 with the parameters yi.

Proof: For ν = ρ(ν), this is clear. Otherwise, let first x be uniquely determined
in 〈I0

ρ(ν), Aν〉 by (∃z)ψ(z, x, 〈yi, ν∗, α∗ν , pν , α∗∗µν , P
∗
ν 〉) where ψ is a Σ0 formula.

That is equivalent to (∃τ)(∃z ∈ Sτ )ψ(z, x, 〈yi, ν∗, α∗ν , pν , α∗∗µν , P
∗
ν 〉) and that

again to (∃τ)Hν(α(τ), τ) |= (∃z)ψ(z, x, 〈yi, ν∗, α∗ν , pν , α∗∗µν , P
∗
ν 〉). If τ is large

enough, the yi are not moved by the collapsing map, since then yi ∈ JXα(τ) ⊆
Hν(α(τ), τ). Let ν̄, α, p, α′, P be the images of ν∗, α∗ν , pν , α

∗∗
µν , P

∗
ν under the col-

lapse. Then (∃τ)(yi ∈ JXα(τ) and Mν(α(τ), τ) |= (∃z)ψ(z, x, 〈yi, ν̄, α, p, α′, P 〉))
defines x. So it is definable in 〈I0, Bν〉.
Since Bν and the satisfaction relation of 〈I0

γ , B〉 are Σ1-definable over 〈I0
ρ(ν), Aν〉,

the converse is clear. 2

Lemma 24

Let H ≺1 〈I0
ν , Bν〉 for a ν ∈ E and π : 〈I0

µ, B〉 → 〈I0
ν , Bν〉 be the uncollapse of

H. Then µ ∈ E and B = Bµ.
Proof: First, we extend π like in lemma 19. Let
M = {x ∈ JXρ(ν) | x is Σ1-definable in 〈I0

ρ(ν), Aν〉 with parameters from rng(π)∪
{pν , ν∗, α∗ν , α∗∗µν , P

∗
ν } }.

Then rng(π) = M ∩ JXν . For, if x ∈ M ∩ JXν , then there are by definition
of M yi ∈ rng(π) such that x is Σ1-definable in 〈I0

ρ(ν), Aν〉 with the parame-
ters yi and pν , ν

∗, α∗ν , α
∗∗
µν , P

∗
ν . Thus it is Σ1-definable in 〈I0

ν , Bν〉 with the yi
by lemma 23. Therefore, x ∈ rng(π) because yi ∈ rng(π) ≺1 〈I0

ν , Bν〉. Let
π̂ : 〈I0

ρ , A〉 → 〈I0
ρ(ν), Aν〉 be the uncollapse of M . Then π̂ is an extension of π,

since M ∩ JXν is an ∈-initial segment of M and rng(π) = M ∩ JXν . In addition,
there is by lemma 19 a Σn(ν)- elementary extension π̃ : Iβ → Iβ(ν) such that ρ
is the (n(ν) − 1)-th projectum of Iβ and A is the (n(ν) − 1)-th standard code
of it. Let π̃(p) = pν and π̃(α) = α∗ν . And we have π̃(µ) = ν if ν < β(ν). In this
case, ν ∈ rng(π) by the definition of ν∗. Since π̃ is Σ1-elementary, cardinals of
JXµ are mapped on cardinals of JXν .

Assume ν ∈ S+. Suppose there was a cardinal τ > α of JXµ . Then π(τ) > ατ
was a cardinal in JXν . But this is a contradiction.

Next, we note that µ is Σn(ν)-singular over Iβ . If ν ∈ S+, then, by the
definition of pν , JXρ = hρ,A[ω × (α × {p})] is clear. So there is an over 〈I0

ρ , A〉
Σ1-definable function from α cofinal into µ. But since ρ is the (n(ν) − 1)-th
projectum and A is the (n(ν) − 1)-th code of it, this function is Σn-definable
over Iβ . Now, suppose ν /∈ S+. Let λ := sup(π[µ]). Since λ > α∗ν , there is a
γ < λ such that

sup(hρ(ν),Aν [ω × (JXγ × {qν})] ∩ ν) ≥ λ.
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And since rng(π) is cofinal in λ, there is such a γ ∈ rng(π). Let γ = π(γ̄). By
the Σ1-elementarity of π̃, γ̄ < µ and setting π̃(q) = qν we have for every η < µ

〈Iρ, A〉 |= (∃x ∈ JXγ̄ )(∃i)hρ,A(i, 〈x, p〉) > η.

Hence hρ,A[ω × (JXγ̄ × {q})] is cofinal in µ. This shows µ ∈ E.
On the other hand, µ is Σn(ν)−1-regular over Iβ if n(ν) > 1. Assume there

was an over Iβ Σn(ν)−1-definable function f and some x ∈ µ such that f [x]
was cofinal in µ. I.e. (∀y ∈ µ)(∃z ∈ x)(f(x) > y) would hold in Iβ . Over
Iβ , (∃z ∈ x)(f(z) > y) is Σn(ν)−1. So it is Σ0 over 〈I0

ρ , A〉. But then also
(∀y ∈ µ)(∃z ∈ x)(f(z) > y) is Σ0 over 〈I0

ρ , A〉 if µ < ρ. Hence it is Σn(ν)

over Iβ . But then the same would hold for π̃(x) in Iβ(ν). This contradicts the
definition of n(ν)! Now, let µ = ρ. Since α is the largest cardinal in Iµ, we
had in f also an over Iβ Σn(ν)−1-definable function from α onto ρ and therefore
one from α onto β. But this contradicts lemma 21 and the fact that ρ is the
(n(ν)− 1)-th projectum of β. If n(ν) = 1, then we get with the same argument
that µ is regular in Iβ .

The previous two paragraphs show β = β(µ) and n(µ) = n(ν). We are done
if we can also show that α = α∗µ, π(α∗∗µµ) = α∗∗µν , p = pµ, π(P ∗µ) = P ∗ν , because π̃
is Σ1-elementary, π̃(hϕτ,X∩Sτ ,Aµ∩Sτ (xi)) = hϕπ̃(τ),X∩Sπ̃(τ),Aν∩Sπ̃(τ)

(xi) for all Σ1

formulas ϕ and xi ∈ Sτ .
For ν ∈ S+, α = αµ was shown above. So let ν /∈ S+. By the Σ1-

elementarity of π̃, we have for all α ∈ µ

hρ,A[ω × (JXα × {p})] ∩ µ = α⇔ hρ(ν),Aν [ω × (JXπ(α) × {pν})] ∩ ν = π(α).

The same argument proves π(α∗∗µµ) = α∗∗µν . Finally, p = pµ and π(P ∗µ) = P ∗ν can
be shown as in (5) in the proof of lemma 19. 2

Lemma 25

Let H ≺1 〈I0
ν , Bν〉 and λ = sup(H ∩ν) for a ν ∈ E. Then λ ∈ E and Bν ∩JXλ =

Bλ.
Proof: Let π0 : 〈I0

µ, Bµ〉 → 〈I0
λ, Bν ∩ JXλ 〉 be the uncollapse of H and let π1 :

〈I0
λ, Bν ∩ JXλ 〉 → 〈I0

ν , Bν〉 be the identity. Since L[X] has coherence, π0 and π1

are Σ0-elementary. By lemma 18, π0 is even Σ1-elementary, because it is cofinal.
To show Bλ = Bν ∩ JXλ , we extend π0 and π1 to π̂0 : 〈I0

ρ(µ), Aµ〉 → 〈I
0
ρ , A〉 and

π̂1 : 〈I0
ρ , A〉 → 〈I0

ρ(ν), Aν〉 in such a way that π̂0 is Σ1-elementary and π̂1 is Σ0-
elementary. Then we know from lemma 19 that ρ is the (n(ν)−1)-th projectum
of some β and A is the (n(ν)− 1)-th code of it. So there is a Σn(ν)-elementary
extension of π̃0 : Iβ̄ → Iβ . We can again use the argument from lemma 24 to
show that λ is Σn(ν)−1-regular over Iβ . But on the other hand, λ is as supremum
of H ∩ On Σn(ν)-singular over Iβ . From this, we conclude as in the proof of
lemma 24 that Bλ = Bν ∩ JXλ .

First, suppose ν ∈ S+. Since αν ∈ H ≺1 〈I0
ν , Bν〉, αν < λ ≤ ν. Since

Iν |= (αν is the largest cardinal), we therefore have λ /∈ Card. In addition, αν
is the largest cardinal in Iλ. Assume τ was the next larger cardinal. Then τ
was Σ1-definable in Iλ with parameter αν and some τ ′ ∈ H and hence it was in
H. By the Σ1-elementarity of π0, π−1

0 (τ) > π−1
0 (αν) = αµ was also a cardinal

in Iµ. But this contradicts the definition of αµ.
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But now to Bλ = Bν ∩ JXλ . First, assume ν /∈ S+. Let π = π1 ◦ π0 :
〈I0
µ, Bµ〉 → 〈I0

ν , Bν〉 and π̂ : 〈I0
ρ(µ), Aµ〉 → 〈I

0
ρ(ν), Aν〉 be the extension con-

structed in the proof of lemma 24. Let γ = sup(rng(π̂)). Then π̂′ = π̂∩ (JXρ(µ)×
JXγ ) : 〈I0

ρ(µ), Aµ〉 → 〈I
0
γ , Aν ∩ JXγ 〉 is Σ0-elementary, by coherence of Lκ[X], and

cofinal. Thus π̂′ is Σ1-elementary. Let H ′ = hγ,Aν∩JXγ [ω × (JXλ × {pν})] and
π̂1 : 〈I0

ρ , A〉 → 〈I0
ρ(ν), Aν〉 be the uncollapse of H ′. Then H = rng(π̂′) ⊆ H ′.

To see this, let z ∈ rng(π̂′) and z = π̂′(y). Then by definition of pµ, there
is an x ∈ JXµ and an i ∈ ω such that y = hρ(µ),Aµ(i, 〈x, pµ〉). By the Σ1-
elementarity of π̂′, we therefore have z = hγ,Aν∩JXγ (i, 〈π̂′(x), π̂′(pµ)〉). But
π̂′(pµ) = π̂(pµ) = pν and π̂′(x) ∈ JXλ .

In addition, sup(H ′ ∩ ν) = λ. That sup(H ′ ∩ ν) ≥ λ is clear. Conversely,
let x ∈ H ′ ∩ ν, i.e. x = hγ,Aν∩JXγ (i, 〈y, pν〉) for some i ∈ ω and a y ∈ JXλ .
Then x is uniquely determined by 〈I0

γ , Aν ∩ JXγ 〉 |= (∃z)ψi(z, x, 〈y, pν〉). But
such a z exists already in a H0

ν (α, τ) where H0
ν (α, τ) is the closure of Sα under

all hϕτ,X∩Sτ ,Aν∩Sτ . Since γ = sup(rng(π̂)) and λ = sup(rng(π)) we can pick
such τ ∈ rng(π̂) and α ∈ rng(π). Let τ̄ = π̂−1(τ) and ᾱ = π̂−1(α). Let ϑ =
sup(ν ∩H0

ν (α, τ)) and ϑ̄ = sup(µ∩H0
µ(ᾱ, τ̄)). Since ν is regular in Iρ(ν), ϑ < ν.

Analogously, ϑ̄ < µ. But of course π̂(ϑ̄) = ϑ. So x < ϑ = π̂(ϑ̄) < sup(π̂[µ]) = λ.
If ν ∈ S+, we may define H ′ as hγ,Aν∩JXγ [ω×(JXαν ×{pν})] and still conclude

that H = rng(π̂′) ⊆ H ′ and sup(H ′ ∩ ν) = λ by the definition of pν .
By lemma 19, π̂ : 〈I0

ρ , A〉 → 〈I0
ρ(ν), Aν〉 may be extended to a Σn(ν)−1-

elementary embedding π̃1 : Iβ → Iβ(ν) such that ρ is the (n(ν)−1)-th projectum
of Iβ and A is the (n(ν) − 1)-th standard code of it. Let π̂0 = π̂−1

1 ◦ π̂. Then
π̂0 : 〈I0

ρ(µ), Aµ〉 → 〈I
0
ρ , A〉 is Σ0-elementary, by the coherence of Lκ[X], and

cofinal. Thus it is Σ1-elementary by lemma 18. Applying again lemma 19, we
get a Σn(ν)-elementary π̃0 : Iβ(µ) → Iβ .

As in lemma 24, it suffices to prove β = β(λ), n(ν) = n(λ), ρ = ρ(λ),
A = Aλ, π̂−1

1 (pν) = pλ, π̂−1
1 (P ∗ν ) = P ∗λ , α∗ν = α∗λ and π̂−1

1 (α∗∗µν ) = α∗∗µλ . So, if
n(ν) > 1, we have to show that λ is Σn(ν)−1-regular over Iβ . If n(ν) = 1, then
Iβ |= (λ regular) suffices. In addition, λ must be Σn(ν)-singular over Iβ . For
regularity, consider π̃0 and, as in lemma 24, the least x ∈ λ proving the opposite
if such an x exists. This is again Σn-definable and therefore in rng(π̃0). But
then π̃−1

0 (x) had the same property in Iβ(µ). Contradiction!
Now, assume ν ∈ S+. Since Iν |= (αν is the largest cardinal), H ′ ∩ ν is

transitive. Thus H ′ ∩ ν = λ. Since π̂1 : 〈I0
ρ , A〉 → 〈I0

γ , A∩JXγ 〉 is Σ1-elementary
and λ ⊆ H ′ = rng(π̂1), we have λ = λ∩ hρ,A[ω× (JXαν ×{π̂

−1
1 (pν)})]. I.e. there

is a Σ1-map over 〈Iρ, A〉 from αν onto λ. But this is then Σn(ν)-definable over
Iβ and λ is Σn(ν)-singular over Iβ .

If ν /∈ S+, then the fact that λ is Σn(ν)-singular over Iβ , α∗ν = α∗λ and
π̂−1

1 (α∗∗µν ) = α∗∗µλ may be seen as in lemma 24 because π0(α∗µ) = α∗ν ∈ rng(π0).
That π̂−1

1 (pν) = pλ and π̂−1
1 (P ∗ν ) = P ∗λ can again be proved as in (5) in the

proof of lemma 19. 2

Lemma 26

Let ν ∈ E and Λ(ξ, ν) = {sup(hν,Bν [ω × (JXβ × {ξ})] ∩ ν) < ν | β ∈ Lim ∩ ν}.
Let η̄ < ν̄ and π : 〈I0

ν̄ , B〉 → 〈I0
ν , Bν〉 be Σ1-elementary. Then Λ(ξ̄, ν̄) ∩ η̄ ∈ JXν̄

and π(Λ(ξ̄, ν̄) ∩ η̄) = Λ(ξ, ν) ∩ π(η̄) where π(ξ̄) = ξ and π(η̄) = η.
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Proof:

(1) Let λ ∈ Λ(ξ, ν). Then Λ(ξ, λ) = Λ(ξ, ν) ∩ λ.
Let β0 be minimal such that

sup(hν,Bν [ω × (JXβ0
× {ξ})] ∩ ν) = λ.

Then, by lemma 25, for all β ≤ β0

hλ,Bλ [ω × (JXβ × {ξ})] = hν,Bν [ω × (JXβ × {ξ})]
and for all β0 ≤ β

hλ,Bλ [ω × (JXβ0
× {ξ})] ⊆ hλ,Bλ [ω × (JXβ × {ξ})]

⊆ hν,Bν [ω × (JXβ × {ξ})].
So Λ(ξ, λ) = Λ(ξ, ν) ∩ λ.
(2) Λ(ξ̄, ν̄) ∩ η̄ ∈ JXν̄
Let λ̄ := sup(Λ(ξ̄, ν̄)∩ η̄+ 1). Then, by (1), Λ(ξ̄, ν̄)∩ η̄+ 1 = Λ(ξ̄, λ̄)∪{λ̄}. But
Λ(ξ̄, λ̄) is definable over Iβ(λ̄). Since β(λ̄) < ν̄, we get Λ(ξ̄, ν̄) ∩ η̄ + 1 ∈ JXν̄ .

(3) Let sup(hν̄,Bν̄ [ω × (JX
β̄
× {ξ̄})]) < ν̄ and π(β̄) = β. Then

π(sup(hν̄,Bν̄ [ω × (JX
β̄
× {ξ̄})] ∩ ν̄)) = sup(hν,Bν [ω × (JXβ × {ξ})] ∩ ν).

Let λ̄ := sup(hν̄,Bν̄ [ω × (JX
β̄
× {ξ̄})] ∩ ν̄). Then 〈I0

ν̄ , Bν̄〉 |= ¬(∃λ̄ < θ)(∃i ∈
ω)(∃ξi < β̄)(θ = hν̄,Bν̄ (i, 〈ξi, ξ̄〉)). So 〈I0

ν , Bν〉 |= ¬(∃λ < θ)(∃i ∈ ω)(∃ξi <
β)(θ = hν,Bν (i, 〈ξi, ξ〉)) where π(λ̄) = λ. I.e. sup(hν,Bν [ω×(JXβ ×{ξ})]∩ν) ≤ λ.
But (π � JX

λ̄
) : 〈I0

λ̄
, Bλ̄〉 → 〈I0

λ, Bλ〉 is elementary. So, if 〈I0
λ̄
, Bλ̄〉 |= (∀η)(∃ξi ∈

β̄)(∃n ∈ ω)(η ≤ hλ̄,Bλ̄(n, 〈ξi, ξ̄〉)), then 〈I0
λ, Bλ〉 |= (∀η)(∃ξi ∈ β)(∃n ∈ ω)(η ≤

hλ,Bλ(n, 〈ξi, ξ〉)). But by lemma 25, hλ,Bλ [ω × (JXβ × {ξ})] ⊆ hν,Bν [ω × (JXβ ×
{ξ})]. I.e. it is indeed λ = sup(hν,Bν [ω × (JXβ × {ξ})] ∩ ν).

(4) π(Λ(ξ̄, ν̄) ∩ η̄) = Λ(ξ, ν) ∩ π(η̄)
For λ̄ ∈ Λ(ξ̄, ν̄),
π(Λ(ξ̄, ν̄) ∩ λ̄)

by (1)
= π(Λ(ξ̄, λ̄))

by Σ1-elementarity of π
= Λ(ξ, π(λ̄))

by (1) and (3)
= Λ(ξ, ν) ∩ π(λ̄).
So, if Λ(ξ̄, ν̄) is cofinal in ν̄, then we are finished. But if there exists λ̄ :=
max(Λ(ξ̄, ν̄)), then, by (1) and (2), Λ(ξ̄, ν̄) ∈ JXν̄ , and it suffices to show
π(Λ(ξ̄, ν̄)) = Λ(ξ, ν). To this end, let β̄ be maximal such that λ̄ = sup(hν̄,Bν̄ [ω×
(JX
β̄
× {ξ̄})] ∩ ν̄). I.e. hν̄,Bν̄ [ω × (JX

β̄+1
× {ξ̄})] is cofinal in ν̄. So, since

π[hν̄,Bν̄ [ω×(JX
β̄+1
×{ξ̄})]] ⊆ hν,Bν [ω×(JXβ+1×{ξ})] where π(β̄) = β, sup(rng(π)∩

ν) ≤ sup(hν,Bν [ω × (JXβ+1 × {ξ})] ∩ ν). Hence indeed π(Λ(ξ̄, ν̄)) = Λ(ξ, ν). 2

Lemma 27

Let ν ∈ E, H ≺1 〈I0
ν , Bν〉 and λ = sup(H∩ν). Let h : I0

λ̄
→ I0

λ be Σ1-elementary
and H ⊆ rng(h). Then λ ∈ E and h : 〈I0

λ̄
, Bλ̄〉 → 〈I0

λ, Bλ〉 is Σ1-elementary.

Proof: By lemma 25, Bλ = Bν ∩ JXλ . So it suffices, by lemma 24, to show
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rng(h) ≺1 〈I0
λ, Bλ〉. Let xi ∈ rng(h) and 〈I0

λ, Bλ〉 |= (∃z)ψ(z, xi) for a Σ0

formula ψ. Then we have to prove that there exists a z ∈ rng(h) such that
〈I0
λ, Bλ〉 |= ψ(z, xi). Since λ = sup(H ∩ ν), there is a η ∈ H ∩ Lim such that
〈I0
η , Bλ∩JXη 〉 |= (∃z)ψ(z, xi). And since H ≺1 〈I0

ν , Bν〉, we have 〈I0
η , Bλ∩JXη 〉 ∈

H ⊆ rng(h). So also

rng(h) |= (〈I0
η , Bλ ∩ JXη 〉 |= (∃z)ψ(z, xi))

because rng(h) ≺1 I
0
λ. Hence there is a z ∈ rng(h) such that 〈I0

η , Bλ ∩ JXη 〉 |=
ψ(z, xi). I.e. 〈I0

λ, Bλ〉 |= ψ(z, xi). 2

Lemma 28
Let f : ν̄ ⇒ ν, ν̄ @ τ̄ v µν̄ and f(τ̄) = τ . If τ̄ ∈ S+ ∪ Ŝ is independent, then
(f � JDατ̄ ) : 〈JDατ̄ , Dατ̄ ,Kτ̄ 〉 → 〈JDατ , Dατ ,Kτ 〉 is Σ1-elementary.
Proof: If τ̄ = µτ̄ < µν̄ , then the claim holds since | f |: Iµν̄ → Iµν is Σ1-
elementary. If µτ = µν and n(τ) = n(ν), then Pτ ⊆ Pν . I.e. τ is dependent
on ν. Thus τ̄ is not independent. So let µ := µτ = µν , n := n(τ) < n(ν) and
τ ∈ S+ ∪ Ŝ be independent. Then, by the definition of the parameters, ατ is
the n-th projectum of µ.
Let

γβ := crit(f(β,0,τ)) < ατ

for a β and
Hβ := the Σn-hull of β ∪ Pτ ∪ {α∗µ, τ} in Iµ.

I.e. Hβ = hnµ[ω × (JXβ × {α′µ, τ ′, P ′τ})] where
α′µ := minimal such that hnµ(i, α′µ) = α∗µ for an i ∈ ω
P ′τ := minimal such that hnµ(i, P ′τ ) = Pτ for an i ∈ ω
τ ′ := minimal such that hnµ(i, τ ′) = τ for an i ∈ ω (rsp. τ ′ := 0 for τ = µ).

For the standard parameters are in Pτ .
so Hβ is Σn-definable over Iµ with the parameters {β, τ, α∗µ} ∪ Pτ . Let

ρ := ατ = the n-th projectum of µ
A := the n-th standard code of µ
p := 〈α′µ, τ ′, P ′τ 〉.

So Hβ∩JXρ is Σ0-definable over 〈I0
ρ , A〉 with parameters β and p. (fine structure

theory!)
And γβ is defined by

γβ 6∈ Hβ and (∀δ ∈ γβ)(δ ∈ Hβ).

I.e. γβ is also Σ0-definable over 〈I0
ρ , A〉 with parameters β and p.

Let f0 := f(β,0,τ) for a β, τ̄0 := d(f0) < ατ and γ := crit(f0) < ατ . Let
f1 := f(β,γ,τ), τ̄1 := d(f1) < ατ and δ := crit(f1) < ατ . Then µτ̄1 is the
direct successor of µτ̄0 in Kτ . So f(β,γ,τ̄1) = idτ̄1 . Hence µη = µτ̄1 holds for the
minimal η ∈ S+ ∪ S0 such that γ < η v δ. Thus

µ′ ∈ K+
τ := Kτ − (Lim(Kτ ) ∪ {min(Kτ )})

⇔
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(∃β, γ, δ, η)(γ = γβ and δ = γ(γβ+1)

and η ∈ S+ ∪ S0 minimal such that γ < η v δ and µ′ = µη)
Therefore, K+

τ is Σ1-definable over 〈I0
ρ , A〉 with parameter p.

Now, consider 〈I0
ατ ,Kτ 〉 |= ϕ(x) where ϕ is a Σ1 formula. Then, since Kτ is

unbounded in ατ ,

〈I0
ατ ,Kτ 〉 |= ϕ(x)

⇔

(∃γ)(γ ∈ K+
τ and 〈I0

αγ ,Kγ〉 |= ϕ(x)).

So 〈I0
ατ ,Kτ 〉 |= ϕ(x) is Σ1 over 〈I0

ρ , A〉 with parameter p, rsp. Σn+1 over Iµ
with parameters α∗µ, τ, Pτ . But since n = n(τ) < n(ν), f is at least Σn+1-
elementary. In addition f(α∗τ̄ ) = α∗τ , f(τ̄) = τ , f(Pτ̄ ) = Pτ . So, for x ∈ rng(f),
〈I0
ατ̄ ,Kτ̄ 〉 |= ϕ(f−1(x)) holds iff 〈I0

ατ ,Kτ 〉 |= ϕ(x). 2

Theorem 29

M := 〈S,C,F, D〉 is a κ-standard morass.
Proof: Set

σ(ξ,ν)(i) = hn(ν)
ν (i, 〈ξ, α∗ν , pν〉).

Then D is uniquely determined by the axioms of standard morasses and
(1) Dν is uniformly definable over 〈JXν , X � ν,Xν〉
(2) Xν is uniformly definable over 〈JDν , Dν , D

ν〉.
(1) is clear. For (2), assume first that ν ∈ Ŝ and f(0,qν ,ν) = idν . Since the set
{i | σ(qν ,ν)(i) ∈ Xν} is Σn(ν)-definable over 〈JXν , X � ν,Xν〉 with the parameters
pν , α

∗
ν , qν , there is a j ∈ ω such that

σ(qν ,ν)(〈i, j〉) existiert⇔ σ(qν ,ν)(i) ∈ Xν .

Using this j, we have

Xν = {σ(qν ,ν)(i) | 〈i, j〉 ∈ dom(σ(qν ,ν))}.

So, in case that f(0,qν ,ν) = idν , there is the desired definition of Xν .

Let ν ∈ Ŝ, f(0,qν ,ν) : ν̄ ⇒ ν cofinal and f(q̄) = qν . Then f(0,q̄,ν̄) = idν̄ . And by
lemma 6 (b) of [Irr2], q̄ = qν̄ . So, if ν̄ = ν, then f(0,qν ,ν) = idν . Thus let ν̄ < ν.
Then f(0,qν ,ν)(x) = y is defined by: There is a ν̄ ≤ ν such that, for all r, s ∈ ω,

σ(qν̄ ,ν̄)(r) ≤ σ(qν̄ ,ν̄)(s)⇔ σ(qν ,ν)(r) ≤ σ(qν ,ν)(s)

holds and for all z ∈ JXν̄ there is an s ∈ ω such that

z = σ(qν̄ ,ν̄)(s)

and there is an s ∈ ω such that

σ(qν̄ ,ν̄)(s) = x⇔ σ(qν ,ν)(s) = y

.
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And since 〈JXν , Xν〉 is rudimentary closed,

Xν =
⋃
{f(Xν̄ ∩ η) | η < ν̄}.

Finally, if ν ∈ Ŝ and f(0,qν ,ν) is not cofinal in ν, then Cν is unbounded in ν and

Xν =
⋃
{Xλ | λ ∈ Cν}

by the coherence of Lκ[X].
So (2) holds. From this, (DF)+ follows.
By (1) and (2), JXν = JDν for all ν ∈ Lim, and for all H ⊆ JXν = JDν

H ≺1 〈JXν , X � ν〉 ⇔ H ≺1 〈JDν , Dν〉.

Now, we check the axioms.
(MP) and (MP)+

| f(0,ξ,ν) | is the uncollapse of hn[ν)
µν [ω × {ξ∗, ν∗, α∗ν , α∗∗µν , P

∗
ν }<ω] where ξ∗ is

minimal such that hn(ν)−1
µν (i, ξ∗) = ξ. Therefore, (MP) and (MP)+ hold.

(LP1)
holds by (2) above.
(LP2)
This is lemma 26.
(CP1) and (CP1)+

This follows from lemma 24 and the definition of σ(ξ,ν).
(CP2)
This is lemma 27.
(CP3) and (CP3)+

Let x ∈ JXν , i ∈ ω and y = hν,Bν (i, x). Since Cν is unbounded in ν, there is a
λ ∈ Cν such that x, y ∈ JXλ . By lemma 25, Bλ = Bν ∩ JXλ . So y = hλ,Bλ(i, x).
(DP1)
holds by the definition of µν .
(DF)
Let µ := µν , k := n(µ) and

π(n, β, ξ) := the uncollapse of hk+n
µ [ω × (JXβ × {α∗∗µ , p∗µ, ξ∗}<ω)]

where
ξ∗ := minimal such that hk+n−1

µ (i, ξ∗) = ξ for an i ∈ ω
p∗µ := minimal such that hk+n−1

µ (i, p∗µ) = pµ for some i ∈ ω
α∗∗µ := minimal such that hk+n−1

µ (i, α∗∗µ ) = α∗µ for some i ∈ ω.
Prove

| f1+n
(β,ξ,µ) |= π(n, β, ξ).

for all n ∈ ω by induction.
For n = 0, this holds by definition of f1

(β,ξ,µ) = f(β,ξ,µ).So assume that |
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fm(β,ξ,µ) |= π(m − 1, β, ξ) is already proved for all 1 ≤ m ≤ n. Then, by
definition of τ(m,µ),

ατ(m,µ) = the (k +m− 1)-th projectum of µ.
Let π(n, β, ξ) : Iµ̄ → Iµ. Then

(∗) ξ(m,µ) = π(n, β, ξ)ξ(m, µ̄) for all 1 ≤ m ≤ n:
Let π := π(n, β, ξ), α := π−1[ατ(m,µ) ∩ rng(π)], ρ := π(α)

r := minimal such that hk+m−2
µ (i, r) = pµ for an i ∈ ω

α′ := minimal such that hk+m−2
µ (i, α′) = α∗µ for an i ∈ ω

p := the (k +m− 1)-th parameter of µ
and π(r̄) = r, π(p̄) = p, π(ᾱ′) = α′. Let ξ̄ := ξ(m, µ̄). Then p̄ = hk+m−1

µ̄ (i, 〈x̄, ξ̄, r̄, ᾱ′〉)
for a x̄ ∈ JXα , because α = ατ(m,µ̄). So p = hk+m−1

µ (i, 〈x, ξ, r, α′〉) where
π(x̄) = x and π(ξ̄) = ξ. Thus hk+m−1

µ [ω × (JXατ(m,µ)
× {α′, r, ξ}<ω)] = JXµ

by definition of p. So ξ(m,µ) ≤ ξ. Assume ξ(m,µ) < ξ. Then Iµ |= (∃η <
ξ)(∃i ∈ ω)(∃x ∈ JXρ )(ξ = hk+m−1

µ (i, 〈x, η, r, α′〉). So Iµ̄ |= (∃η < ξ̄)(∃i ∈
ω)(∃x ∈ JXα )(ξ̄ = hk+m−1

µ̄ (i, 〈x, η, r̄, ᾱ′〉). But this contradicts the definition of
ξ̄ = ξ(m, µ̄).
So, for all 1 ≤ m ≤ n,

ξ(m,µ) ∈ rng(π(n, β, ξ)).

In addition, for all β < ατ(m,µ),

d(fm(β,ξ(m,µ),µ)) < ατ(m,µ).

Consider π := π(m − 1, β, ξ) =| fm(β,ξ,µ) | where ξ = ξ(m,µ). Then π : Iµ̄ → Iµ

is the uncollapse of hk+m−1
µ [ω × (β × {ξ, α′, r}<ω)] where

r := minimal such that hk+m−2
µ (i, r) = pµ for some i ∈ ω

α′ := minimal such that hk+m−2
µ (i, α′) = α∗µ for some i ∈ ω.

And hk+m−1
µ̄ [ω × (β × {ξ̄, ᾱ′, r̄}<ω)] = JXµ̄ where π(ξ̄) = ξ, π(ᾱ′) = α′ and

π(r̄) = r. Assume ατ(m,µ) ≤ µ̄ < µ. Then there were a function over Iµ̄ from
β < ατ(m,µ) onto ατ(m,µ). This contradicts the fact that ατ(m,µ) is a cardinal
in Iµ. If µ̄ = µ, then fm

(β,ξ̄,µ)
= idµ. This contadicts the minimality of τ(m,µ).

Since ξ(m,µ) ∈ rng(π(n, β, ξ)), we can prove

rng(π(n, β, ξ)) ∩ JDατ(m,µ)
≺1 〈JDατ(m,µ)

, Dατ(m,µ) ,K
m
µ 〉

for all 1 ≤ m ≤ n as in lemma 28.

We still must prove minimality.. Let f ⇒ µ and β ∪ {ξ} ⊆ rng(f) such that

rng(f) ∩ JDατ(m,µ)
≺1 〈JDατ(m,µ)

, Dατ(m,µ) ,K
m
µ 〉

ξ(m,µ) ∈ rng(f)

holds for all 1 ≤ m ≤ n. Show that f is Σk+n-elementary and that the first
standard parameters including the (k + n − 1)-th are in rng(f). That suffices
because π(n, β, ξ) is minimal.
Let pk+m

µ be the (k +m)-th standard parameter of µ.
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Prove, by induction on 0 ≤ m ≤ n,
f is Σk+m-elementary
p1
µ, . . . , p

k+m−1
µ ∈ rng(f).

For m = 0, this is clear because f ⇒ µ. So assume it to be proved for m < n
already. Then let α := ατ(m+1,µ) and ᾱ = f−1[α ∩ rng(f)]. Consider π :=
(f � JDᾱ ) : 〈JDᾱ , Dᾱ, K̄〉 → 〈JDα , Dα,K

m+1
µ 〉. Construct a Σk+m+1-elementary

extension π̃ of π. To do so, set

fβ = fm+1
(β,ξ(m+1,µ),µ)

µ(β) = d(fβ)

H =
⋃
{fβ [rng(π) ∩ JDµ(β)] | β < α}.

Then H ∩ JDα = rng(π). For, rng(π) ⊆ H ∩ JDα is clear because fβ � JDβ = id �
JDβ . So let y ∈ H ∩ JDα . I.e. y = fβ(x) for some x ∈ rng(π) and a β < α. Let
K+ = Km+1

µ − Lim(Km+1
µ ) and β(η) = sup{β | fm+1

(β,ξ(m+1,η),η) 6= idη}. Then

〈JDα , Dα,K
m+1
µ 〉 |= (∃y)(∃η ∈ K+)(y = fm+1

(β,ξ(m+1,η),η)(x) ∈ JDβ(η)).

Since rng(π) ≺1 〈JDα , Dα,K
m+1
µ 〉, y = fm+1

(β,ξ(m+1,η),η)(x) ∈ rng(π) if x ∈ rng(π)
for such an η. But since y = fm+1

(β,ξ(m+1,η),η)(x) ∈ JDβ(η), we get fβ(x) =
fm+1

(β,ξ(m+1,η),η)(x) ∈ rng(π).

Show H ≺k+m+1 Iµ. Since fm+1
(β,ξ,µ) = π(m,β, ξ), ατ(m+1,µ) is the (k + m)-th

projectum of µ. Like in (∗) above, we can show that the (k + m)-th standard
parameter pk+m

µ of µ is in rng(fβ). Now, let Iµ |= (∃x)ϕ(x, y, p1
µ, . . . , p

k+m
µ )

where ϕ is a Πk+m formula and y ∈ H ∩ JDα . Since fβ is Σk+m-elementary, the
following holds:

Iµ |= (∃x)ϕ(x, y, p1
µ, . . . , p

k+m
µ )⇔ (∃γ ∈ Km+1

µ )(∃x)(Iγ |= ϕ(x, y, p1
γ , . . . , p

k+m
γ )).

And since rng(π) ≺1 〈JDα , Dα,K
m+1
µ 〉,

rng(π) |= (∃γ ∈ Km+1
µ )(∃x)(Iγ |= ϕ(x, y, p1

γ , . . . , p
k+m
γ )).

Thus there is such an x in rng(π) and therefore in H.
Let π̃ be the uncollapse ofH. Then π̃ is Σk+m-elementary and, since p1

µ, . . . , p
k+m
µ ∈

rng(fβ) for all β < α, we have p1
µ, . . . , p

k+m
µ ∈ rng(π) = H. In addition, by

the induction hypothesis, f is Σk+m-elementary and p1
µ, . . . , p

k+m−1
µ ∈ rng(f).

Again as in (∗) above, we can show that pk+m
µ ∈ rng(f) using ξ(m + 1, µ) ∈

rng(f). But since π̃ and f are the same on the (k + m)-th projectum, we get
π̃ = f .
(SP) follows from | f1+n

(β,ξ,µ) |= π(n, β, ξ), because for all ν @ τ v µν such that
τ ∈ S+ (rsp. τ = ν) the following holds:

pτ ∈ rng(π(n, β, ξ))⇔ ξτ ∈ rng(π(n, β, ξ)).

This may again be shown as (∗).
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(DP2)
is like (∗) in (DF).
(DP3)
(a) is clear.
(b) was already proved with (DF)+.
2

Theorem 30

Let 〈Xν | ν ∈ SX〉 be such that
(1) L[X] |= SX = {β(ν) | ν singular}
(2) L[X] is amenable
(3) L[X] has condensation
(4) L[X] has coherence.

Then there is a sequence C = 〈Cν | ν ∈ Ŝ〉 such that
(1) L[C] = L[X]
(2) L[C] has condensation
(3) Cν is club in JCν w.r.t. the canonical well-ordering <ν of JCν
(4) otp(〈Cν , <ν〉) > ω ⇒ Cν ⊆ ν
(5) µ ∈ Lim(Cν) ⇒ Cµ = Cν ∩ µ,
(6) otp(Cν) < ν.

Proof: First, construct from L[X] a standard morass as in theorem 29. Then
construct a inner model L[C] from it as in [Irr2]. 2
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