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Introduction

Most, if not all, questions in infinite combinatorics can be posed in form of
questions about colorings like f: kK X A — pu.

i colors

It makes sense to ask such questions for cardinals s, A\, p as well as for
ordinals.

The most famous question about colorings is if they have homogeneous sets
of a certain size. This can be denoted in the famous arrow notation. We
write

K= (A

I

for the following statement: Every partition f : [k]" — u of [k]™ into u pieces
has a homogeneous set h of size A, i.e. f:[k]" — p is constant on [H|" for
some H C k with otp(h) = .

We write k — ()] for the negation of this statement.

The relation Kk — ()\)Z remains true if x is made larger or if A\, n, u are made
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6 1. INTRODUCTION

smaller.

If n =2, then f: [k]* — p is a coloring of a triangle with sides of length &
and pu colors.

same color

Theoerem 1.1 (Erdés-Rado)
(25 = (8)]
for all regular k > w and all v < k.

Proof: Let A = (2<%)" and let f : [\]> — v be a partition of [\]? into 7
pieces. For a € k, let F, : A — {a} — = be defined by F,(5) = F({a,5}).

\

We claim that there exists a set @ C A such that |A| = 2<% and such that for
every C' C A of otp(C) < k and every u € A — C there exists v € A — C such
that F, agrees with F, on C.

dom(F,)




same colors

_— here

and

| T

here

To prove the claim, we construct a sequence (A4; | i < k) such that a; C A;
for all i < j <k, A; C X and card(A;) = 25" for all i < k. Let Ay = U{4, |
j < i} for i € Lim. For the successor step assume that A; is given. Then
choose A; C A;yq such that card(A;11) = 2<% and for every C' C A; with
otp(C) < k and every u € A — C there exists v € A; ;1 — C such that F, and
F, agree on C. This is possible since there are at most (2<%)<% = 2<% many
subsetes C' C A; and (2<%)<F = 2<% many functions g : C' — ~. If we set
A =J{Ai |i < K}, then A is as wanted.

Now we choose an arbitrary a € A— A. We construct a sequence (z, | @ < k)
in A as follows. Let xy be arbitrary. If (x5 | § < a) is already defined, then
set C' = {z3 | B < a} and let x, be some v € A — C such that F), agrees
with F, on C. Let X = {z, | @« < k}. Consider G : F,, [ X : X — ~. Since
v < K, there exists X C H such that GG is constant on H. On the other hand
F({za,28}) = Foy(ra) = Fa(ra) = G(24) for all @ < f < k. Hence F is
constant on [H|%. O

For every cardinal x define exp, (k) by recursion:
expo(k) = K

TP (H) _ Qea:pn(n) )
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Theorem 1.2 (Erdés-Rado)

(expn(257))" — (k)"

for each cardinal k > w, for each ordinal v < ¢f(x) and all n € w.

Proof: By induction on n using the argument of the previous proof. See for
example the book by Hajnal and Hamburger. O

For colorings f : kK X A — p there is the so-called polarized partition relation

K u
(3)- ()
p
which holds iff for all f : Kk x A — p there are A C x and B C X such that
otp(A) = p and otp(B)v and f is constant on A x B.

(3)~(2),

for the negation of this statement.

We write

Theorem 1.3 (Baumgartner-Hajnal)

(G- )= (),

for all infinite cardinals x and all v < .

Proof: See Baumgartner, Hajnal: ”Polarized partition relations”, JSL 66
(2001), 811 - 821. O

Many questions can be understood as questions on colorings. An example
is: Does there exist (at least consistently) a family of functions f, : w3 — w
such that {{ < wy | fa(§) # f3(£)} is finite for all a # [ € we? Obviously,

the existence of such a family implies
(%)) 2
() (5.

Is it consistent that there exists a chain (X, | @ < ws) such that X, C wy,
Xg — X, is finite and X, — X3 has size w; for all § < a < wy?

Another example is:

As we will see, both consistency questions can be answered positively.



We will approach such questions by a method which we call ”higher-dimensional
forcing”. The basic idea is to generalize iterated forcing.

Let us recall the following basic facts about iterated forcing (see e.g. Kunen’s
textbook):

Let P be a forcing notion and Q be a P-name such that P I (Q is a forcing).

Let PxQ = {{p,¢) |l pePand Pl g4 € Q} Define a partial order on P * Q
by setting
(P1,d1) < (P2, ge) iff p1 < py and py IF 1 < go.
Define i : P - P« Q, p— (p,1g).
Theni:P—>PxQisa complete embedding, i.e.
(1) ¥p,p' € P (pf <p—i(p') <i(p))
(2) Vp,p' € P (p'Lp — i(p) Li(p)) ‘
B)VgeP«xQIpePVp eP (p <p—i(p) and q are compatible in Px Q).

In (3), we call p a reduction of ¢ to P.

Assume conversely that ¢ : P — Q is a complete embedding. Then there
exists a P-name B such that

Q~PxB.

A finite support iteration of length A € Lim is a system (o, | n < v < ) of
complete embeddings o, : P, — P, between partial orders which is

(1) commutative, i.e. 0,y = 0,00, foralln <v <y <A

(2) continuous, i.e. P, = J{o,,[P,] | n < v} for all v < X\ with v € Lim.
Suppose that (o, : P, — P, | n < v <)) is afinite support iteration. Then
there exist sequences (Q, | ¥ < A) and (B | v < \) such that:

(1) P, ~Q, for all v < A

(2) Q, is a forcing notion for all v < A and B, is a Q,-name such that
Q, IF (B, is a forcing).
(3) If v < A, then

Qu+1:{p:’/+1_)’/| p[@l/ A QI/H_p(V)GBV}

and
p<enmqiffplv<,qlvandp|vip)<q).
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(4) If v < X and v € Lim, then
Q={p:v->V]|Vy<vplyeQ,

and for all but finitely many v Q, I p(v) = 1,}

and
p<,qiffplv<,qlvyforally <vw.

This explains why (o, : P, — P, | n < v < ) is called a finite support
iteration. For p € Q,, the finite set

supp(p) = {7 < M| P, W p(v) = 1.}
is called the support of p.

Theorem 1.5

Assume that P is a partial order which satisfies the x-cc for a regular £ > w.

Assume moreover that Q is a P-name for a partial order such that P I (Q
satisfies the &-cc). Then P Q satisfies the s-cc.

Proof: See for example Kunen’s book. O

Theorem 1.6

Assume that (o, : P, — P, | n < v < )) is a finte support iteration of
length A € Lim such that every P, with v < A satisfies the x-cc for a regular
k > w. Then P, also satifies the s-cc.

Proof: Let (Q, | v < \), (B, | v < \) be like above. We prove that Q,
satisfies k-cc. Assume that card(A) = k, A C Q). We may assume by the
A-system lemma, that {supp(p) | p € A} forms a A-system with root A. Set
v = max(A). Since P, satisfies the k-cc, there are p # ¢ in A such that p [ vy
and ¢ [ v are compatible in Q.. Hence p, ¢ are compatible in Q,. O

As we will see, there is also a proof which avoids the use of (Q, | ¥ < \) and

(B, | v < \).

We will call such an iteration sometimes a ”linear” or ”one-dimensional”
iteration.

]P)l ]P),j ]Pw
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Higher-dimensional forcing generalizes this to higher dimensions:

YT

To do this we need an appropriate structure to replace the ordinal A, i.e. a
structure whose elements we can use to index the partial orders and along
which we can define things by induction. The appropriate structures are
simplified morasses. The ”two-dimensional” morass is called gap-1 morass.

Historical remarks and references

The study of partition relations was started by B. Dushnik and E. W. Miller,
who tried to generalize Ramsey’s theorem. P. Erdos and R. Rado began a
systematic exploration [10, 9, 7, 8] of the arrow relation x — ())};, which
was invented by Rado. The proof of the Erdos-Rado theorem which we
presented here is the proof which is given by T. Jech in his textbook [21].
We used it because it is purely combinatorial and avoids the use of elementary
substructures. An up to date overview of the field of partition relations is
given in the chapter [15] of A. Hajnal and J. Larson for the Handbook of Set

Theory. The reference for the Baumgartner-Hajnal theorem is [2].

The idea of iterated forcing was developed by S. Tennenbaum and R. M.
Solovay [37] and is nowadays an indispensable tool for every set theorist. A
modern approach is given in Kunen’s textbook [31]. Another approach to
non linear forcing iterations was developed by M. Groszek and T. Jech [13].
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Gap-1 morasses

A simplified (k, 1)-morass is a structure MM = ((, | @ < K), (Fap | @ < f <
k)) satisfying the following conditions:

(PO) (a) Bp=1,0, =r",Va<kr 0<6, <k.

(b) Tap is a set of order-preserving functions f : 6, — 6.
(P1) |§ap| < k forall a < 8 < k.

(P2) If « < B <, then Foy ={fog | f EFTsy,9 € Fap}-

f €Bas

(P3) If @ < K, then §o a1 = {id | b4, fo} where f, issuchthat f, [ 6 =id [ §
and f,(0) > 0, for some § < 0,,.

(P4) If @ < k is a limit ordinal, 81,32 < a and fi € Fp,as f2 € Fpsas then

13



14 2. GAP-1 MORASSES
there are a 31,02 < v < @, g € §yo and hy € §p,4, ho € Fp,, such that

Ji=gohyand fy =gohs.
(P5) For all @ > 0, 6, = J{f[0s] | B < @, f € Tsa}-

By (P3) and (P5) our picture looks in the successor step as follows:

a—+1

A1 7 Oat1

The picture for (P4) is the following:

0o
«
h e Boo
~
97
ha
B2
05,
hy B2
B
051
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Lemma 2.1

Let a < B <k, 11,72 < b4, f1,fo € Fap and f1(11) = fo(m2). Then 1, = 7
and f1 [ 7 = fo | 7.

= fifrn=fln

T = T2

Note, that this is clear for the case g = o + 1.

Proof by induction over 3. The base case of the induction is § = o + 1.
Then the claim follows immediately from (P3). So assume that § = v + 1.
Let, by (P2), fi = gio f! where f! € §oy, i € 5. Let 7/ = f/(7;). It follows
like in the base case that 71 = 75 and f] [ 7 = f3 | 72. So, by the induction
hypothesis, 71 = 75 and f| [ 71 = f} | 7o. Hence f1 [ 11 = fo | To.

Finally, let 8 € Lim. Then there exists by (P4) a <y < f and g € §5
such that f; = go f/, fl € Fay. So fi(11) = f5(12). Hence 1 = 7 and
fi I 71 = f5 I 7o by the induction hypothesis. Therefore f; [ 74 = fo [ 75. O

A simplified morass defines a tree (T, <):

Let T = {{c,7) | @ < K,y < 04}
For t = (o, v) € T set a(t) = a and v(t) = v.
Let (a,v) < (6, 7) iff @« < f and f(v) = 7 for some f € Fap.

If s:=(a,v)y < (B,7) =:t, f € Fap and f(v) =7, then f | (v(s)+ 1) does
not depend on f by lemma 3.1. So we may define 7y := f [ (v(s) + 1).
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wt

Lemma 2.2

The following hold:

(a) < is a tree, htr(t) = «a(t).

(b) If tg < t; < to, then m, = Ty, © Mgty -

(c) Let s <t and m = 7. If 7(v) = 7, ¢ = (a(s),V) and ' = (a(t), '),
then s’ <t and gy =7 [ (V +1).

Ts't!

\ Tst
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(d) Let v < k, v € Lim. Let t € T,. Then v(t) + 1= J{rng(ms) | s < t}.

\

s <t

Proof: (a) First, we prove that < is transitive. Let (a,v) < (8,7) be
witnessed by f € §ap and (3,7) < (v,n) by g € Fag. Set h=go f € Foy by
(P2). Then h(v) =n. So (o, v) < (v,n).

Now, let (o, v), (8, 7) < (v,n) and (o, v) # (B, 7).

F (v,m)

It follows from lemma 3.1 that o # (. Let w.lo.g. a < 8. Let (a,v) < (v,n)
be witnessed by f € Fay. By (P2) choose g € §3, and h € §ap such that
f =goh. Then (a,v) < (G,h(v)) < (v,n). However, h(v) = 7 by lemma
3.1. Hence (a,v) < (B, 7). This proves that < is a tree.

Finally, by (P2), for all t € T there is s < ¢ such that a(s) = fif 8 < a(t).
This shows the second claim.
(b) follows immediately from (a) and the definition.

(c) Let s < t be witnessed by f € Fap. Then s’ < t' is also witnessed by f
and mgy = 7 [ (/' 4 1) holds by definition.

(d) It suffices to prove C. Let v = v(t) and 7 < v. By (P5) choose oy, g < 7y
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and f; € §a, such that 7 € rng(f1) and v € rng(fy). By (P4) choose § such
that a1, < 8 < v and f] € Fap, g € §p, where f; = go f/. Then
T,v € rng(g). So let g(7) = 7 and g(r) = v. Hence T < P, since g is
order-preserving. Let s = (3,7). Then s <t and 7y (7) = 7. O

T t=(y,v)
vy
g
5 T v
bil
2 fa
aq

Lemma 2.3
Let o« < 8 < k. Then id | 0, € Fap-
Proof by induction on 3. The base case of the induction is § = «a + 1.
Then the claim is part of (P3). So assume that 5 = v+ 1. By the induction
hypothesis, id | 6, € Foy. By (P3), id | 6, € §,3. Hence id | 6, = (id |
6,) o (id | 6,) € Sap by (P2).

Finally, let 8 € Lim. Assume towards a contradiction that id [ 6, ¢ Fag-
Let f € §ap be such that sup(f[f,]) is minimal. Since f # id | 6,, there are
v < 7 € 03 such that v ¢ rng(f) and 7 € rng(f).

v < T 05
g |
7+1 ] /T /
Oa
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Let t = (6,7). By lemma 3.2 (d), there is an s < t such that v € rng(my).
Let s = (y 4+ 1,7) be the minimal such s. Let v = 7gy(7). Furthermore,

let f = fso fao fi where f3 € §y418, fo € Syqy41 and fi € Foy. Then
st = f3 [ T+ 1. Hence by the minimality of s, fo # id | 0., v < 0., and
T>0,.

v+1 T % O+1

Define g := f30 (id [ 6,) o f1. Then g € Fo, by (P2) and rng(g) C f3[0,] C
f3(7) = 7. Hence sup(f[0,]) was not minimal. Contradiction! O

Theorem 2.4
(a) If V.= L, then there is a simplified (k, 1)-morass for all regular x > w.

(b) If k is an uncountable regular cardinal such that £* is not inaccessible
in L, then there is a simplified (k, 1)-morass.

(c) For every regular k > w, there is a k-complete (i.e. every decreasing
sequence of length < x has a lower bound) forcing P satisfying «*-cc such
that P IF ( there is a simplified (x, 1)-morass).

Theorem 2.5

There exists a simplified (w, 1)-morass.

The consistency results of two-dimensional forcing can often be also obtained
by forcing constructions which are based on ordinal walks as described in
S. Todorcevic’s book ”"Walks on ordinals and their characteristics. Such
constructions assume O, instead of the existence of a simplified (wy,1)-
morass.

Theorem 2.6

Assume that there exists a simplified (w,1)-morass. Then O, holds, i.e.
there exists a sequence (C,, | & € Lim Nws) such that for all o € Lim Nws:

(i) Cy C a is club.
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(i) VG € Lim(C,) Cz = C, N .
(iii) If cf () < wy, then card(Cy,) < w;.

Proof: Let M = ((0, | @ < wy), (Fap | @ < F < wy)) be a simplified (wy, 1)-
morass. We construct a sequence (C,,, | v € we) by induction over the levels
of M which we enumerate by 5 < w; such that

(i) C,y C wr is unbounded in wv.
(ii) wpB € acc(Cuy) ={y |7 =sup(Cor NY)} = Cup = Cpp NwP
(ili) ef (wrv) <wy = card(C,, < w.

From (C,, | v € wy) we get a O, -sequence (Cow | v € wy) by setting
Cov = C,, Uacc(Cy,).

For 7g : v(s) + 1 — v(t) + 1 define
Ta:w(v(s) +1) mwv(t)+1), wa+nm— wrg(a)+n
for all n € w.

Base case: 3 =0

Since by (P0) 6y = 1, we only need to define Cy. Set Cy = 0.

]

induction




21

Successor case: = o+ 1

Hence C,,, is already defined for all v < 6. For 0, < v < 0 set t3,v). Let
s=<t,seT,and s = (av). Then we set C,, = T[C,z].

B=a+1

-7 t:<ﬁ7l/>

s={a,D)

It remains to define C,, for v = 0,. Let f € Fag, f # id, 6 = crit(f). In this
case let C' C wr be any unbounded set with C' C [wé, wb,) and otp(C) = w.

We set C,, = C s UC.

Limit case: 3 € Lim
For v < 63 set t = (B, v). Set

Cow = | {FalCuns)] | s < 1},

This is well-defined, because if v < 0,, for some o < 3, then wgy = id | v(s)+1
for all s < t.

s=<t
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We have to prove that (i) - (iii) from above hold. We do this by induction
over < w;. Moreover, we check

(iv): If s < t, then G, is an end-extension of 7y [Coys)]; .. Tt [Conis)] =
Cuv(ty Ny for some v € On.

Base case: 3 =0

Trivial.

Sucessor case:  =a + 1

Let f € §ap, [ #id, 6 = crit(f).
We have to prove (i) - (iv) for 0, < v < 0,41.

(i) If v = 0,, then C,,, is unbounded in wr by definition. Solet 8, < v < O441.
Let f(7) = v. By the induction hypothesis C,; is unbounded in wv. Hence

C.., = f[C.s] is unbounded in wv by (P3) and (P5).

(i) Assume v = 6, and wf € acc(C,,). Then either wf = wd or wf < wd. If
wB = wd, then by definition C, 3 = C,, Nw/F. So assume that w3 < wd. Then
Cor NwpB = Cus Nwp and wf € ace(Cls). So by the induction hypothesis
CovNwpB = Cus NwB = Cup.

Now, let 0, < v < 0441 and wf3 € acc(C,,). Then by (P3) either w3 € rng(f)
or wB = wé. Let f(#) = v. Then C,, = f[C.s]. If wB € rng(f), let
f(B) = B. By the induction hypothesis C,,; N w3 = C,5. Hence C,p =
f[C’wg] = f[Cs NwP] = flCus] Nwh = C.y N w3 where the first equality
holds because wf # wb,.

f=a+1
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Assume wf = wd. Let f(v) = v.

B=a+1

Then by definition C,, = f[C,s]. Hence by (P3) C.; Nwf = C., Nwp
and w@ € acc(C,p). By the induction hypothesis C,; Nwf = C,3. Hence
CovNwpB =Cup Nwi = Cyp.

(iii) f < wy. Hence (iii) is trivial by (P0).
(iv) Clear by the definition.

Limit case: 8 € Lim

Let v < 03, t = (,v). We have to prove (i) - (iv) for

Cwl/ - {ﬁ-st[Cwu(s)] | s < t}

For s < t set

Cs = 7[Co(s))-

If s < s < t, then by (iv) of the induction hypothesis C,, (s is an end-
extension of Ty [Cup(s)]. S0 Cy = Te[Cuu(sy] is an end-extension of Cy =
Tt Tss' [Cun(s)]]. Hence C, = [J{Cs | s < t} is an end-extension of Cy =
Tgt|Cun(sh). This proves (iv).
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Cs’ gend Cs t

Ts's [Cwu(s’)} Cend Cwu(s)

%s
s/

(i) Let n < wr. We have to show that there exists n < v € C,,. Since
v = |U{mst[v(s)] | s < t}, there exists s < ¢ such that n € rng(7s). By the
induction hypothesis C,,(s) is unbounded in wr(s).

Let () = n. Choose ¥ € C,,(s) such that 7 < 7. Set v = 74(7). Then
n<7vyEe& Tst [Cwu(s)] - Cwy-

(ii) Let wy € acc(C,y). Since v = J{mx[v(s)] | s < t}, we can pick s <t
such that wy € rng(7ga). By (iv), wy € acc(Ta[Cuns)]). Let mu(7) = 7.
Then w¥y € acc(Cuy(s)). So Cus = Cup(s) Nwy by the induction hypothesis.
Let ' = (B8,7) and s’ = (a(s),7). Then myy = 7y [ v(s) + 1. Hence
Cuy = Top[Cuy| = Tst|Cusy] = Tst|Cun(s) Nw] = T[Cop(s)] Nwy = Cup Nwy
where the first and last equality hold by (iv).
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r=)  t=(a)

Finally, we prove (iii). Suppose cf(r) < wy. If v < wy, then (iii) is clear. So
suppose that w; < v. Then C,, is defined in step # = w; in the recursion.
Hence t = (wy, v). By a previous lemma, wv = | {Ta[wr(s)] | s < t}. Since
cf(v) < wi, there is s < t such that 7[C,, ()] and therefore |C,,| < wy. O

Remark 2.7

If kK > wy, we only get the following weak O,:

There is a set of limit ordinals S C k¥, {o € kT | ¢f(a) = k} C S, and a
sequence (C, | @ € S) such that for all a € S:

(i) Cy is club in «

(ii) p € Lim(C,) = Csg=C,NPBand €S

(ili) cf(a) < kK = |Cyl < k.

Historical remarks and references

Morasses were introduced by R. Jensen in the early 1970’s to solve the cardi-
nal transfer problem of model theory in L (see e.g. Devlin [5]). For the proof
of the gap-2 transfer theorem a gap-1 morass is used. For higher-gap trans-
fer theorems Jensen has developed so-called higher-gap morasses [24]. In his
Ph.D. thesis, the author generalized these to gaps of arbitrary size [19, 18, 16].
The theory of morasses is very far developed and very well examined. In par-
ticular it is known how to construct morasses in L [5, 12, 19, 16] and how to
force them [38, 39].

Simplified morasses were introduced by D. Velleman [44]. He also proved
that the existence of a classical (k,1)-morass is equivalent to the existence
of a simplified (x,1)-morass for all regular x > w [44]. Along simplified
morasses, morass constructions can be carried out very easily compared to
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classical morasses. A good example for a construction along a simplified gap-
1 morass is the proof of theorem 2.6. This result was proved by D. Velleman
in [48]. He, however, does not directly use the morass, but he uses a forc-
ing axiom which is equivalent to the existence of a simplified morass. An
example for a direct construction along a simplified morass can be found in
Devlin’s book [5].

The definition of a simplified morass and lemmas 2.1 and 2.2 are from Velle-
man [44]. A direct proof of theorem 2.4 (a) was given by D. Donder [6]. A
rather indirect way to prove theorem 2.4 (a) and (c) is taken by D. Velleman
in [44]. Theorem 2.4 (b) was observed by Velleman in [45]. Theorem 2.5 was
shown by Velleman [47]. Remark 2.7 was observed by L. Stanley [39].
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Two-dimensional forcing which
preserves GCH

Let 9 be a simplified (k, 1)-morass. We want to define a generalization of a
F'S iteration which is not indexed along an ordinal but along 9. One way of
doing this is the following definition:

We say that ((P,, | n < kT), (05 | s < t),{ea | @ < K)) is a FS system along
M if the following conditions hold:

(FS1) (P, | n < k™) is a sequence of partial orders such that P, C, P, if
n <vand Py =J{P, | n < A} for A € Lim.

(FS2) (04 | s < t) is a commutative system of injective embeddings oy :
Py(s)+1 — Pu)41 such that if ¢ is a limit point in <, then

]P)V(t)+1 = U{Ust[]P)V(s)+1] | s < t}

(FS?)) €o - Pga+1 - Pga.

(FS4) Let s <t and m = 7. f n(v) =7/, ' = (a(s),V') and ¢/ = (a(t), 1),
then oy : Pyoy41 — P41 extends oy 1 Py — Pryy.

Hence for f € §ap, we may define oy = J{os | s = (o, v),t = (B, f(v))}.

27
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P, C t 0
3 I N
Ost - Pl/(s)Jrl - ]Pu(t)l
P,
a+1
b s
v
(%
g
(%

(FS5) If mgy = id | v(s) + 1, then oy = id [ Py 41-

(FS6)(a) If @ < K, then Py, is completely contained in Py
that e, (p) is a reduction of p € Py

in such a way

a+1

a+l°

b) If a < k, then o, := 0 : Py, — Py ., is a complete embedding such
fa @ a+1 g

that e, (p) is a reduction of p € Py

a+1"
(FS7)(a) If @ < k and p € Py, then e,(p) = p.
(b) If @ < k and p € rng(c,), then e,(p) = o, (p).

To simplify notation, set P := P,+.
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Recall: ¢ : P — Q is called complete embedding, if
(1) Vp,p' eP (¢ <p—o(pf) <olp))

(2) Vp,p' € P (p'Lp — o(p) La(p))
B)VgeQIpePVp eP (¥ <p—o() g

q is called reduction.

If only (1) and (2) hold, we say that o is an embedding. If id [ P: P — Q is
an embedding, we also write P C | Q.

Unlike in the case of FS iterations, it is unclear how a generic extension with
respect to P+ can be viewed as being obtained by successive extensions.
This would justify to call a F'S system along 9 a F'S iteration along 9.

We want to prove that P satisfies ccc if all P, satisfy ccc for v < k. To do
this, we want to apply an argument like in the introduction. For this we need
something like the support of a condition p € P, i.e. we need to represent
p € P as a function p* : K — V such that p*(a) € Py, for all o < k.

To define such a function p* from p € P set recursively
Po=Pp
vn(p) = man{n | pn € Py}
tn(p) = (K, vn(p))
p™(a) = 0, (py) if s € Ty, 5 < t,(p) and p, € rng(oy).

Note that, since < is atree, s is uniquely determined by « and ¢, (p). Hence
we really define a function. Set

Tn(p) = min(dom(p™)).

By (FS2), 7,(p) is a successor ordinal or 0. Hence, if v,(p) # 0, we may
define

anFl = e'Y7L(p)_1(p(n) (Vn(p)))
If ,(p) = 0, we let p,,+1 be undefined.

Finally, set p* = U{p" | [yu(p), 1n-1(p)[ | n € w} where y_1(p) = k.
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Y (p) _.#_—;;7 s (o) 2ta(r)

Yo(p) — 1

71(p)

7(p) — 1

ew(p)—l(U;J (p1)) =: p2

Note: If n > 0 and a € [v,.(p), Ya—1(p)], then p*(a) = o;'(pn) where =
<’Yn(p) - ]-7 Vn<p)>7

N

= (K, vo(p))

= (1, 11(p))

t1(p) to(p)
Y0 (p) 3

Yo(p) — 1 vi(p)

a t = (y(p) — 1, ni(p))
p*(@)

because p*(or) = p™ () = 05" (pn) = (0 © 07) " (pn) = 0si(pn) with s < ¢
and s € T, where the first two equalities are just the definitions of p* and p™.
For the third equality note that ¢ < ¢ since id | 0, € Fap for all @ < § < k.
So the equality follows from the commutativity of (oy | s < t). The last
equality holds by (FS5).

It follows from the previous observation that (7,(p) | n € w) is decreasing.
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So the recursive definition above breaks down at some point, i.e. v,(p) =0
for some n € w.

For p € P define its support by

supp(p) = {m(p) | n € w}.

Hence supp(p) is finite.

Lemma 3.1

If p*(«) and ¢*(«v) are compatible for « = maz(supp(p) N supp(q)), then p
and ¢ are compatible.

Proof: Suppose that p and ¢ are incompatible. Without loss of generality
let v:=min{n|p e Py} <min{n|qe Py} = 7. Set s = (k,v) and
t = (k, 7). Let t' <t be minimal such that v € rng(my;) and p,q € rng(oy).
By (FS2), t' € Ty, 41 for some a < k. Let mpy (V') = vand s’ = (a+1,0/). Let

5, t be the direct predecessors of s’ and t' in <. Set p’' = o,(p), ¢ = 0,,}(q).

ap+1

/

Then p' = p*(ao + 1), ¢ = q*(ap + 1) by the definition of p*. Moreover, p
and ¢’ are not compatible, because if r < p/, ¢/, then oy (r) < p,q by (FS2).
Now, we consider several cases.
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Case 1: V' ¢ rng(mg)

ag +1 * i 7

-
Qp . 9(1

~|

Then 75y = id | v(5) + 1 and 059y = id | Py41 by the minimality of
ap. Moreover, p := p’ and ¢ := e,(¢') are not compatible, because if r <
P, eq(q), then thereisu < r, ¢, p’ by (FS6)(a). There is no difference between
compatibility in Py, ,, and in P41 by (FS1). Finally, note that p = p*(ao)
and ¢ = ¢*(ap) by the definition of p* and (FS7).

Case 2: V' € rng(my) and gy = id [ v(5) + 1

@0 + 1 '}_///1 Ga()+1

N ——— N

7
Qo . eao

Then 75 # id | v(t) + 1 by the minimality of ag and p :=p’ and G := e, (q)
are not compatible (like in case 1). However, p = p*(ap) and ¢ = ¢*(ap) by
the definition of p* and (FS7).

Case 3 V' € rng(mg), mse # id [ v(8) + 1 and o + 1 € supp(p)

Voot
ap +1 17 7 O i1
T 0
Qo v : O
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Then 7 # id | v(f) + 1 by the minimality of «g. Set p := o, (p') and
G = €a(q). Then p and g are not compatible, because if r < p, g, then there
is u < 0,(r),q,p by (FS6)(b). However, p = p*(ap) and § = ¢*(ap) by the
definition of p* and (FS7).

Case 4: V' € rng(my), mse #id [ v(8) + 1 and ag + 1 ¢ supp(q)

Then 7 # id | v(t) + 1. Set ¢ := 0,,(¢') and p = e,(p'). Then g and
p are not compatible, because if r < p,q, then there is u < 0,(r),p’, ¢ by
(FS6)(b).

Case 5: ag + 1 € supp(p) N supp(q)

Then ap+1 = maz(supp(p) Nsupp(q)), since ap+1 > max(supp(q)) because
by definition ¢ € rng(o,:) where r < ¢t and r € Tau(supp(q)). However,
P =p"(ao+1), ¢ =q (g + 1) are not compatible. Contradiction.

So in case 5 we are finished. If we are in cases 1 - 4, we define recursively
a1 from p*(a,,) and ¢*(cy,) in the same way as we defined «p from p and
q. Like in the previous proof that (v,(p) | n € w) is decreasing, we see that
(v, | n € w) is decreasing. Hence the recursion breaks off, we end up in case
5 and get the desired contradiction. O

Theorem 3.2

Let p, k > w be cardinals, x regular. Let (P, | n < k%), (0g | s < 1), (€q |
a < K)) be a FS system along a (k, 1)-morass 9. Assume that all P, with
1 < k satisfy the pu-cc. Then P+ also does.

Proof: Let A C P,+ be a set of size u. Assume by the A-system lemma that
{supp(p) | p € A} forms a A-system with root A. Set a = maz(A). Then
Py, satisfies the p-cc by the hypothesis of the lemma. So there are p #¢q € A
such that p*(«) and ¢*(«) are compatible. Hence p and ¢ are compatible by
the previous lemma. O

pL €A pe €A psEA. ..

= maz(A)
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As an application, we will construct along an (wq, 1)-morass a ccc forcing P
of size w; which adds an we-Suslin tree. An wo-Suslin tree is a tree of size (or
equivalently height) ws which has neither a chain nor an antichain of size ws.

The natural forcing to do this with finite conditions is Tennenbaum’s forcing
(see S. Tennenbaum:”Souslin’s problem”, PNAS 59 (1968), 60 - 63).

Let P(#) be the set of all finite trees p = (z,, <,), z, C 6, such that o < 3
it o <, B.
Set p < ¢ iff 2, D x4 and <,=<, Nz’

For § = wy, P(#) is Tennenbaum’s forcing to add an w;-Suslin tree which
satisfies ccc.

However, if 6 > w; + 1, then
A={peP@) |z, ={o,a+1l,a+2,w,w1 +1},a <wr,

a<,a+l<,w,a<,a+2<,wi+1la+1l<Z,a+2}

is an antichain of size w;.

u)1+1
w1
. o +2
o +1 I~
~
o a+2
a+1 \/

So P(#) does not satisfy the ccc and in order to thin it out so that it obtains
cce, we have to restrict the possible values of the infima in our trees.

Let 7 : 6 — 6 be a order-preserving map. Then 7 : 6 — 6 induces maps
7:60* — 0? and 7 : P(0) — P(f) in the obvious way:

6% — 9% (a, B) — (m(a), 7(5))
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m:P(0) = P(0), (xp, <p) = (7[z,], 7[<)]).
If p € P(6), then set

7 [p] = (77 [z, Nrng(m)], 7 <, Nrng(m)]).
It is easily seen that then w1[p] € P(f).
We define our F'S system by induction over 3 < w.
Base Case: =0
Then we need to define only P;. Set Py := P(1).

Successor Case: =a+1

We first define Py,. To do so, let

P/@@ = {<'Tp U 'Tfa(P% <p U <fa(p)> ’ p 6 ]P)ea}
U{(zp Uzg, ), te(<p U <ga(p) U mindy € [ba, b [l ¥ <paw) fa(m)})})

| p € Py, € 2, < faln)}

In this definition, tc(z) denotes the transitive closure of the binary relation
x.
Well, what does this definition say? Obviously there are two types of condi-
tions in P, .

s
Type 1: Let p € P¢9ﬁ. Then a condition of type 1 is just the union of the
two possible copies of p to the next level.

p Jfa(p)
B=a+1 — 9a+1

id fa

It is easy to see that p U f,(p) is a tree again.

Type 2: Let p € Pwﬂ. Then a condition of type 1 is just the union of the
two possible copies of p to the next level plus one additional edge which
connects one vertex 7 with the minimal element in f,(p) below f,(n) which
was moved by f,.
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f=a+1

fa(n)

n new edge

This complicated definition is necessary to get a tree again!

Now, define
Po, :={p € P(6p) | r < p for some r € Py }.

For t € Ts set Pyyy1 = P(v(t) +1) NPy, and Py = U{P, | n < A} for
A€ Lim. Let 04 : Pyoy41 = Pogyr1, 0 — 7st(p)-

We still need to define e,. If p € rng(c,), then set e, (p) = o' (p). If p € Py,
then set eq(p) = p. Finally, if p ¢ rng(ca) U Py, then pick an r € Py such
that r < p and set e, (p) = [ 1[r].

Limit Case: 8 € Lim

Then everything is already uniquely determined by (FS1) and (FS2). That
is, for t € T set Puy11 = U{0st[Pu(s)+1] | s <t} and Py = (H{P, | n < A}
for A € Lim. Let 0y : Py()41 — Puy41, 0 — Tst(p).

A

- JPI/(—Sg)*F—l' cee- ————————————

Pogsyar
- Pu(s1—)+—1 —————————————

\

s<t
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Lemma 3.3
P satisfies the ccc.

Proof: Since all P(#) for § < w; have size < w, it suffices by theorem 4.2 to
show that (P, | n < k™), (0g | s <t),{eq | @ < K)) is a FS system along the
morass.

Most conditions of the definition of a FS system are clear. We only prove
(FS6). Let p € Py, and 3 = a+ 1. We may assume that p € IP”%, because by
definition Py, is dense in Py . We have to prove that o, [p] is a reduction of p
with respect to o, and id [ Py,. To do so for o,, let ¢ < o '[p] =: s. We have
to find an 7 < p, 04(q) such that r € Py,. We consider two cases. If p is of
the form (x, Uz, (s), <s U <s.(s)), then define r := (x, U zy, (), <p U <f.(q))-
It is easily seen that this is an extension of p and o,(q).

a+l 6a+1

id fo

If p is of the form

<x8 U xfa(8)7tc<<8 U <fa(8) U{<77am’m{’7 € [0a76a+1[‘ Y S]004(8) fa<77)}>}>

for some 7 € xg, then define r as

(g Uy, (), te(<q U <poiq) UL, min{y € [Ou, Oaiall v <poiq) fa(MD}).

It is not difficult to see that r is an extension of p and 0,(q).
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a+1

fa(n)

Let us sketch the proof of r < p. Assume «, € z,. Then we must show
that o <, & o <, B.

Case 1: a, 3 € x4

Then o <, B & a <, B & a <; B & o <, B where the middle eqivalence
holds because ¢ < s. For the first and last eqivalence note that <,[ 8, =<;
and <,.[ 0, =<,.

Case 2: o, 3 € xy, (s

Then a <, B & a <, & a <, & a <, # where the middle equivalence
holds because ¢ < s. For the first and last equivalence note that by the
definition of the additional edge in r (or p respectively) « and 3 are connected
if and only if they were before adding the edge.

Case 3: a € Ty — Tf,(5), B € Ty (s) — Ts
Assume first that o <, 8. Then o <, 1 and vy <y, (s) 8 where

Yo = min{y € (0o, bas1[| v <sus) fa(n)}-

Hence oo <4 n and 71 <y, (q) 8 where

y = min{n € [0a, Oui1]| v <fulq) fa(m)}

However, n <, v, by definition. So o <, 3.

Now, assume that o £, 3. Then a £, n or vy £y,(s) 8. Hence a £, 1 or
M £ia(q) B- So a £, 3 by definition.

Case 4: B € Ty (s) — Ts, & € Ty — Ty (s)

Then both a <, 8 and a <, 3 are false, because the tree orders are supposed
to be compatible with the order of the ordinals.
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This proves that o [p] is a reduction of p with respect to o,. The proof that
o [p] is a reduction of p with respect to id | Py, is completely analogous. O

Lemma 3.4

If % (p) = 2(a), p"(0(p) = ¢"((a), ™ : p
exists an r < p, ¢ such that (o, 7(«)) €<,.

~

q and o < 7(a), then there

C%)

Y(p) = 0(q)

Proof: Let p and ¢ be as in the hypothesis of the lemma. We prove by
induction over n € [yy(p),w:] that if 7 : p*(n) = ¢*(n) (where p*(wy) = p)
and o < w(«), then there exists an r < p*(n), ¢*(n) such that (a, 7(a)) €<,.

Base Case: 1= v(p) = 7(q)
In this case the claim is trivial because p*(n) = ¢*(n).

Successor Case: n = v+ 1

[

Let w: p*(n) = ¢"(n) and o < m(a). Let oy - p*(7) = p(n), 04 : ¢"(7) = ¢" ()
and o,(a,) = a, o,(a,) = m(a).

By the induction hypothesis, there is an s < p*(7y), ¢*(7y) such that (a,, a,) €<,
or (a,,ay) €<s. Let & := maz{a,,a,}. Now, we consider two cases. If
a < fy(@), we define r as

(zs U Ifa(8)7t0(<s U <fa(s) u{{a, min{B € [0, 0,41[| 8 < fals) @)
If @ = f,(&), then we define

ri= (T Uz (5), <s U <fo(s))-
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p*(n) q"(n)
n=~y+1 ¢ 0,
b ! "'4 e
Tp "'Uq
a, a,
Y 0
() () !

min{ 3 € [ewew—l“ B <fy(s) f’Y(d)}

A

In both cases, it is easily seen that r < p*(n), ¢*(n) and (o, 7(a)) €<,.

Limit Case: n € Lim

By (FS1) and (FS2), there are a t € T;, and an s < t such that p*(n), ¢*(n) €
rng(os).
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Let s € T, og4(@) = o and 0y 0T = mo ogy. Then oyu(p*(n)) = p*(v)
and og(q*(n)) = ¢*(v). Moreover, by the induction hypothesis, there is a
7 < p*(7),q*(y) such that (&, 7(a)) €<;. Set r := o4(7). Then r is as
desired. O

Lemma 3.5

If Y0(p) = 10(a), P"(%(p)) = ¢*(10(a)), ™ : p = ¢ and a < 7(a), then there
exists an r < p, ¢ such that (o, 7(«®)) €<,.
Proof: Basically the proof proceeds like the previous proof. However, in the

Successor case, we always use common extensions of the form <$p U l’fﬂ/(p), <p
U <f’y(p)>‘ O

Theorem 3.6

If there is a simplified (wy, 1)-morass, then there is a ccc forcing that adds
an wse-Suslin tree.

Proof: Let G be a P-generic filter. Let T' = [J{p | p € G}. Well-known
arguments show that 7" is a tree. We prove that 7" has neither an antichain
nor a chain of size w,. First, assume towards a contradiction that there is an
antichain of size wy. Then there is a p € P and names f, A such that

plF (A is an antichain and f : @, — A is a bijection).
Since P satisfies ccc, it preserves cardinals. Hence p IF ( fiw, — Aisa

bijection). Let (o | i € wo) and (p; | i € wy) be such that p; < p for all
i € wyand p; Ik (&; = &y A\ @y € &p,). Since card(P,,) = wy, there is ¢ € P,
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n € wy and a subset X C wy of size wy such that vo(p;) = 1 and p;f (10 (pi)) = ¢
for all # € X. Hence all p; with ¢ € X are isomorphic. Since z, is finite,
there are i # j € X such that 7(«;) = o and «; < «; where 7 : p; = p;. By
a previous lemma, there exists an r < p;, p; such that (a;, ;) €<,. Hence
r IF (o and «; are comparable). That contradicts the definition of p. The
proof that there is no chain of size wy works the same using the respective
lemma. O

This proves that there can be a ccc forcing which adds an ws-Suslin tree.
However, we claimed that there can be such a forcing of size wy.

To this end, we define a forcing Q and an embedding ¢ : P — Q such
that i[P] = Q. In particular, i[[P] is dense in Q. It is well-known (see e.g.
Kunen’s book), that in this case P ~ @, i.e. they generate the same generoc
extensions. Hence also Q adds an wo-Suslin tree. Moreover, it also satisfies
cce, because if A C Q was an antichain of size wy, also i7'[A] C P was one.
Set

Q= {p" I supp(p) | p € P}.
For p,q € Q set p < ¢ iff dom(q) C dom(p) and p(n) < q(n) for all n €
dom(q).
Define

i:P—Q, prp" | supp(p).

Theorem 3.7

Assume that

(i) Vp,g e PVaer:p<pePy., —eip) <ealq)

(i) Vp<qePVs<t:perng(os) — q€rng(os).

Then 7 : P — Q is an embedding.

Proof: We must prove

(1) Yp,g e P (p<q—i(p) <i(g))

(2) V¥p,q € P (pLq < i(p)Li(q)).

To show (1), let p < ¢ € P. Let 7 = min{n | p € Pyy1} and t = (k, 7).
Let ¢ < t be minimal such that p € rng(oy;). By (FS2), t' € T, 1, for
some 7y € k. By definition of supp(p), 7o + 1 € supp(p). By (FS4) and (ii),
p*(n) = thtl(p) and ¢*(n) = crg_tl(q) where £ € T, for all 49 < n < k. Hence
n ¢ supp(p) U supp(q) for all v +1 <n < k.
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Y +1 DS
q

Moreover, by (FS2), p := p*(v0 + 1) < ¢* (v + 1) =: ¢. By (FS7), p*(7) =
eo(p) and ¢*(v) = ea(q). Hence by (i), p*(70) < ¢*(7). Now, we re-
peat this argument finitely many times and get that supp(q) C supp(p) and
p*(n) < ¢"(n) for all n € supp(q).

It remains to prove (2). However, if p || ¢, then there is an r < p,q.
Hence i(r) < i(p),i(q) by (1), i.e. i(p) || i(g). So assume that plg.

Let A = supp(p) N supp(q). Then by a previous lemma, p*(«)Lg*(a) for
a = max(A). Hence i(p)Li(q). O

Theorem 3.8

If there exists a simplified (wq, 1)-morass, then there is a ccc forcing of size
w; which adds an we-Suslin tree.

Proof: It is easily seen that the forcing P which we constructed previously
satisfies (i) and (ii) of the previous theorem. Moreover, Q has size w;. Hence
Q is as wanted. O

Assume that (P, | n < ws), (g | s < 1), (eq | @ <wy)) is a FS system along
a simplified (wy,1)-morass, P := P,, and all P, are countable for n < w;.
Then we saw that under ery natural circumstances ¢ : P — Q is a dense
embedding and Q has size wy. Therefore, by the following lemma ,which is

quoted from Kunen’s textbook, our approach will usually produce forcings
which preserve GCH.



44 3. TWO-DIMENSIONAL FORCING WHICH PRESERVES GCH

Lemma

Assume that P satisfies ccc and |[P| = 5 > w. Let A > w be a cardinal and
0 = k*. Then P IF 2* < 4.

This is sometimes useful. On the other hand, many statements in whose con-
sistency we are interested imply ~GCH. In the next section, we will discuss
how we can change our approach to force such statements.

Historical remarks and references

It is a well known result by S. Shelah that adding a Cohen real also adds a
Suslin tree. For a proof see for example theorem 28.12 in Jech’s book [21].
A related result was proved by L. Stanley and S. Shelah [36]: If 25 = kT
and there is a (kT 1)-morass, then there exists a k*-Suslin tree. A similar
result was proved by D. Velleman [45].

It is also possible to use S. Todorcevic’s method of walks on ordinals [42]
(theorem 7.5.1) to construct a ccc forcing which adds an we-Suslin tree. This
forcing, however, has size wy. On the other hand, it suffices to assume 0O, .

Tennenbaum'’s forcing was introduced in [40].

Most of the material in this section appeared first in the paper Irrgang [20].
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Two-dimensional forcing which
destroys GCH

We will now construct along a simplified gap-1 morass forcings which destroy

GCH.

Our first example is a ccc forcing which adds a function f : [wo]
that {€ < a | f(§, o) = f(& 5)} is finite for all @ < f < ws.

2 5 w such

{E<alf(§a)=f(&0)}

%)

Such a forcing was constructed by S. Todorcevic using only the assumption
that O,, holds. He uses ordinal walks and A-functions.

By the Erdos-Rado Theorem a function f like above implies ~GC H. Because
if CH holds, then wy — (w;)2. Hence if f : [wy]* — w is given, then it has a
homogeneous set H of size w;. Therefore, if we take o to be the w-th and (8
the (w+ 1)-st one, f(§,a) = f(&,5) forall £ € HNa.

45
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g

same color

The existence of such a function is interesting for the partition calculus. If
an f.[wy]? — w exists such that {£ < a | f(&,a) = f(& 3)} is finite for all

a < B < ws, then
w W
(2)~().

To see this, define g : wy X wy — w by
gla, B) =2f(e, f) if a < 8

g(o, B) =2f(a, B) + 1if a > 8
g<a7ﬁ> =0 lf@:ﬁ
Now, let A, B C wy, otp(A) = otp(B) = w Set 7 = sup(A), § = sup(B).

If v = 6, we can pick aj,ap € A and § € B such that oy < 8 < as.

Hence g<05175> = Qf(alaﬁ) 7& 2f<ﬁaa2) +1 = g(a27ﬁ)v ie. A X B is not
homogeneous.
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If v < 9, then we can find (1,32 € B such that a < f1,0; for all a €

A. HOWGVGI’, g(Oéaﬂl) = 2f(0[,ﬁ1> and g(aaﬁQ) = Zf(aaﬁQ)' So {Oé €A |
g(a, B1) = g(a, Ba)} is finite, i.e. A X B is not homogeneous.

finite
T

formeato L o
Rl D e A B

The case v > 4 is entirely symmetric to the case v < ¢§. It is open if

w3 w
()~ (2).
is consistent. Another related partition relation is the following. We write
k — (o : 7)2 for: Every partition f : [k]* — 7 has a homogeneous set
[A;B] = {{a,8} | « € A, € B} where a < 3 for all « € A, § € B,
card(A) = o and card(B) = T; i.e. f is constant on [A; B].

As usual, we write x /> (0 : 7)2 for the negation of this statement.



48 4. TWO-DIMENSIONAL FORCING WHICH DESTROYS GCH

We used the consistency of wy — (w : 2)2 to prove that

()7 ),

is consistent. This will not work for the consistency of

w3 w
()7 ).
because w3 /4 (w : 2)? is inconsistent, i.e. w3 — (w : 2)2 is a theorem of
ZFC:

Suppose that f : [w3]* — w was a witness for w3 /4 (w:2)2. Let A C [wa, ws]
be a set of size wy. For a # [ € A let B(a, 3) be the set {y € we | f(a,7y) =

f(B,7)}
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Since f witnesses wy 4 (w : 2)2, every B(a, 3) is countable. Hence B =

U{B(a,B) | @ # § € A} has size < w;. Now, consider v € wy — B. Then
by the definition of B, f(«,~) # f(5,7) for all o # 3 € A. However, this is
impossible because rng(s) C w while |A| = w.

By the way,
-CH = wy 7L> (3)2}

In fact, 2% 4 (3)2 for all x. To see this, let S = {0,1}" and F : [S] — & be
defined by F'({f,g}) = the least @ < x such that f(a) # g(«). If f,g,h are
distinct, it is impossible to have F({f,g}) = F({f,h}) = F({g,h}).

However, same colors here

are allowed

Now, we are going to force an f : [wp]? — w such that {¢ < a | f(§,a) =
f(&,B)} is finite for all & < 8 < ws.

The natural forcing to add such an f would be as follows: For a,b C ws let
[a,b] := {{a,7) |« € a,B € b,y <a}. Set

P = {<apvbp»fp> | Ip: [apabp] — W, ap, by, C wy finite}.

Note, that a,,b, are not determined by f,. For example, if a, = {a} and
by, Cla, wel, then [a,, by] = () indepedently of what b, exactly is. Nevertheless,
we will abuse notation and just write p : [a,,b,] — w for the condition
(@p, by, fp)-

We set p < ¢ iff a;, C a,, b, C b, and p(a,y) # p(fF,7) for all a < § € a, and
all v € b, — b, with v < a..
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1o

77 7y new

two different values

Like Tennenbaum’s forcing on ws, P does not satisfy ccc: Let a # 3 €
[wl,wg[. Then

A={pe Pla,={a, b}, b, ={7},7v €wi,ple,7) = p(3,7)}

is an antichain of size w;.
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We want to thin out P to a forcing P which satisfies ccc. More precisely, we
want to thin it out so that for every A C w»

]P’AZ:{])G]P)|(II,§A}

satisfies ccc. Moreover, we want that there remain enough conditions that a
proof like the following still works: Let A be an uncountable set of conditions.
Let w.l.o.g. {a, | p € A} be a A-system with root A. Consider {p [ (Axws) |
p € A}. Then there are p # g € A such that p [ (A X wy) and ¢ | (A X wo)
are compatible. Hence, p and ¢ are compatible, too.

From now on, let M = ((0, | & < wi), (Tap | @ < § < wyq)) be a simplified
(w1, 1)-morass.

In the recursive definition of IP, we use the morass tree s < t and the mappings
7o to map conditions. Let more generally 7 : § — 6 be any order-preserving
map. Then 7 : § — 6 induces maps 7 : 0> — 6% and 7: 0> x w — 62 x w in
the obvious way:

76— 62, (7,0) = (m(7y), m(5))

TP xw— 0 xw, (z,€— (1(x)€).

We define a system ((P,, | n < ws), (05 | s < t)) by induction on the levels of
((On | & <wy), (Fap | @ < B < wy)) which we enumerate by 3 < w;.

Base Case: 3 =0

Then we need only to define P;.
Let Py :={p € P|apb, C1}.
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Successor Case: f=a+ 1

We first define IPy,. Let it be the set of all p € P such that:

(1) ay.by, € 6

(2) fa'lp), (id 1 0.) 7 [p] € P,

(B)p 1 ((0s\6a) x (0 \9)) is injective

where f, and 0 are like in (P3) in the definition of a simplified gap-1 morass.

05
p 1 ((05\0a) x (6a\9))
injective
| 77 "
7%%

5
0=a+ 3
1) O, %

“ 5 0,

For v < 0,, P, is already defined. For 6, < v < g set P, = {p € Py, |
ap, b, C v}

Set

st Puioyr1 = Puyg1, P = ma[p).

Limit Case: 8 € Lim

For t € T set P41 = U{ost[Puis)+1) | s < t} and Py = U{P, | n < A} for
A € Lim where 04 : Pyioy41 — Pugy+1, 0 — ma[p].

We set P:=P,,.
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Lemma 4.1
Forpe P,pePiff for all @« <w; and all f € Fot10,

TP T ((Basr \ o) X (B4 \ 6a)) is injective

where 4, is the critical point of f, which is like in (P3) of the definition of a
gap-1 morass.

Proof:
pl .fa+1[(00+1 \ 9«1) X (Ha \ 50)]
P . 0[1‘
is injective
0 p { ((9a+2 \ 0(x+l) X (eu+l \ 5u+l))
pl ((9a+] \90) ™ (90 \ (;a)) ZZ// is injective
1s Injective 5 7%7//7//’ 5
N\
a+2 : : : 9&+2
id
fa+1
a+1
ot a1

a+1 V Oat1
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We prove by induction on v < w; the following
Claim: p € Py iffp € P, a, C0,,b, C0,andforalla < yandall f € Fot1,

TP T ((Basr \ ) X (84 \ Ja)) is injective.

Base case: v =10

Then there is nothing to prove.

Successor case: v =+ 1

Assume first that p € Py . Then, by (2) in the successor step of the definition
of P,,, f~*[p], (id | 83)~'[p] € Pg,. Now assume f € Foy1,, and a < 3. Then
f=fsof or f=f"for some f' € Foi14 by (P2) and (P3).

d

I3

a—+1

So by the induction hypothesis

FUPL T ((Bagr \ o) X (84 \ 64)) is injective

for all f € a1, and all @ < 3. Moreover, if a = (3 then the identity is the
only f € §a+t1,~- In this case

TP T ((Bagr \ o) X (04 \ 0a)) is injective

by (3) in the successor case of the definition of PP.
Now suppose that

TP T ((Bagr \ o) X (04 \ 0a)) is injective

for all @« < v and all f € Fat1,. We have to prove that (2) and (3) in
the successor step of the definition of P hold. (3) obviously holds by the
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assumption because the identity is the only function in §,, = §s41,. For
(2), it suffices by the induction hypothesis to show that

f_l[fﬁ_l[p]] [ ((Oas1 \ Oa) X (04 \ 0q)) is injective
and
FHEA T 05)7 P T ((Basr \ 0a) X (0a \ da)) is injective
for all f € §a41,3. This, however, holds by (P2) and the assumption.

Limit case: v € Lim
Assume first that p € Py,. Let a« <y and f € §ay1,,. We have to prove that

TP T ((Bagr \ o) X (04 )\ 0a)) is injective.

By the limit step of the definition of P, there are 5 < v, g € §p, and p € Py,
such that p = g[p]. By (P4) there are o, 5 < 0 <7, ¢’ € Fps, ' € Fas and
h € §sy such that g = hog and f = ho f'. Let p’ := ¢'[p]. Then, by the
induction hypothesis

()P T ((Basr \ Ba) X (84 \ 64)) is injective.

p 0,

¥ {
h h
p/
8
g/
h/
g
D
B 05
;

o 0,

ol

However, (f)7Yp'] = (f)"'[h~tp]] = f~! and we are done.

Now assume that

FUPL T ((Bagr \ Ba) X (B4 \ 64)) is injective
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for all @ < v and all f € Fat1,,. We have to prove that p € Py, ie. that
there exists ¢ € T, and s < ¢ such that p = 7my[p] for some p € P, (541
To find such ¢, s < ¢ and p, let v < 6, be such that a,,b, C v. Since
v = {my[v(s)] | s <t} and p : [ay, by] — w is finite, there exist s < ¢ such
that ap, b, C rng(ms). Let p = mq[p].

p t 6,

Y 1 |
=g | vfs)+1
P g
B ‘ 05
s
f
a+1
9a+1

We need to prove that p € Py, where 8 = a(s). By the induction hypothesis
it suffices to prove that

F7HB] T ((Basr \ 0a) X (B4 \ 8a)) is injective

for all « < B and all f € §ar1,3- So let f € Far15 and g € §Fp, such that
st = g | v(s) + 1. Then

7P T ((Bagr \ 0a) X (80 \ 0a)) = F g7 DI T ((Basr \ Ba) X (B \ 0a)) =
=(go f)_l[p] [ ((Oas1 \ Oa) X (00 \ da))

which is injective by our assumption. O
For p € P set

D, = {a<w | 3f € Fatrm f_l[p] [ ((Oar1 \ 0a) X (04 \ 0a)) # 0}

Lemma 4.2
D, is finite for all p € P.
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Proof: For every (v,€) € dom(p) set s(7,€) := (w1,7) and let (v, &) be the
minimal ¢ < s(v, &) such that £ € rng(m 4(y,¢)). Then

(*)  Dyp:={a|3(,§) € dom(p) t(v,§) € Ta}.

Hence D, is finite because dom(p) is finite.

y
T £
I
I
I
I
I
I
I
I
1
w1 }
§ =S
t
a+ 1 — \ ea+1
3 ¥
o

Let us prove (x).
Let (7,&) € dom(p), s := s(7,&), t :=t(y,€) and t € Toyq1. Let my(§) = 7,

7 (§) = & Then 5 € Ooq1 \ b, and € € 6, \ 0, by the minimality of ¢ < s.
Moreover, my = f | v(s) 4+ 1 for some f € Fat1,4,. Hence a € D,

Now, assume conversely that (v,£) € dom(p) and f(7) = v, f(§) = & for

some f € Fat1u such that ¥ € 01 \ Oa, € € 04\ 0. Then ¢ < s and

mst(§) = § where t == (a + 1,%), s := (w1,7). Moreover, there is no t' < ¢
such that £ € rng(my,). Hence t < s is minimal. O
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Let A C wy be finite and Pao = {p € P | a, C A}. We want to represent every
p € Pa as a function p* : [ag, w1 [— P such p*(a) € Py, for all ap < a < wy:
Set

n = max(A)

t = (w1,n)

so =min{s <t | A Crng(mg)}
ap = a(so)

p*(a) = 7' [p] for ap < a < wy where s € T,,, s < t

supp(p) =
{a+1]ay<a<w,p(at1)#p(a),p (a+1)# fulp™ ()]} U{ao}

where f, is like in (P3) of the definition of a simplified gap-1 morass.
Note, that by supp(p) is finite, since p is finite.

p(a+1) T ((Oar1 \ o) x (00 \ 0a)) # 0

P
w1
n=t
s <t
pa+1) a+1
-
atl a+1 € supp(p) @
A A 50

T L

(&%) = A
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Lemma 4.3

If p,q € Pa and p*(«), ¢*(«) are compatible in Py, for o = max(supp(p) N
supp(q)), then p and ¢ are compatible in Px.

Proof: Suppose p and ¢ are like in the lemma, but incompatible. Let
(supp(p) U supp(q)) — a = {v < ... < m}. We prove by induction on
1 < i < n, that p*(;) and ¢*(;) are incompatible for all 1 < ¢ < n. Since
Yn = «, this yields the desired contradiction.

Note first, that p*(7;) and ¢*(71) are incompatible because otherwise p =
Tt [p*(1)] and ¢ = 7wy [q*(71)] were incompatible (for s € T,,, s < t).

If v = «, we are done. So assume that v; # «. Then either p*(y;) =
Tss[p* (71 — 1)] or ¢"(71) = 7ss[¢" (71 — 1)] where s < s < t, 5 € T,,_; and
s € T,,. We assume in the following that p*(v1) = ms[p* (71 — 1)]. Mutatis
mutandis, the other case works the same.
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()

@l

Claim:  p*(71 — 1) and ¢*(y1 — 1) are incompatible in Py _,

Assume not. Then there is 7 < p*(y1 — 1),¢*(y1 — 1) in Py, _, such that
Ar = Qpr(y,—1) U Qe (4, —1). Let 77 1= mg,[7].

T (nm—1)

pim—1)

n= 1 ‘ § 97]—1

Then r' < 7g[p*(n — 1)] = p*(n) and v < 7wslg*(n — )] = ¢"(n) |
rng(mss)?. In the following we will construct an r < p*(v1),¢*(71) which

)
yields the contradiction we were looking for. Let a, := ag+(y,) U ap(y,) and

by := bgr(yy) U bpr(sy). For (€,0) € [ay,by] set 7(§,0) := 1'(€,0). For (&,0)
[ag*(11)5 bgr ()] set (€, 0) == ¢*(71)(&,0). Then r(&, d) is defined for all (£, §)

S
S
lar, by except for those in [ayx(y,) — Gg(y1), bgr(71) — TG (T55)].
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still undefined

)

!

v

P (m)

%!

For those choose any values such that (3) in the successor step of the recursive
definition of P holds. Then obviously » € Py . It remains to prove r <
p*(71),¢*(71). That is, we must show that

(1) r(e, &) #r(B,€) for all @ < B € ape(4,) and all § € b, — bye(,,) With £ < «
(2) r(a, &) #r(B,€) for all @ < B € age(y,) and all § € by — by+(,,) With £ < a.

The first statement is clear if £ € b,» because ' < p*(7y1). So assume & ¢ b,..
Then & ¢ rng(mss). Now, we use (P3) in the definition a simplified gap-1
morass. From (P3) and the fact that £ ¢ rng(ms,), o € ape(y,) and £ < av it
follows that s, # id | v(5) + 1. Moreover, if 0 is the critical point of f,,_;
like in (P3), then ¢ € 0.,,_1\d and o, 5 € 6,,\0.,_1. Hence the first statement
holds because of (3) in the successor step of the recursive definition of P.

The proof of the second statement is mutatis mutandis the same. This proves
the claim.

It follows from the claim, that p*(vs) and ¢*(72) are incompatible. Hence we
can prove the lemma by repeating this argument inductively finitely many
times. O

Lemma 4.4
P satisfies ccc.

Proof: Let A C P be a set of size w;. By the A-lemma, we may assume that
{D, | p € A} forms a A-system with root D. We may moreover assume that
foralla € D, all f € Fat10, and all p,ge A

FHPL T ((Bas \ Oa) x (B \da)) C 7 a] T ((Basr \ o) X (0a \ 0a))
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or

f_l[p] [ ((Gas+1\ ba) X (0a\ da)) 2 f_l[Q] [ ((Oas1\ ba) X (00 \ 0a))-

To see this assume that X = {a, | p € A} C w, forms a A-system with root
Dy and Y ={b, | p € A} C wy forms a A-system with root Dy. Fix o € D.
By thinning out A, we can ensure that whenever a # b € X, n € a — b,
veb—a,a<f,t={(w,0),s <t s€T,, then n & rng(mg). Moreover,
we can guarantee that whenever a 2 b €Y, n€a—-0b, v eb—a, a <f,
t = (wi, ), s <t, s € Tyoy1, then n & rng(my). This suffices.

By the A-system lemma, we may assume that {a, | p € A} C wy forms a
A-system with root A;. Consider A" := {p [ (A; X wy) | p € A}. By the
A-system lemma we may also assume that {supp(p) | p € A’} C w; forms a
A-system with root Ay. Let o« = maz(Ay). Since Py, is countable, there are
@1 # g2 € A’ such that ¢f(a) = ¢3(«). Hence ¢ # ¢ € A’ are compatible
by a previous lemma. Assume that ¢; = pj [ As and ¢o = p5 [ Ay with

p1,p2 € A.

a=pl (AI X w2)
P

P2

G@=p2 | (Al X w2)

We can define p < pq,po as follows: a, = ap, Uay,, b, = by, Ub,,, p |
(ap, X by) =p1, p | (ap, X by,) = pa. We still need to define p on [a,, b,] —
((ap, X by,) U (ap, X by,)). We do this in such a way that the new values are
different from the old ones and distinct among each other. Then p < pq, ps.
We prove p < p;. The other statement is showed similar. Let @ < 8 € a,
and { € b, — by,,. We have to show that p(a,&) # p(8,8). If a,f € a,
then it holds because ¢1 = p [ (A; x by, ) and ¢ = p [ (Ay X by,) are
compatible. If either o or 3 is in a,,, while the other one is not, then
(o, &) # p(B, €) because the new values differ from the old ones. If a, 8 € ay,,
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then p(a, &) # p(5,&) because the new values differ among each other.

It remains to prove that p € IP. For this, we show that for all o < w; and all
f 6 Sa—&-l,wl
TP T ((Bagr \ o) X (04 \ 0a)) is injective,

ie. pl fl(Oas1 \0a) X (0 \ 04)] is injective.
Assume that a € D. Then by our second thinning-out

b1 f f[(9a+1 \ Ha) X (Ha \ 5a)] C p2 f f[(0a+1 \ 9a> X (Qa \ 5a)]

D1l fl(Oat1 \ Oa) X (6o \ 6a)] D p2 [ fl(Oas1 \ Oa) X (60 \ 6a)]

and hence
([aw bp] - (am X by, )) N Fl(Oaza \ o) X (0a \ 0a)] =

= [ap, by] — ((ap, X bp,) U (ap, X bp,)) N fl(Oas1\ o) X (04 \ 6a)]

([ap, by] = (ap, X bp,)) N fl(Oas1 \ 0a) X (00 \ 6a)] =
= [ap, by] = ((ap, X bpy) U (ap, X by,)) N fl(Bas \ ba) X (6o \ da)]-

Assume w.l.o.g. the first. Let (aq, 51) # (a2, B2) € [ap, bp] N fl(Oat1 \ Oa) X
(04 \ 6a)]. Then either (o, B1), (aa, Ba2) € (ap, X by,) or at least one of both is
not. In the first case p(aq, 51) # p(ae, B2) because p < p; and p; € P. In the
second case it is clear by our definition of p on [a,, b,]|—((a,, X b,, )U(ap, Xby, )).

Finally assume that a ¢ D. Then by our first thinning-out
b1 f f[(eoc-‘rl \ 004) X (004 \ 504)] = @

or  pal fl(fa+1 \ba) X (6o \ da)] = 0.
Hence
(lap: bp] = (ap, X bp,)) O fl(Oat1 \ Oa) X (Ba \ 6a)] =
= [ap, bp] — ((ap, X by,) U (ap, X bp,)) N f(Oar1 \ Oa) X (Ba \ 6a)]

or

([apv bp] - (apz X bpz)) N fl(Oas1 \ 0a) X (00 \ 0a)] =
= [azn bp] - ((am X bpl) U (apz X bpz)) N fl(Oas1 \ Oa) X (0 \ a)]-
From this the injectivity follows like in the case aw € D. O
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Lemma 4.5

Let p € P and «,3 € wy. Then there exists ¢ < p such that @ € a, and
B € by.

Proof: Let a; = a, U {a}, b, =b, U{F} and ¢q | (a, X b,) = p. We have to
define g(a, ) on [ay, by — ((ap, X by, ) U (a,, X by,)). We do this in such a way
that the new values are different from the old ones and distinct among each
other. Then obviously ¢ < p and

TP T ((Bagr \ o) X (04 \ 0a)) is injective
for all @ < w;y and all f € i1, Hence also ¢ € P. O

Theorem 4.6

Assume that there exists a simplified (wy, 1)-morass. Then there is a ccc
forcing which forces wy /4 (w : 2)2.

Proof: Of course, P is the forcing which we defined above. Let G be P-generic
and set f =|J{p | p € G}. Since P satisfies ccc, cardinals are preserved. By
the previous lemma, f is defined on all of [wy]?. By the definition of <, f is
as wanted. O

There are other applications of two-dimensional forcing which also require
destroying GCH.

Let us commence with considering strongly almost disjoint subsets of wy.
Assume that (X, | & < ws) is a family of infinite subsets X, C w; such that
| X0 N X5 <w for all & # [ € wy. Then there exists a family (X, | o < wo)
of infinite subsets X/, C w; such that | X N Xj| < w and |X/| = w for all
a # [ € wy. To see this, let X! C X, be any subset of X, with size w.

(090) a

For every o € wy set s, = sup(X,). Since s, € w; for all a € wy, there exists
D C wy with |D| = we and s € wy such that s, = s for all @« € D. Hence
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Xo # Xgand X, C sforall a # 3 € D. However, s is countable. Therefore,
2% Z wo.

In the following, we will use two-dimensional forcing to add a chain (X, |
a € wg) such that X, C wy, X3 — X, is finite and X, — X has size w;
for all # < a < wy. The consistency of such a chain was first proved by P.
Koszmider using ordinal walks / A-functions.

W1 X@ g* Xa

Note, that if we set Y, = X,11 — X, then (Y, | @ < wy) forms a family of
uncountable subsets of wy such that |Y, NYj3| < w for all & # 3 € wy. Hence
by the argument above, if such a family exists, C’H cannot hold.

The natural forcing would be

P:={p:a,xb,—2]|a,xb, Cwyxw finite }

where we set p < ¢ iff p C p and

Va; < ag € a, V0 € b, — b, plas, ) < plag, 5).
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0 1
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Obviously, we will set X, = { € w; | p(a1, 5) = 1 for some p € G} where G
is P-generic. However, like the forcing for ws /4 (w : 2)%, P does not satisfy
cce. If a < B € wy, then the set

A={pePla,={a,B},b,={7},7 €wi,pla,y) =1,p(8,7) =0}

is an antichain of size w;.

1
0
\\\\ z//
RS SEEEbbbbhie L
- 4——4> ———————— - Yo
B = o
a B

To thin P out to a forcing P we proceed like before: Let I = ((0, | a <
wi), (Tap | @ < B <wi)) be a simplified (wq, 1)-morass. We define ((P, | n <
wa), (s | s < t)) by induction on the levels of 9 which we enumerate by
B < wy.

Base case: 3 =0
Then we only need to define P;. Set Py :={pe P|a, xb, C1x1}.

Successor case: = a + 1.

We first define Py,. Let it be the set of all p € P such that
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(].)(lebpg&,gXﬁ
(2) f7Mp] T (B x @) €Pp,, p | (00 X @) € Py, where f, is like in (P3) in the
definition of a simplified gap-1 morass. For its extension to P see below.

(3) If & € by, then p(v,a) < p(d,a) for all v < § € ay, ie.

p | (05 x {a}) is monotone.

05

{a} Pe— here p is monotone

P B=aU{a}

f=a+1

«

For all v < 0,, P, is already defined. For 6, < v < 03 set
P, :={p € Py, | a, x b, Cvxpj}

Set
o5t Pyt — Poys1, P Talp)

For the definition of 74[p], note that any map 7 : 6 — 6 induces maps
T:0Xw —60xw and 7: (0 Xwy) x2— (0 xw)x2by:

T xw —0xw, (7,0~ (n(y),0)

T:(@xw)x2— (@ xw)x2, (z,€r (7(x),€).
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Limit case: 3 € Lim

For t € T set P41 = U{ost[Puio)+1] | s < t} and Py = U{P, | n < A} for
A € Lim where

Ost - PV(S)+1 - IP)I/(t)+17 pr Wst[p]'

Like before we can prove the following

Lemma 4.7

Forpe P,pePiff for all @« <w; and all f € Fot10,

FP) T (Bagr x {a}) is monotone.

If we follow the consistency proof for ws /4 (w : 2)2, we finally get:

Theorem 4.8

Assume that there exists a simplified (wq, 1)-morass. Then there exists a ccc
forcing which adds a chain (X, | @ < wq) such that X, C wy, Xg — X, is
finite and X, — X3 is uncountable for all < o < ws.

Closely related to wy # (w : 2)2 are families of wy-many strongly almost

disjoint functions f, : w; — w. Of course, our proof of the consistency of
wy A (w : 2)2 also shows that there can be consistently wy-many strongly
almost disjoint functions f, : w; — w. To force it directly, consider

P=:{p:a,xb, = w|a, xb, Cwy X w; finite}
with p < ¢ iff ¢ C p and

Vag < as € a, VB €b,—b, pla, ) # plas, B).
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different colors

wy \‘\ .

We replace (3) in the recursive definition of P in our last example by
(3)" If a € by, then p(y, @) # p(d, a) for all ¥ < § € a,, ie.

p | (05 x {a}) is injective.
Then we get:

Theorem 4.9

Assume that there exists a simplified (w;, 1)-morass. Then there is a ccc
forcing which adds a family (f, | @ < ws) of functions f, : w; — w such that

{€ <wi | fa(&) = f3(§)} is finite for all & < 5 < ws.

It is known that there can be families {f, : w1 — w | @ € K} of arbitrary pre-
scribed size k such that {€ < wy | fo(§) = f3(£)} is finite for all a < § < k.
This was proved by J. Zapletal using proper forcing and Todorcevic’s method
of models as side conditions.

Note, that such a family of functions is a family of we-many uncountable sub-
sets of w; X w such that the intersection of two distinct members is always
finite. Hence by our above observations 2¥ > ws.

Our final application of two-dimensional forcing is to add an (w, ws)-superatomic
Boolean algebra.

Let us recall some facts about Boolean algebras which can be found in the
Handbook of Boolean Algebras:

B = (B,+,-,—,0,1) is a Boolean algebra if the following axioms hold for all
x,y,2 € B:

B r+y+z)=@+y) +2z2-(y-2)=(r-y) 2
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B2)z+y=y+z,x-y=y-x

)
B3 z+(z-y) =z 2 (r+y) =2
Bd)z-(y+z)=z-y+x-2z,2+(y-2)=(x+y) (v+2)
(B5) 2+ (—z) =1,z (—x) = 0.
A homomorphism f : B; — B, is a map such that for all x,y € By:
f(0)=0, f(1) =
fla+y)=f@)+ fy), f@-y) = flx)- f(y)
f(=z) = —f(z).

Define a relation on B by setting
<y if z+y=y.

This is a partial order.
An a € B is called atom if 0 < a but there isno z € A with 0 < z < a.
B is called atomic if for each 0 < z there exists an atom a < .

If B is atomic and At(B) is its set of atoms, then
flz)={a€ At(B) | a <z}

is an injective homomorphism f : B — P(At(B)).
Hence every atomic Boolean algebra can be represented as an algebra of sets.
This is possible in general.

A filter F on B is a subset F' C B such that for all u,v € B:

)0 F, 1€ F

(i)ue F,veF=u-veEF

(i) u,v e Bue F,u<v=v€F.

A filter F' on B is an ultrafilter if for all u € B either u € F or —u € F.
Set S(B) := {F C B | F is an ultrafilter on B}.

Then the map
f:B—P(SB)), — {FeSB)|xeF}

is an injective homomorphism.

Note, that f[B] is a family of subsets of S(B) which is closed under finite
intersections. Hence it is the base of a unique topology. S(B) equipped with
this topology is called the Stone space of B.

An ideal I on B is a subset I C B such that for all u,v € B:
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Hoel,1¢1
()uvel,vel ==ut+vel
(i) u,veB,uel,v<u=vel

Let I be an ideal on B. Consider the equivalence relation
u~v iff wAvi=u-(—v)+ov-(—u)el

on B. Let [u] ={veB|u~wv}. Then B/I := {[u] | u € B} with
0=1[0], 1 =[]

[u] + [v] = [u+ ], [u] - [v] = [u- 0]

—[u] =[]

forms a Boolean algebra. B/I is called a quotient algebra.

A Boolean algebra is called superatomic if every quotient algebra is atomic.

Assume that B is superatomic. Then we can define recursively:

Iy = {0}

I,+1 = the ideal generated by I, U {u € B | [u] is an atom in B/, }
Iy ={l.| o < A} for A\ € Lim.

Finally, I, = B for some «. Conversely, if I, = B for some «, then B is
superatomic. The recursive definition of I, corresponds to recursively taking
Cantor-Bendixon derivatives in the Stone space.

The least « such that At(B/I,) is finite, or equivalently that I,,; = B, is
called the height ht(B) of B. For every o < ht(B) the width wd,(B) is
the cardinality of At(B/I,). We say that B is a (k, a)-superatomic Boolean
algebra (sBa), if ht(B) = o and wdg(B) < & for all § < a.

It was shown by Baumgartner and Shelah that there can be consistently an
(w,ws)-sBa B. Note that in this case 2 > wy because by definition B has
size wy but only w-many atoms.

We obtain an (w,ws)-sBa by reversing the recursive definition of the I,,.
Assume that there is a partial order <p on wy such that:

(a) Vo,f€Ewy a<pf—a<f

(b) If o, B € [wy,wy + w|, then o and  are incompatible.

(c) If o, B are compatible in <p, then they have an infimum i(a, 3).

(d) If & € [wy,wy+ w|, then there exist for all 6 < v infinitely many § <p «
such that § € [wd, wd + w|.
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[wy, wy +
. s A

%\ 777777777 7 / [wd, wd + w] 8

For y <wslet z, ={necw|n<pg~y}
Let B be the subalgebra of B(w) which is generated by {z., | 7 < w2 }.
Then

(x) At(B/I,) ={[z,] | wa <y <wa+w} forall o <w

where [z,] # [a] if 7 # 7.
Hence |At(B/I,)| = w for all @ < wy and B is an (w,w,)-sBa.
We prove (x) by induction over o < ws.

We have to show that

(i) [z4] # 0 for all wa < v < wa +w

(i) [x,] # [zy] for all v # 7' € [wo, wa + w]

(ili) VO # u € B/I, Jwa <y < wa+w: [z,] < u.

This suffices because [x,] - [v/] = 0 for all ¥ # 7' € [wa, wa + w[ by (b).
Proof: (i) If @ = 0, then the claim is is obvious. So assume that a # 0.
Then by the induction hypothesis I, is the ideal on B which is generated
by {z, | v < wa}. Let v € [wa,wa + w|. Assume towards a contradiction
that [z,] = 0, i.e. 2,A0 = (x, —0) + (0 — z,) = x, € I,. So there are
Y-y Yn € we such that z, — (z,, U...Ux,, ) = 0. Hence we are done, if
we can find a 6 € z, such that 6 ¢ z., for all 1 < i < n. We find such a §
by induction. Note first that z, — (z,, U...Uz,,) =z, — ((zyNxyy) U. .. U
(24 N y,)) = 2y = (Tiyn) U - - U Tigy,)) - Let

m>m>...>npt={n| 3N <i<nily,mw) € wy,wn+uw}

Then we can find by (d) a §; € [wn,wn + w| such that §; <p v and
0 # i(vy,7y) for all 1 < ¢ < n. In a second step, we can find by (d) a
dy € [wna,wne + w[ such that ds <p d; and do # i(7y,v;) for all 1 < i < n.



73

By (b), we have ds £ i(y,7;) for all 1 < i < n. Continuing in this way we
finally find a ¢ € [0,w] such that § <g v and § £p i(7y,7;) for all 1 < i < n.
Hence we are done.

Y
" Z(’Y/’V?)
01
V2
************ 2

(i) We want to show that [z,] # [z./] for v # 7/, i.e. (v, —2y)U(zy —2y) ¢
I,. By (b), (xy —zy) U (2zy —z,) = (x, Uzy) — (2, N2y) = 2 Uz By
(i), 0 # [z4] < [zy] + [zy]. So [2y] + [2y] = [z + 2] # 0, i 2, Uzy & Lo
(iii) Every 0 # [u] € B/I, can be written in disjunctive normal form as

[u] =[] - fogg) - oo [ ] () o (S ]) 4
Assume w.lo.g. that [u'] := [y ]-[2y] .. [z ] (=2, ]) o (=[2,]) #
0. Hence it suffices to find [z5] < [¢] with wa < § < wa + w. By (c),
Ty N Ty = Ty ). So there exists a  such that [zy]- ... [z, ] = [z,]. So
[W] = [a,] - (=[2s]) - (Hlzsn]) = (23] = (] + oo+ [25,]) =

= o] = ([ - [o ]+ A [y ] - [23]) = [20] = (i) + - [0

By the induction hypothesis, I, is the ideal on B which is generated by
{z, | ¥ < wa}. Hence wa < v because [u'] # 0. We are done if we can
find a § such that ¢ € [wa, wa + w, [xs] < [z,] and [24] - [T(,)] = 0 for all
1 <i < n. Hence by (b) it suffices to find a 6 <pg 7 such that § € [wa, wa+w|
and 0 £p i(7,7;) for all 1 <i < mn. We find such a § very much like in (i). O
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~
T 2(77 72)
!
Y2
************ 2
«

The natural forcing to add a partial ordering like above is the set P of all
finite (strict) partial orders p = (z,. <,) such that

(a) Vo, Ewy a<pf—a<f
(b) If v, B € [w7, w7y + w|, then o and /3 are incompatible.

(c) If , § are compatible in <,, then they have an infimum i,(a, 3).
For p,q € P, we set p < ¢ iff
(i) g C zp, <pl 79 =<4

(ii) If o, § are compatible in <,,, then they are compatible in <, and i,(a, 5) =

iq (a7 ﬁ) :
This forcing is very similar to the ones we considered before. For p € P
define f,, : [ap, b,] — 2 by

ap ={B| 3 a <, B} by ={a |30 a <, B}

Hhla,B)=1 & a<,p.
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Then the forcing colors a triangle

W

Wa

Like in the previous examples, it does not satisfy ccc. To thin it out so that it
obtains ccc, we proceed exactly like in our consistency proof of wy 4 (w : 2)2,
except that we change (3) in the successor step of the definition of P. We
replace it by

(3): Vy € b,\0 card({6 € 05\ 0, | fp(7,0) =1}) < 1.
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There is at most one ¢ such that

fp(%d) =1

=T

2
t

B=a+1 05

5 Oa

If we now proceed like in the consistency proof for wy # (w : 2)2, we obtain:

Theorem 4.10

Assume that there is a simplified (wy,1)-morass. Then there exists a ccc
forcing P which adds an (w, ws)-sBa.

Historical remarks and references

P. Koszmider [30] proved that it is consistent that there exists a sequence
(Xo | @ < wsg) of subsets X, C wy such that Xz — X, is finite and X, — X is
uncountable for all # < a < wy. He uses S. Todorcevic’s method of ordinal
walks [42]. It is also known as the method of p-functions [29] and provides
a powerful tool to construct ccc forcings in the presence of O, . Other ap-
plications are a ccc forcing that adds an we-Suslin tree [42], a ccc forcing for
wy A (w i 2)2 [42], a ccc forcing to add a Kurepa tree [42, 43] and a ccc
forcing to add a thin-very tall superatomic Boolean algebra [42]. The last
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forcing was first found by Baumgartner and Shelah [3] independently from
p-functions. That there can be a ccc forcing for wy 4 (w : 2)2 was first ob-
served by Galvin [27]. That O, implies the existence of a ccc forcing which
adds a Kurepa tree was first proved by Jensen [23, 22]. Note, that we do
not need a forcing at all in the context of morasses, because the morass tree
(T, <) which was defined in section 2 is a Kurepa tree.

How p-fuctions can be constructed from morasses is explained by C. Morgan
[32]. P. Koepke and J. C. Martinez [28] proved that the existence of a sim-
plified (k,1)-morass implies the existence of a (k, k*)-superatomic Boolean
algebra. J. Rebholz [34] showed that wy /4 (w; : w)3 and wy # (wo : w1)3
hold in L using morasses and diamond.

The fact that the existence of wy-many strongly almost disjoint subsets of
wp implies 2 > ws is from Baumgartner’s paper [1]. The existence of an
(w,w1)-sBa follows from ZFC. This was proved by 1. Juhasz and W. Weiss
[26], and, independently, by M. Rajagopalan [33].

That there can be families {f, : w1 — w | @ € k} of arbitrary prescribed size
x such that {{ < wy | fo(§) = f3(§)} is finite for all o < B < Kk was proved
by J. Zapletal in [49].

The reference for the Handbook of Boolean Algebras is [35].

The question of whether
W3 w
()~ (),

is consistent was first asked by S. Todorcevic [41].

The idea to construct forcings like in this chapter was first presented in
Irrgang [17].
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5)

Gap-2 morasses

In what follows, we will generalize our approach to three dimensions and
therefore we will need a three-dimensional system along which we can index
our forcings. An appropriate structure is a so-called gap-2 morass. The idea
behind it is that we want to approximate a simplified (ws, 1)-morass in the
same way as we approximated the ordinal wy before.

We imagine the situation to be as follows. First, we turn around the simplified
(ws, 1)-morass.

Then we think of it as the backside of a box which is w3 high, wy wide and
wy deep.

79
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w2

The wi-many slices of the box which are parallel to this backside are thought
of as approximations to the gap-1 morass on the backside.

Of course, these approximations will not fill the whole box.

They look themseves like morasses and are called fake gap-1 morasses.

A fake gap-1 morass is a structure ({(¢¢ | ¢ < 0), (B¢ | ¢ < € < 6)) which
satisfies the definition of simplified gap-1 morass, except that € need not be
a cardinal and there is no restriction on the cardinalities of ¢ and &¢¢. Let
&¢ 41 = {id,b}. Then the critical point of b is denoted by o, and called the
split point of & -1 = {id, b}.
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©o

e

P+

P¢

s

0 ¢ (+1 €0

The fake morass ((p¢ | ¢ < 6), (B¢ | ¢ < & < 0)) will replace in the gap-2
morass the ordinal levels 6, of the gap-1 morass.

w3

Po,

%

8

Pba
0

a

We need of course also replacements for the order-preserving maps f : 6, —
03, i.e. maps which preserve the order of the fake morasses. The appropriate
maps are called embeddings.

Suppose that ({p¢ | ( < 0), (¢ | ¢ <& <0)) and {{p | ¢ <), (G, | € <
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¢ < 0')) are fake gap-1 morasses. An embedding from the first one to the
second will be a function f with domain

O+1) U7 1 C<0,7 <o U{(CE0) [ ¢ <E<0,be B}

satisfying certain requirements. We will write f:(7) for f((¢,7)) and fe(b)
for f({¢,€,0)).

The properties are the following ones:

(1) f I (#+ 1) is an order preserving function from 6 4+ 1 to 6’ + 1 such that
7)) =9

Por

9/

s =

0

(2) For all ¢ <0, f is an order preserving function from ¢, to S0/f(4)~

AS)
<>~

!
1)

L

\i\




(3) For all ( <& <0, fee maps B¢ to &

F(OFE)

83

O
fc’@/‘
FO7 ) 0
b
¢ 3 0
(4) If ¢ <0, then fe(o¢) = 0%
Pl
2109
v
T

9¢

Jelog) = )
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(B) f ¢ <€ <6,b€ B and ¢ € B, then fe,(cob) = fe,(c) o fee(b).

P
fen(c)
fee(b
9/
b C
¢ ¢ n 9
(6) Ifc < 6 < 0 and b € ®(§, then f{ ob= f{g(b) o fC‘
Co

fee(b)
/ e
fe

b

0/

An embedding from one fake gap-1 morass to another preserves its whole
structure. The notion of embedding will play in the definition of gap-2
morasses the role which the order-preserving maps f € §ap played in the
gap-1 case. Note, however, one difference. The levels 6, of the gap-1 morass
did not necessarily have a greatest element, while all fake gap-1 morasses
have a top-level, namely g. This correspondes to the fact that we approxi-
mate with a gap-1 morass the ordinal k%, while we approximate a simplified
(k*, 1)-morass with a gap-2 morass. And k™ does not have a greatest ele-
ment, while the simplified (k*, 1)-morass has a top-level. This results in the
condition f(f) =" in (1) in the definition of embedding.
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Before we can give the definition of a simplified gap-2 morass, we still need to
replace the identity and the splitting map of (P3) in the definition of gap-1
morasses by appropriate notions.

Let Tike before ({ic | ¢ < 0), (e | ¢ < £ < 6)) to {{gh | ¢ < ), (8 | ¢ <
£ < 0')) be fake gap-1 morasses. Assume moreover that ((¢c | ¢ < 6), (G |
¢ < & < 0)) is an initial-segment of ({(¢; | ¢ < 0'), (B | ¢ <& < ), ie.
0 <0, o = for ¢ <0 and & = B¢ for ¢ < § < 6. We define an
embedding, which is as close to the identity as we can get, as follows: Let
f10=1d, fe =id for all ( < 6 and fee = id for all ¢ <& < 0. Then we can
define an embedding by picking fy € &), and setting fes(b) = fp o b for all
(<f@andallbe 649.

Jo O
Po

¢ 3 0 4

b Pe
©c ﬂ I,
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P¢

We call such an embedding f a left-branching embedding. There are many
left-branching embeddings, one for every choice of fj.

An embedding f is right-branching if for some 1 < 6,
(1) fIn=id

(2) fn+¢)=0+Cifn+¢ <0
(3) fe=1idfor ( <n

(4) fee =id for ( <& <n

(5) fn € an@

(6)

6) fee[Bcel = By N < (<ES0.

Peor
fn € ®n9

7

/

4

n
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An amalgamation is a family of embeddings that contains all possible left-
branching embeddings, exactly one right-branching embedding and nothing
else.

Now, we are ready to define gap-2 morasses.

Let k > w be regular and ({(¢¢ | ¢ < k1), (G | ¢ < € < k™)) a simplified
(k*,1)-morass such that ¢, < & for all ¢ < k. Let (0, | @ < k) be a sequence
such that 0 < 6, < k and 0, = k. Let (Fap | @ < 8 < k) be such that
Sap 1s a family of embeddings from ((¢¢ | ¢ < 04), (Gee | ( < € < 0,)) to
(e 1 € < 0), (B | ¢ <& <))

This is a simplified (x, 2)-morass if it has the following properties:

(1) [Sap| < & for all a < 8 < k.

2)Ifa<fB <, thenFoy ={fog| f€Fs,9 € Fap}

Here f o g is the composition of the embeddings f and g, which are defined

in the obvious way: (fog)c = fg(C) ogc for ¢ <0, and (fog)CE = fg(C)g(ﬁ) O ge
for ( <& <0,.

(3) If @ < K, then Fq o411 is an amalgamation.

(4) If a < k is a limit ordinal, £, B2 < o and f1 € Fp,a, f2 € §psa, then there
are a 31,32 <y <, g € Fyo and hy € Fa,, ho € s, such that f1 =goly
and fy = g o hs.

(5) For all @ < K, a € Lim:

(a) 6o = U{[f10s] | B <, f € Tpat-

(b) For all ¢ < b, pc = U{felee] | 38 < a (f € Fpa and () = ()}

(c) For all ¢ < & < ba, B = {6z | 38 < a (f € Fpa, f(C) = ¢ and
f(&) =91

The notion of simplified gap-2 morass was introduced by D. Velleman in his
elegant paper “Simplified gap-2 morasses” (APAL 34, 171 - 208). He also
proved almost all of the following results.

Theorem 5.1
(a) If V = L, then there is a simplified (k, 2)-morass for all regular x > w.

(b) If K > w is regular, then there is a forcing P which preserves cardinals
and cofinalities such P I (there is a simplified (k, 2)-morass).

Since ((¢¢ | ¢ < K1), (Bee | ¢ <& < kT)) is asimplified (kT 1)-morass, there
is a tree (T, <) with levels T, for n < k™. And there are maps 7y for s < t.
Moreover, if we set §,5 = {f [ 0o | f € Sap}, then (0o | @ < k), (Fp | @ <
B < k)) is a simplified (k,1)-morass. So there is also a tree (1", <') with
levels T} for n < k.
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< t
3 ) 4

b5

Lemma 5.2
Suppose o < 3 < K, fi, fa € Fags (1, G < b and fi(G) = fo(C2)-

f1(G1) = falGa)

= A1G=F1G

T = T2

Then G = Go, f1 [ G = fo I C1, (fi1)e = (f2)e for all € < (i, and (fi)en = (fo)en
for all £ <n < (.

Now, let s = (a,v) € T}, t = (3,7) € T and s <’ t. Then there is some
[ € 3.5 such that f(v) = 7. By the previous lemma

ST+ UG [ ¢y <e U{(GE0) | <E<vbe Bg})

does not depend on f. So we may call it 7/,.

Lemma 5.3

If o < B <k, then thereis an f € Fogsuchthat f [ 0, =1id | 0y, f;, = id | ¢,
for all n < 6, and fe,(b) =0 for all £ <n < 0, and all b € B,

In addition to the maps f € §ap3, we need maps f that are associated to f.
For a set of ordinals X, let ssup(X) be the least o such that X C «. And

let f(¢) = ssup(f[¢]) < f(C)
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Lemma 5.4
For every a < 8 < K, [ € §ap and ¢ < 0,, there are unique functions

fo i we = oroy feo  Gec — Gy for all € < ¢ and f7(C) € By
such that:

(1) fe=f*() o fe )
(2) VE < (Vb e &g fec(b) = f#(C) o fec(D).

I#©Q)
Jec(b)
fﬁ/ fﬁ
Jé]
A
f‘ /I

J¢

fe

From the previous lemma, we get of course also maps (m},)¢ and (7}, )¢ for
s < tand £ < ¢ < v(t). To be more explicit, let s <" ¢, s = (o, v) and
t = (B,7). Then there exists by the definition of <" an f € F,p such that
f(v) = 7. By the previous lemma f [ v + 1, all f¢ for £ < v and fe, for all

§ < n < v do not depend on the choice of f. So we may set ()¢ = fec and
(mhy)ec = fec forall € < ¢ <w.

Note, that the existence of functions like in the previous lemma is clear in
the case = a+ 1 by the definition of left-branching embeddings and right-
branching ones.
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Let us first consider a left-branching embedding f € Fo.a+t1-

A
A
a+1
0

id

a+1

fo. = f#(ea)

/

Set f#(C) = id for all { < 0, and f#(0,) = fo,. Set fe = id for all ¢ < 0,.
Finally set fee = id for all { < ¢ < 0,.

Then (1) holds because
fe=id=idoid = f#(()o f: for all { <0,
and

fga = f#<8a) oid = f#(tga) 9] f_ga.

Moreover, (2) holds because

fec(D) =b=1idob= f#(() o fec(b) for all £ < ¢ <0,

and

Jec(b) = fo, 0b= f#(0,) o fgg(b) forall ¢ < ¢ =4,

where the first equalitiy holds by the definition of left-branching embedding
and the second by the definition of f#(6,) and fe.

Let us now consider the right-branching embedding f € §aa+1. Set n =
crit(f | 6,).
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Pbosr

/ .
n 0o

Let f#(¢) =id for all n # ¢ < 6, and f#(n) = f,. Set fe = id for all { <7
and fe = f¢ for all n < ¢ < 0,. Finally set fec = id for all § < ¢ < 7 and
fec=fecforall E < (¢, np<(<4b,.

Like before, it is easy to check that (1) and (2) hold. We only check (2) for
¢ < ( =mn. In this case

fec(b) = fec(b) 0id = fec(b) o fe = fyob= f#(n) o fec(b)
where the third equality holds by (6) in the definition of embedding.

a+1

From the successor case, the general statement of the lemma follows as usual
by induction over the levels of the morass. For more details see Velleman’s

paper.

Lemma 5.5

(3)If ¢ < f(¢) and b € Bej(e), then In < ¢ Jc € & Id € S¢py b =
foc(c) od.
(4) VE < (Vb E By feob= fe(b)o fe.
(5) Ifn < &<, be B and ¢ € By, then fe(boc) = fee(b) o frelc).
6) fa<fB<v<k, f€Tsy, g€ Tap and ¢ < b,, then
(Fog)c= fac) 09
(f 0 9)*(CQ) = facro0) (97 (¢)) © f#(g(¢)) and
(f o 9)ec = fyera(¢) © e for all € < C.
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Historical remarks and references

Practically everything in this section is due to D. Velleman [47, 46].



6

Spread and size of Hausdorft
spaces

As an application of three-dimensional forcing, we will prove it to be consis-
tent that there exists a Hausdorff space X with spread s(X) = w; and size

card(X) = 22"

As every mathematician knows, a topology 7 on a set X is a subset 7 C PB(X)
such that

()0, X er
U,Ver=UnVer
B){Uilie Ay Cr=|J{U;|i€ A} e .

The pair (X, 7) is called a topological space. The U € 7 are called open sets,
their complements are called closed sets. A set is clopen if it is closed and
open.

A base B of 7 is a subset B C 7 such that every element of 7 is a union of
elements of B. A space is O-dimensional if it has a base which contains only
clopen sets.

A space is a Hausdorff space if for all x # y € X there are z € U € 7 and
y € V € 7 such that UNV = (. A Hausdorff space is regular if for all closed
CCXandall z € X —C, there exist C CU € 7 and x € V € 7 such that
unv =4.

Every 0-dimensional Hausdorff space (X, 7) is regular. To see this, let B be
a clopen base of 7, C' C X be closed and x € X — C. Since C' is closed,
X — C is open. Hence there is an U € B such that x € u C X — C, because

B is a base of 7. By the choice of B, U is clopen. So X — U is open, U is
open, CC X —U,z €U, (X —-U)NU =0, and we are done.

93



94 6. SPREAD AND SIZE OF HAUSDORFF SPACES

A subset D C X is called discrete if for every x € D there exists an U € 7
such that U N D = {z}.

The spread s(X) of X is defined as

s(X) =w - sup{card(D) | D is a discrete subset of X}.

Theorem 6.1 (Hajnal, Juhasz)
Assume that X is a Hausdorff space. Then

card(X) < 22",

Proof: Let a := s(X). Assume towards a contradiction that card(X) >
(22%)*. We will define a partition f of [X]? into 4 pieces. By the Erdos-Rado
theorem

(2)F = (a™)i.

Hence f has a homogeneous set H of size a. However, from H, we will
be able to define a discrete subspace of size a™. This is a contradiction to
a=s(X).

We define f : [X]* — 4 as follows: Let <y be a well-ordering of X. Since X
is a Hausdorff space, we can choose for each pair {x,y} € [X]? with x <x y
disjoint open sets = € U(x,y) and y € V(z,y). For x <x y <x z set

flz,y,z) =0if x € U(y, z) and z € V(x,y)

flz,y,2) =0if x € U(y,2) and z € V(z,y)

Uly, 2) V(,y)

T i z
Y
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f(z,y,2) =0if z € U(y, z) and z € V(x,y)

Uy, 2) V(z,y)
T y z

flz,y,2) =0if z € U(y, 2) and z € V(z,y).

By the Erdos-Rado theorem, there exists H C X such that |H| = a® and
|f[[H]?]] = 1. Suppose now y € H and y has both an immediate predecessor
r in <y and an immediate successor z in <x. Then

(x)  HNU(y,z)NV(z,y) ={y}.

Hence D = H — {z € H | x limit point in <x} is a discrete subspace of X
of size at.

To see (x), assume that p € H NU(y,z) N V(z,y) and p # y. Since p # x
and p # y are obvious, we have either p <x = or z <x p. Assume first that
p <x x. Then f(p,y,z) € {0,2} because p € U(y, z).

Uly, 2)

Hence by the homogeneity of H, f(p,x,y) € {0,2}. So p € U(x,y) and

thus p ¢ V(z,y), which is a contradiction. Now, assume z <, p. Then
f(x,y,p) € {0,1} because p € V(z,y).



96 6. SPREAD AND SIZE OF HAUSDORFF SPACES

Viz,y)
’ Y P

So also f(y,z,p) € {0,1} by homogeneity of H. Hence p € V(y, z) and thus
p ¢ Uy, z). Contradiction. O

This proof is given by I. Juhasz in his book “Cardinal functions in topol-
ogy” (1971). He continues by asking if the second exponentiation is really
necessary. This was answered shortly after by Fedorcuk who constructed a
0-dimensional Hausdorff space with spread w and size 22° in L. Up to now,
it has not been known whether there can be a Hausdorff space with spread
w; and size 227", Given a simplified (wy,2)-morass, we will construct a ccc
forcing of size w; which adds such a space that is 0-dimensional.

The natural forcing to add a O-dimensional Hausdorff space is Cohen forcing.
Let

P:={p:x,— 2|z, Cws X wy finite}.

As usual, we set p < ¢ iff ¢ C p.

Let G be P-generic. Set F = |J{p | p € G}. Then F : w3 X wy — 2 by a
simple density argument. Let 7 be the topology on w3 which is generated by
the sets

Al ={a €ws | Fla,v) =i}

Thus a base for 7 is formed by the sets
B. = ﬂ{Ai(”) | v € dom(e)}

where € : dom(e) — 2 is finite and dom(g) C wy.

Hence 7 is O-dimensional because if B. := ({AS") | v € dom(e)} then
w3 — B, = U{Ai(”) |vedom(e)} er

(where &(v) =0 iff e(v) = 1).
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w3

It is also a Hausdorff space because for all v # § there is by genericity of
G some p € wq such that F(v,v) # F(6,u). This, however, means that

= A,Ij(%“), = AE(&#) and Ai(&u) N AE(%#) — 0.

Moreover, (w3, 7) has spread < wy:

Suppose not. Let X, h, B be P-names and p € P such that

plF (X Cuws, h:w — X is bijective, B : wy — V, Vi € wy B(3) is a

basic open set, Vi # j € wy h(i) € B(i) A h(i) ¢ B(j)).

For every i € wy let p; < p, d; and &; be such that p |- h(i) =0 A B(i) = B;,.
Assume that all conditions are of the form p; : a,, x b,, — 2 and that all
p; are isomorpic. That is, all a,,’s have the same size and all b,,’s have the
same size. And if oy; : a,, — a,; and m;; 1 by, — by, is order-preserving, then
pi(7,0) = p;(04i(7),mj(0)). Then we can assume by the A-system lemma
that the a,,’s and b,,’s form A-systems with roots A, and A;. Moreover, we
can assume that A, is always at the same place in a,,. We can assume the
same for the b,,’s. Furthermore, we can assume that 9, always has the same
position in a,, and dom(e;) in by,.
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******** S

(05, 1) = i)

Then for ¢,j € wy there exists r < p;, p; such that <6j,/J/2 € dom(r) and
r(6;, ) = €;(p) for all p € dom(e;). Hence r I h(j) = §; € B(i) which
contradicts the definition of p.

Of course, the Cohen forcing P also satisfies ccc and hence preserves cardi-
nals. However, P |- 2* > w3 and hence P IF 22" > w,. So (w3, 7) will not be
as wanted. In the following, we will use our methods to thin out P so that
the remaining forcing is equivalent to a ccc forcing of size wy. In this case,
the usual argument for Cohen forcing shows that GC'H is preserved. This
argument was given at the end of section 3.

Now, let 91 be a simplified (k,2)-morass like in section 5.

We say that
((Py [ 7 < £77),{ose | s < 1), {05 | s <"8), (ea | @ < KT), (€ | @ < K))

is a 'S system along 901 if the following conditions hold:
(FSol) (P, | n < k7F),(os | s < t),{eq | @ < KT)) is a FS system along
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({oc [ €< A7) (Bee [ ¢ <& < wT)).

Let Q = {p* | supp(p) | p € P}.

Define a partial order < on Q by setting p < ¢ iff dom(q) C dom(p) and
p(a) < g(a) for all v € dom(q).

Set Q, :={p € Q| dom(p) C ~}.

(FS32) (ol, | s <’ t) is a commutative system of injective embeddings
ol Queyr1 — Quy41 such that if ¢ is a limit point in <', then Q.41 =

U{U;t[(@u(s)+1] | s <" t}.
(FS23) €, : Qp,y — Q.-

(FSp4) Let s <" tand w = 7l,. If n(v) =7, ' = (a(s), V') and t' = (a(t), '),
then o7, : Qu)+1 — Quy41 extends ol - Quryr — Q.

Hence for f € §ag, we may define oy = (J{os | s = (a,v),t = (B, f(v))}.
(FSe5) If 7, [ v(s)+1=rid | v(s) + 1, then ol, = id | Qu(5)41.

(FS26)(a) If o < K, then Qg is completely contained in Qp
that €/ (p) is a reduction of p € Qy

Wyl D such a way

a+1"

(b) If @ < &, then oy, := 0% : Qp, — Qq,,, (where f, is the unique right-
branching f € Fa.a+1) is a complete embedding such that €/, (p) is a reduction
of pe Qg,.,,-

(FS37)(a) If @ < k and p € Qy,, then €, (p) = p.

(b) If @ < k and p € rng(cl,), then €, (p) = (¢2,) ! (p).

«

That is,

{Qp I < k7). {oy | s <"), (el | a < k)

is a F'S system along ({0, | @ < k), (8,5 | @ < B < K)).
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H);/

pelP

=
mul

W

Theorem 6.2

Let K, > w be cardinals, k regular. Let ((P, | n < k™), (os | s < 1), (0, |
s <"t),(ea | @ < K1), (€, | @ <k)) be aFS system along a (k, 2)-morass.
(a) If (Q, <) satisfies the p-cc, then P also does.

(b) If all Q, with n < s satisfy the p-cc, then P also does.

Proof: (a) Exactly like the proof in section 3 that P satisfies the p-cc, if all
P, with n < k™ do.

(b) Since ((Q,, | n < k™), (0l | s <" t), (€], | @« < K)) is a F'S system along
((Oa | @ < k), (Top | @ < B < kK)), Q satisfies the pi-cc by results from section
3. Hence (b) follows from (a). O
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As before, we obtain the maps o for s < t by extending the morass maps 7y
to our forcing P. Let 7 : # — 6 be an order-preserving map. Then 7 : 6 — 6
induces maps 7 : 6 X wy — 0 X wy and 7 : (6 X wy) X 2 — (6 X wy) X 2 in the
obvious way:

T:0Xwy—0xwy, (7,0) (n(y),0)

(0 X wy) x2— (0 xwy)x2, (€ s (m(x),e).

Basically, we will define the maps o of the FS system by setting o(p) = 7[p].

Now, we start our construction of P. Let 9 be a simplified (wy, 2)-morass.
In a first step, we define partial orders P(7) for 7 < w3 and Q(7) for 7 < ws.
In a second step, we thin out P(7) and Q(7) to the P, and Q, which form
the F'S system along the gap-2 morass.

We define P(7) by induction on the levels of ((p¢ | ¢ < wa), (Gee | ( <€ <
wy)) which we enumerate by 5 < ws.

Base Case: =0

Then we only need to define P(1).
Let P(1) :={pe P |z, C1xw}.

Successor Case: =a+ 1

We first define P(pg). Let it be the set of all p € P such that
(1) zp € pp x wp3

(2) p 1 (pa X wa), f' 1 (s X wa)] € P(pa)

(3) p 1 (pa X wa) and f[p | (¢ X wa)| are compatible in P

where f, is like in (P3) in the definition of a simplified gap-1 morass.
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here p € P(pp)

is arbitrary

s P
‘\
h >
- these two parts of p
are essentially isomorphic
| e xleaw]
@ B=a+1

For all v < ¢, P(v) is already defined. For ¢, < v < g set

P(v) =A{p e P(pg) | 2p C v x wl}.

Set
os: P(v(s)+1) — P(v(t) + 1),p — msp).

It remains to define e,. If p € rng(c,), then set e, (p) = o, (p). If p € P(pa),
then set e, (p) = p. And if p € rng(o,) U P(p.), then set

ea(p) =1 | (pa X wa) U f ! [p | (pp X wa)].

Limit Case: 5 € Lim

Fort € Ty set P(v(t)+1) = U{os[P(v(s)+1)] | s < t} and P(\) = J{P(n) |
n < A} for A € Lim where o : P(v(s) +1) — P(v(t) + 1),p — ms(p]-

Lemma 6.3

{(P(n) [ n S ws), (os | s < 1), {ea | @ <wy)) is a FS system along ((¢c | ¢ <
wa), (Bee | ¢ <& < wa)).

Proof: Most things are clear. We only prove (FS6). Let p € P(yg) and
B=a+1 Let ¢:=p | (pa xwa)U fip | (ps X wa)]. We have to prove
that ¢ is a reduction of p with respect to o, and id | P(¢,). To do so, let
r < g. We have to find an s < p,o,(r),r such that s € P(yg). Define s as
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s:=pUrU fu[r]. It is easily seen that s is as wanted. O

By the previous lemma every p € P(ws3) has finite support and we may define
p* for p € P(ws) like in section 3.

Set Q = {p* | supp(p) | p € P(ws)}.

Define a partial order < on @ by setting p < ¢ iff dom(q) C dom(p) and
p(a) < g(a) for all v € dom(q).

Set Q(v) = {p € Q | dom(p) C ~}.

Now, we thin out Q along ({0, | @ < k), (§,5 | @ < 3 < k)) to obtain Q. We
will, however, not use the maps f € o5 but f to map p € Q(6,) to Q(05).

For f € Fap and p € Q(0,) we may define f[p] with dom(f[p]) = fldom(p)]
by setting

fpl(f(m) = f, @ flp(n)] for all n e dom(p)

where f, ﬁ] are as at the end of section 5 and

Fo® F g xwn — @y xwfn), (v,wd+n)— (f(7),wf(0)+n)

for all n € w

f_ﬁ®f : ((pn X 77) X2— (90]?(17) X f(ﬁ)) X 27 <$,6> = <ﬁ7®f(x)7€>

In the same way we may define 7,[p].
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4= ﬂp} Wﬂﬁs)
—_—
wf ()
—
WJZ("h
PFim) 7
. 7 ,
/ 4 fns
%

B i 4 4 - 4 < ‘
_ ! f(nl) , _ /’ f(772) / ) f (773) / 95
fm ! ,/ fnz / ! ~
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I ) // f /
II f , ///
(pm I(/ I,/ //, //// ? //// ) /,/ N
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- / / / 7, ,
’ ! A // 4 /
/ / / / ,/ L,/
o — —l —_—
Wi w2 wns 0o
p(m)
n "3

The reason why we use f instead of f € Fas is that f does not map the
support of a condition correctly. For an example, consider the case § = a+1
and let f € Fap be right-branching. Let ¢ be the splitting point of f, i.e.
f(6) = 05. Assume that p € Q(6,), 0 € dom(p) and dom(p(d)) C @s X wd.
Let f[p] be defined by dom(f[p]) — f[dom(p)] and f[p](f(n)) = f, & fIp(n)]
for all n € dom(p). We will show that f[p] ¢ Q(85). To do so, notice first

that f; = f#(0) o fs by (1) in the lemma about f at the end of section
5. However, fs = id | s, because f is right-branching with splitting point
0. So fs = f#(d). Hence f[p(0a) = fs ® fp(d)] = f#(d)[p(d)] because
dom(p(d)) C ¢s x wd and f | § = id | §. However, this contradicts the
fact that all ¢ € Q(03) are of the form g = r* | supp(r) for some r € P(w3)
because in this case ¢(0.) # g[q] for all g € .4, § € P(p,) and v < 6, by

the definition of the support of a condition.



105

o) ef

7
2

fp)(0a)

B=a+1

o —

This problem does obviously not occur, if we consider f[p].

Lemma 6.4
(a) If f € Fap and p € Q(ba), then fp] € Q(6).
(b) If s <"t and p € Q(v(s) + 1), then 7/, [p] € Q(v(t) + 1).

Proof: Set ¢ := f[p]. Let dom(p) = {a1 < ... < a,,} and dom(q) = {f1 <
oo < Gt = {f(an) < ... < f(an)}. By the definition of the support of a

condition, all a; are successor ordinals. And f(a; — 1) = f(a;) — 1 by the
definition of f. Set ¢(8; — 1) = ep,—1(¢(5;)). Then it suffices to prove that
there are functions g; € &g, 5, , -1 such that

(1) ¢(Bi1 — 1) = gila(53)]
(2> Q(ﬂz) §é Tng(o—ﬁifl)ﬂ Q(ﬁl) §é P(@ﬁifl):

Since p is a condition, there are functions h; € &, q,,,~1 such that

pleips — 1) = hifp(as)].

So we can set

gi = fai,&iﬂ—l(hi) © f#((%)
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—
%)
F . v
1 F) " fleig)
// ///
! 7
/ flaigr — 1)
/
/I
/
7 h/i
/
/
/
/
!
//
«
[e%) Qi+l
a; — 1 Qi1 — 1

We need to check (1). We first prove that

Jaizi-1 ® fleai—1(p(ait1))] = e —1(q(Biv1))-
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w(Bi1 — 1),whin[= [w- flaipr — 1),w- flai)]

UJ(ﬁiH - %
e

" PBis

w(Bis1 — 1)
—_— oA M

PBip1—1

Paiy1—1

To see this, we use (4) in the lemma on f in section 5 which says
VE< (Wb E B feob= fec(b)o fe.
Applying it for § = a1 — 1, ( = 11 and b =id [ pq,, -1, We get
4(Bis1) T (081—1%w(Bix1—1)) = farr @ f[p(is1)] T (-1 Xw(Big1—1)) =

= fai+1_1 ® f[p(ai-H) r (90061‘+1—1 X w(ai+1 - 1))]
where the first equality holds by the definition of ¢ = f[p].
Applying it for £ = ;.1 — 1, ( = a;11 and the splitting map b of &
we obtain

aj+1— 41

Jec®) a(Bixa) 1 (0p40 X w(Bia — 1))] =
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= fec(0) M farn @ fl(in)] 1 (95,4, X w(Bipa —1))] =
(fec@) ™ 0 farr) @ flp(@ign) T (ary, X W(az+1 —1)] =
= (feo b ) @ flp(i1) | (Pagy, X Wi — 1)) =
= (fe® NI plair1) T (Par, X Wi — 1))

However, by definition

eﬁi+1*1(q<ﬁi+l)) =
4(Bir1) T (Pp1 xw(Bini=1) U fee®) 7 [a(Binn) T (g5, X 0 (Bir1 —1))]

and
eai+1_1(p(04¢+1)) -
p(Oéi+1> f (900424-1—1 X w(ai+1 - 1)) U b_l[p(ai-l—l) f (‘pau-l X w(ai-H - 1))]

This proves that

fﬂti+1—1 ® f[eai+1—1(p<ai+1))] - eﬂi+1—1(q<ﬁi+1)>'

Hence
Q(ﬁi—&-l - 1) = 65i+1_1(Q(5’i+1)) - fa¢+1—1 ® f[eai+1—1(p(ai+1))] =

:fai+1 1®f[ ( ( '))]:(faﬂ 1Ohi)®f[p(04i)]:
(fa Qi1 — 1( ) fa>®f[p<0‘i)]

by (6) in the definition of embeddings. However, fo, = f#(a;) o fo, by the
lemma on f in section 5.. So

(fa SOl — 1( ) fa)®f[p(ai)]:

(foc S — 1( ) f#(al) fa)®f[ ( )]_
= favaiii-1(h) © fH () far ® flp(0s)]] =
= favarii1(hs) o [ () [a(6:)]

and we are done.

To see (2), notice that by the definition of the support of a condition p(«;) ¢
ng(0a,~1) and p(a;) ¢ P(@a;—1). Now, we can use (4) from the lemma on
f in section 5 to obtain that ¢(3;) ¢ rng(os,_1) and q(o;) & P(pp,_1). The
argument is very similar to the one we used to prove

f@i+1*1 ® f[@ai+1,1(p<ai+1))] = eﬁi+1*1(q<ﬁi+1>)' 0



109

In the following we thin out Q(y) to Q, to obtain a FS system along our
gap-2 morass.

We define Q, by induction on the levels of ({0 | @ < wy),(F5 | @ < 8 <
w1)>.

Base Case: =0

Then we only need to define Q.

Let Q1 = Q(1).

Successor Case: f=a+1
We first define Qg,. To do so, let Py, be the set of all p € P(yy,) such that

(1) (fo. ® )7'[p] € Py,
(2) p*(0,) and (fy, ® f)~'[p] are compatible
where f is the unique right-branching embedding of §.zs.

b=a+1

9(3‘

fwé+n)=wf(d)+n

(foh @ /)bl

wb,
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Set

Qq, = {p" I (supp(p) N bs) | p € Py, }.

For t € T} set Q)41 = {p € Qo | dom(p) C v(t) + 1} and Q) = U{Q, |
n < A} for A € Lim.

Set

ol Qus+1 = Quy+1, p— W_fme[p]

It remains to define ¢/,. If p € rng(c’,), then set €. (p) = o/ (p). If p € Q,,
then set e/ (p) = p. And if p ¢ rng(cl,) U Qy,, then choose a r € Py,, with

p=r"] supp(r) and set
q:=1"(0a) U (fo. ® f)'Ir]
Set e, (p) = q* I (supp(q) N 0a).

Limit Case: 8 € Lim

For t € T,é set Qy(t)—"-l = U{O{gt[(@u(s)—H] ’ s < t}jﬂd Q/\ = U{Qﬂ ’ n < )\}
for X € Lim where o7, : Qu41 — Quuy+1, D — m[p].

Finally, set P, = {p € P(n) | p* | supp(p) € Qu,} and P :=P,,.

Remark 1:

We postpone the proof that this definies indeed an F'S system along our gap-2
morass M. However, we check the crucial condition (FS,6) already here. To
do so, let p € Qp, and B =a+1. Let r € ]P’%ﬁ be such that p = r* | supp(r)
and

q:=1"(0a) U (fo. @ f)"'[r]

where f is the right-branching embedding of §.z.
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f=a+1

08

g =r(0a) U (Jo, © £)71]

)

s:=q* | (supp(q) Nb,)

We have to prove that s := ¢* [ (supp(p) N6,) € Qq, is a reduction of p with
respect to o/, and id | Qy,. To do so, let t € Qy, with ¢ < s. We have to
find an u € Qy, such that u < p,0,(t),t. Notice first that by results from
section 3,

s < 7" | (supp(r) N6y,)

and
s < (fo. @[] 1 supp((fo, @ f)7'[r]).
Hence
t <7 | (supp(r) Nba)
and

t < (fo. @ )] 1 supp((fo. @ f)7'[r]).

Let v = max(dom(t)). Again by results from section 3, #(v) and ¢ are
compatible. Set v = qU t(v) € Py, and w = r Uv U (fp, ® f)[v]. Then
w < 1, t(v), (fo, @ f)[t(v)]. Hence u := w* | supp(w) < p by results from
section 3 because w < r. Moreover, u < t,0/(t). This is proved from
w < t(v), (fo, ® f)[t(v)] like in the proof of

peEQs, AN [f€FTas = flp) €Qy,.
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Remark 2:

Suppose p € PP is given. Let G be any generic filter with p € G. Let
F =U{p|p e G}. Then by (2) in the successor step of the construction,
F' is not only already determined on dom(p), but a lot more of F is already
determined. Set

D={new|3éy (y,ws+n) € dom(p)}.

Then it will turn out that F' is at least not yet determined on

w3 X {wd+n|n€w—D,) € w}.

Hence we can show with the same argument we used above for the forcing P
also for P that it adds a Hausdorff space.

Remark 3:

Assume that 3 = o+ 1 and that f is the right-branching embedding of §,s.
Let p1,p2 € Py, be compatible and g € &g, g,. Then also g[p;] and fo. @ f[p]
are compatible, i.e. g[pi] and fp, ® f[pe] agree on the common part of their
domains. To prove this, let

(v.m) € dom(glp:]) "dom(fo, ® f[p2])

g((v,m)) = (vom) Jou @ f({2em2)) = (7. m).

Since f is right-branching, fs, = fo.. Let & be the critical point of f | 6.
Then 1 < wd and therefore n = n; = n,.
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g
(v, m)
<711 7]> f@a
b=a+1 i 7
wd 7
fs
{(v2,m)
(V:m)
a — —
wd wd
5 Oa

By (6) in the definition of right-branching, there exists a b € B4 such that
fs0.,(b) = g. Hence, by (6) in the definition of embedding,

Jo, 0b=go fs.

So there exists (7,1) € s X wd such that
fou 0 b((7,m) = go fs((3,m) = (v.m)

Js((ym) = (o) b((3,m) = (v2.m).
By (5) in the definition of right-branching embedding, fs € ®gs,. Hence

pi(v1,m) = pi(0)(%,m). Moreover, pa(72,m) = p3(6)(7,n) because b € G,
However, p; and py are compatible. Therefore, also pi(d) and p3(J) are
compatible. So pi(d)(¥,n) = p3(6)(¥,n). This in turn implies py(y1,7) =
p2(y2,7n). Hence g[p1](v,n) = fo. @ flp2](7,n). That’s what we wanted to
show.

The same argument shows for all p € P, and all g € &g, that g[p] € ]P’wﬁ,
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foo @ flp] € Py, and g[p] U (fo, ® f)[p] € Py,

For arbitrary a@ < # < w; and f € §op define

f@a ® f L e, X Wea — Yo X weﬁ? <77W6+ Tl> = <f€a<7)7wf(5> +n>

for all n € w and

Jo. @ 1 (0o, X wla) X 2 — (g, X W) x 2, (x,€) — (fo, @ f(z),€).

If B = a+1, then §,s is an amalgamation by (3) in the definition of a
simplified gap-2 morass. Hence f € §,p is either left-branching or right-
branching. Let p € P, and assume that f is right-branching. Then fy, ®
flp] = fo. ® flp] because fo, = fo,. If f is left-branching, then fy, € Gg,q,
and f [ 0, =id | 0,. Hence fo, ® f[p] = fo.[p]. So in both cases

fo. ® f[p] S Pweﬁ'

By induction, this is also true if § = a + n for some n € w. What does
happen at limit levels?

Lemma 6.5

For all # € Lim, P, = U{fo. ® f[Py, ] | f € Sap, o < }.
Proof: We first prove D. Let a < 3, p € P, and f € Fo3. We have

to prove that r := fp, ® f[p] € IP’@%. That is, we have to show that r* |

supp(r) € Qg,. But by the argument of lemma 6.4, 7* [ supp(r) = flq] where
q = p* | supp(p) € Qqp,. Hence fq] = r* | supp(r) by the definition of Q,.
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For the converse, let p € IP’WB. Hence r := p [ supp(p) € Qy, by the definition
of ng.

«

Set v := maz(dom(r)) and t := (3,v). Moreover, let g € &,9, be such that
glr(v)] = p. Let, by the definition of Q,41, s <’ ¢t be such that r = o, ()
for some 7 in Q,5)+1. Hence r = f[F] for some f € Fap such that s := (a, )
and f(7) = v. In particular, also f(7) = v. That is, if we set v = £+ 1, then
¢ € rng(f). Hence f; = f; and r(v) = f, ® f[r(¥)]. Moreover, by (5)(c) in
the definition of a simplified gap-2 morass, we may assume that g = fzg,(9)
for some g € &yg,. But then p = fp, @ f[p|] where p = g[r(v)] by (6) in the
definition of embedding. O

Let G be P-generic and F' = |J{p | p € G}. By the usual density argument,
the following lemma shows that F': w3 X wy — 2.

Lemma 6.6
(P | < K)o | s <), (04 | s <"1),{ea | < wT), (e, | @ <))

is a F'S system along 901.

Proof: (FSy2), (FSs3), (FS24), (FS25) and (FS,7) are clear from the con-
struction. (FS36) was proved in remark 1. So we are only left with (FS,1).
That is, we have to prove that

(P [ n < k™), (0w | s <), (ea | a < k7))
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is a F'S system along ({¢¢ | ¢ < ws), (Bee | ¢ < & < ws)). We know that

({(P(n) [ n < ws), (s | 8 < 1), (€a | @ <wi))

is a F'S system along ({¢¢ | ¢ < ws), (Gee | ¢ < € < ws)). From this it follows
immediately that (FS4), (FS5) and (FS7) also hold for

((Py | n < k™7),{oa | s <), {ea | @ < KT)).

Moreover, (F'S1) holds, because

(x) P,={peP|pePn)}

and for P(n) we know (FS1) already. By (x), one has to prove for (FS2),
(FS3) and (FS6) that certain conditions are elements of P. In the case of
(FS2), for example, one has to show that oy (p) € Py)41 for all p € Py(g)41.
In all three cases that’s not difficult. O

Lemma 6.7

Let p € P and (7, ) € w3 X wy such that (v,0) ¢ dom(p). Then there exists
a g < p such that (v, ) € dom(q).

Proof: We prove by induction over the levels of the gap-2 morass, which we
enumerate by § < wq, the following

Claim: Let p € Py, and (7,0) € @y, x whs such that (vy,0) ¢ dom(p). Then
there exists a ¢ < p such that (v, d) € dom(q).

Base case: 3 =0

Trivial.



Successor case: = o+ 1

Let f be the right-branching embedding of §.s and n := crit(f [ 0,).

@

We consider three cases.

Case 1: v €rng(fy,), 0 € [0,wn[U[wl,, wbs]

Let p = (fo, © £) ' [p] Up"(0a), fo.(7) =7 and f(6) = 6 where f(wr +n) =
wf(r) + n for all n € w. Then by the induction hypothesis, there exists in

P

oo

a ¢ < p such that (¥,0) € dom(q). Set

q:=pU(fo. ® f)la-

Then ¢ < p, {~,9) € dom(q) and ¢ € IF’WB by remark 3.

Case 2: § € [0,wl,|

wlg

wb,
B8 % T

7 z

—1 /%
% "

f=a+1 / 05
, »

} rng(fo.)
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Let ¥ <, v € Tp,. Then there exists a g € Fo,0, such that g(7y) = . Pick
such a g. By the induction hypothesis, there exists a § < p*(0)U(fo, @) [p]

such that (,d) € dom(q). Set

q:=pUglql.

Then ¢ < p, (~,) € dom(q) and ¢ € ]P’Wﬁ by remark 3.
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Case 3: § € [wlha,wls|, v & rng(fs.)

Then set ¢ = p U {{({7,0),1)}. According to the case which we are in,

¢"(0a) = p*(6a) and (fo, @ f)7'g] = (fo. ® f)7'[p]. Hence ¢"(f) and
(fo. ® f)*[q] are compatible, because p*(6,) and (fy, ® f)~'[p] are compat-
ible. So q € IP)Wﬁ Obviously, ¢ < p and (v, 0) € dom(q).

Limit case: B € Lim

By the previous lemma, P,, = J{(fs, @ f)[P <Pea] |a < B, f €Fas}- By (5)
in the definition of a snnphﬁed gap-2 morass, g, = (J{fo.[pe.] | @ < B, f €
Sapt and 05 = U{f[fa] | @ < B, f € Sap}. Hence by (4) in the definition of
a simplified gap-2 morass, we can pick a < 3, f € Fap, P € Py, 7 € ©0,
and § € wh, such that fo, ® f[p] = p, fo.(7) = v and f(6) = & where
f(wr +n) = wf(r) 4+ n for all n € w. By the induction hypothesis, there
exists ¢ < p such that (7,6) € dom(q). Set q := fs, ® f[g]. Then ¢ is as
wanted. O

At the beginning of the section, we proved that the Cohen forcing P adds a
Hausdorff space. Using the next lemma, the same proof works for P.

Lemma 6.8

Let p € P and v # § € ws. Then there is ¢ < p in P and p € wsz such that
q(v; 1) # q(6, ).

Proof: We prove by induction over the levels of the gap-2 morass, which we
enumerate by J < wq, the following

Claim: Let p € IP)%B and v # d € @g,. Then there is ¢ < p in IP’@% and
p € whg such that q(v, 1) # q(0, ).

Base Case: =10

Trivial.
Successor Case: =a+ 1

Let f be the right-branching embedding of Fnz.
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u)9,3
wb,
¥os
N
o Z rng(fo.)
[k
B=a+1 / 0,
n B
wn
fa
’ n O

We consider four cases.

Case 1: 7,0 € rng(fy,)

Let p € Py, be given, fs, (7) = 7 and fo, () = 8. Set 5 = (fo, @ £)"'[p] U
p*(fa). By the induction hypothesis, there exists a ¢ € P, and a i =

w7 +n € wl, (n € w) such that § < p and q(7, i) # q(9, 1). Set

q=pU (fo. ® f)[d]

and 4 = wf(7) + n. Then q € ]P’Wﬁ by remark 3, ¢ < p and q(v,pu) =
q(7, ) # 4(6, 1) = q(6, ).

Case 2: 7,0 ¢ rng(fo,)
We consider two subcases. Assume first that 3 ¢ Lim. Then choose some
p € [w(fs —1),wbp| such that p & {m | 3n (71, 72) € dom(p)}. Set

q_pU{ < > >v<<6’/l>71>}'

(
By the choice of u, q € P(@gﬁ) Accordmg to the case which we are in,
| =

¢*(0a) = p*(0a) and (fo,@f) " a] = (fo. ®f) '[p]. Hence ¢* and (fo,®f) (g ]
are compatible because ¢* and (fy, ® f) *[q] are compatible. So ¢ € P,

and it is obviously as wanted.
Now, suppose that 03 € Lim. Assume w.l.o.g. that v < 0. Set t = (63,9).
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Let s < ¢ be minimal such that v € rng(ny). Let s € T,. Pick p €
(w - max(0,,n), wbg| such that p ¢ {m | I (71, 7) € dom(p)}. Set

q=pU {<<7’,u>70>a <<5> :u>’ 1>}

Like in the first subcase, ¢ € P(yg,) by the choice of x. Also like in the first
subcase, we can see that ¢ € IP’@%. Hence ¢ is as wanted.

Case 3: v e€rng(fa,), 0 ¢ rng(fo,)

Again, we consider two subcases. Assume first that 63 ¢ Lim. Then choose
p € [w(fs—1),wls| such that p & {75 | 37 (71, 72) € dom(p)}. Let fo,(7) =
and f(p1) = p where f(wr + n)0wf (1) + n.

Let
P =p"(0a) U (fo. ® f)"[p].
Then there exists by the previous lemma in Py, a g < p such that (3, 1) €
dom(q). Set
r=pU(fo. @ f)ldl
and

q=rU{{(d,p) €}

where fp, ® fla](v,n) # € € 2.
By the choice of p, ¢ € P(gpg,). By remark 3, r € IP)SD%. Hence 7*(6,)

and (fp, ® f)~![r] are compatible. According to the case which we are in,
¢"(6a) = 1*(0a) and (fo, ® f)7'g] = (fo, ® [)7'[r]. So also g € Py, . It is
also as wanted.

Now, suppose that 63 € Lim. Assume w.l.o.g. that v < . Set t = (63, 6).
Let s < ¢ be minimal such that v € rng(ny). Let s € T,. Pick p €
(w-maz(0,,n),wds| such that p ¢ {2 | I (11, 72) € dom(p)}. Let fo (7) =7
and f(fi) = pu where f(wr +n) = wf(r)+n for all n € w. Let

p=0"(0a) U (fo. ® )" [p]-

From now on, proceed exactly like in the first subcase.

Case 4: v & rng(fs,), 6 € rng(fs,)
Like case 4.

Limit Case: 3 € Lim

By a previous lemma, Pwﬁ = H{(fo. ® )Py, ] | a < B, f € Fap}- By (5)
in the definition of a simplified gap-2 morass, g, = U{ fo.[ws.] | @ < B, f €
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Sap} and 05 = U{f[0a] | @ < B, f € Sap}. Hence by (4) in the definition of
a simplified gap-2 morass, we can pick a < 8, f € Fap, P € Py, 7 € ¥,
and § € wl, such that fo, ® f[p] = p, fo.(7) = 7 and f(3) = & where
f(wr 4+n) = wf(r) +n for all n € w. By the induction hypothesis, there
exists ¢ < p such that g(¥, 1) # (6, ji). Set ¢ := fy, ® f[g]. Then q is as
wanted. O

Finally, we prove the appropriate lemma for spread < ws.

Lemma 6.9

Let (p; | i € wa) be a sequence of conditions p; € P such that p; # p; if i # j.
Let (6; | ¢ € wy) be a sequence of ordinals J; € ws such that §; € rng(z,,) for
all i € wy. Then there exist ¢ # j and p € P such that p < p;, p;, (6, 1) € x,
and p(0;, ) = p(d;, p) for all € rng(zy,).

Proof: We can assume by the A-system lemma that all x,, are isomorphic
relative to the order of the ordinals, that p; = p; for all 7,7 € w,, that
m(0;) = 6; if m : dom(zp,) = dom(w,,), that {rng(z,,) | i € wy} forms a
A-system with root A, and that 7 [ A = id [ A if m : rng(zy,) = rng(zy,).
To prove the lemma, we consider two cases.

Case 1: rng(z,,) = A forall i € wy

Then we set n = max(A). Since there are wo-many p; while P, ., has only w;-
many elements, there exist p; and p; with i # j such that p;(n+1) = pj(n+1).
Hence by the usual arguments p; and p; are compatible. Set p = p;Up;. Then
p is as wanted, because p; = p; and 7(6;) = 0; if 7 : dom(x,,) = dom(zy, ).

T
|
)
1 8
pin+1) =pjn+1) !
pi
I
|
‘ 9;
/ DPj :
— |
N I
I
|
|
|
)
w1 f
n+1
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Case 2: rng(xy,) # A for all i € ws
Then {min(rng(r,,) — A) | i € wp} is unbounded in w,. For every i € wy
choose a; < w1, fi € Sasw, 0i € wp,, and p; € Py, such that

pi = (fi)oo, ® fili] and & = (fi)a., (6:)-

Since there are wp-many 4; and p; but only w;-many possible §; and p;, we
can assume that o; = «y, 6; = 9; and p; = p; for all 4,5 € wy. Set p = p;,
o = «; and 0 = ;.

«

Let v € ws be such that p; € P, for all i € ws. Let t = (wq,v). Let s < ¢
such that p; € rng(og) for wi-many i € ws.

7 D

s / "~ b
//
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Let s € T;,. Pick p; such that min(rng(z,,) — A) > wn.

t=v,

/

70
i

"

Let n; = min(rng(x,,) — A). Then by the choice of f;, n; € rng(f; | 0,). Let
u < t be such that v € T,,. Let f;(7;) = ;.

t
u 5,
S
0
% ni WZ
i 0,

«

Since there are wj-many j € wy such that p; € rng(oy), there are also ws-
many j € we such that p; € rng(o,). On the other hand, rng((fi)s) is
countable. So we can pick a j € wy such that § ¢ rng((fi)z), Tu(0) = 9;
and p; € rng(oy). In the following we will show that there exists p < p;, p;
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such that (d;, u) € x, and p(d;, ) = p(d;, p) for all p € rng(z,,).

For a < # < wy, let f; = giﬁ o hf where g? € Tap and hf} € §pu,- Let
¢°(nP) = n; and 4 be minimal such that ¢ € g (g7 )y7)-

w2

v

«

For v < 8 < wy, let (g),5(6%) = 6, p] = (h))o., @ h][p), 9[As] = A and
67 = (1), (). We prove by induction over y < # < wy the following
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Claim 1: If (7, 8%) < (63,8'), then there exists p® < p/ such that (&', u) €
Tps and P07 1) = pP(0, ) for all p e rng(z,s) — Ag.

w2

5/

b 38

Y

Base case: =1

By the definition of 7 and (5) in the definition of a simplified gap-2 morass,
v is a successor ordinal. Let v = o + 1. Moreover, 0., < n/. Hence

pi=1to,®f [p)'] where f is the right-branching embedding of Sy
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&
- /l/
7=9"+1 0,
n
fn;v’
’Y/
n O
a 6.

We first notice, that 8" ¢ rng(fs_,). Assume that this was not the case. Then
pick a 7 € &,y such that 7(6”) = §'. By (6) in the definition of right-
branching, there is a T € & v, ~such that f ./, (m) = m. Let fgw,(é_’) =4

77;/ G,Y/
Let (1, ) < {01, 8).



) B

6/

o — A
y=7"+1 )

By (6) in the definition of embedding,
from=mo for.
Hence fn7/ (p) = 67, which contradicts the definition of 7.

Summarizing what we know so far the picture looks as follows:

58
5

/7

NN
RS

\5/
\

v = '*,/' +1 97 (53

i

-y
7

127
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Hence we can define a condition p® < piﬁ , p” € P by setting
P’ =] UL 1), 07 (67, 1) | o € rng(a,0) — 0,3
This p” is as wanted.

Successor step: =p+1
We consider two cases:
Case 1: p’ = g[p?] for some g € BGo,0,

In this case 7/ = 70 < 0,. Let (n],6°%) < (8,,0") < (83,0"). Let w € Bo,0,
such that 7(6”) = ¢’. Then by the induction hypothesis, there exists p’ < pf
such that

p'(0", 1) = p'(67, 1)
for all € rng(z,r) — A,. Set
P’ =7 Tuglp].
Then by remark 3, p® € P and
pP(8 1) = p'(8", ) = p' (80, 1) = P (6], )

for all pu € rng(z,r) — A, = rng(xpf) — Ag. Hence p? is as wanted.

O=p+1
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Case 2: p = fy ,[pf] where f is the right-branching embedding of § 3
We consider three subcases.

Subcase 1: ¢ € rng(fy,)

Let fy,(0') = ¢’. Then by (6) in the definition of embedding, 6 < ¢'.

58
/ '
B=p+1 / 0,
!
Top
f &
5/0
p
n O

Hence by the induction hypothesis, there exists p” < p? such that (&', u) € xp
and p?(67, u) = p?(0', p) for all p € rng(z,e) — A,. Set

Then p” is as wanted.

Subcase 2: ¢' ¢ rng(fy,) and 0, < 7];8

Exactly like the base case of the induction.

Subcase 3: ¢ & rng(fs,) and n’ <0,

This case is a combination of the base case of the induction and of case 1.
Let (1),0%) < (6,,8") < (05,0"). Let m € &g, such that 7(5") = &'. Then
by the induction hypothesis, there exists p? < p such that (¢, ) € 2,0 and

(0%, ) = p° (8", )

for all pn € rng(z,r) — A,



130 6. SPREAD AND SIZE OF HAUSDORFF SPACES

6//

5 P
/ 5’
I

7

NNNE

Bb=p+1

)

Set
P’ =xlp’ )V (fo, @ NIPFTULIS 1), 07 (8] 1)) | 1 € rng(a,p) — 6}

By remark 3, p® € P. We claim that p” is as wanted. For u € rng(xp_g) —0,,

PP, 1) = P, )

holds by definition. For u € rng(xpi,@) N0, =rng(x,e) N0, we have

PP, ) = pP (0", 1) = p (0, 1) = P (), ).

This finishes the proof of the successor step.
Limit case: 3 € Lim

By lemma 6.5 and by (4) and (5) in the definition of a simplified gap-2
morass, we can pick a p < § and a f € §,s such that ¢’ € rng(fy,) and
fo, ® fpf] = P’ Let fa,(¢") = &'. Then by (6) in the definition of embedding,
(nf',8°) < (05, 9").
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5

6/

8

Hence we can pick by the induction hypothesis a p” < pf such that (o', u) €
Zpe and

pp((szp: :u) = pp((sla N)
for all p € rng(z,r) — A, Set

Then p” is obviously as wanted. This finishes the proof of claim 1.
Finally, we can prove by induction over a < 8 < w;

Claim 2: For a < 3 < 7, set p° := pi’g. For v < 3 < wy, let p? be like in
claim 1. Then there exists for all @ < 3 < w; a p € P such that p < pﬁ,pf.

Base case: =«

Trivial.
Successor case: = p+1

We consider four cases.

Case 1: p’ = g[p’] and p? = h[pf] for some g, h € &g,

By the induction hypothesis, there exists a p < p”, pg-’ . Set
p = g[p] Uh[p] Up’.

It is not difficult to see that p € P in all the different cases which occur in
the definition of p°.
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Case 2: p) = fo, ® flpf] and p? = g[pj] where g € B9, and f is the right-
branching embedding of §,s3

By the induction hypothesis, there exists a p < p”, p? . Set

p=glplU(fo,® /Pl Up’.

It is not difficult to see that p € P in all the different cases which occur in
the definition of p?.

Case 3: pf- = fo, @ f[p}] and PP = g[p’] where g € B0, and f is the right-
branching embedding of §,3

Like case 2.

Case 4: p/ = Jo, ® fp] and p]ﬁ- = fo, ® f[p§] where f is the right-branching
embedding of §,g

By the induction hypothesis, there exists a p < p”, p? . Set

p="(fo, ® D] UP’.

It is not difficult to see that p € P in all the different cases which occur in
the definition of p”.

Limit case: € Lim

This is proved very similar to the limit step in claim 1.
This finishes claim 2 and proves the lemma, if we set § = w; and §' =¢,. O

Lemma 6.10
(a) i : Py, — Q,,,p— p* | supp(p) is a dense embedding.
(b) There is a ccc-forcing PP of size w; such that Q,, embedds densely into P.

Proof: (a) By results from section 3.

(b) Note, that ((Q, | n < ws), (0, | s <" 1), (e, | &« < wq)) is a FS iteration
along (0o | @ < wi), (8, | @ < B < wi)). Hence we can define P from Q,,
like we defined Q,, from P,,. That Q,, embedds densely into PP is proved
like before. O

Theorem 6.11

If there is a simplified (w;, 2)-morass, then there is a ccc-forcing P of size w;
that adds a 0-dimensional Hausdorff topology on w3 which has spread wy.
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Proof: By the previous lemmas, most of the claim is clear. We only prove
that 7 has spread w;. Assume not. Let X, h and B be names and pePa
condition such that

plF (X C ws, h: wy — X is bijective, B : wy — V, Vi € wsy B(i) is a basic
open set, Vi # j € wy h(i) € B(i) A h(j) ¢ B(i)).

For every i € wy let p; < p and §;, g; be such that p; I h(i) = &/\B(i) = B;,.
By the previous lemma, there are ¢ # j and r € P such that » < p;,p;,
(i, 1) € x and 7(d;, p) = r(d;, ) for all p € rng(z,,). Hence r - h(j) =
5; € B(i) which contradicts the definition of p. O

Historical remarks and references

Theorem 6.1 was first proved for regular spaces by J. de Groot [4]. Then this
was generalized to arbitrary Hausdorff spaces by A. Hajnal and I. Juhasz [14].
The proof given here is from Juhasz’s book [25]. Fedorcuk’s construction of
a 0-dimensional Hausdorff space with spread w and size 22° in L is given in
[11].

The construction which we presented in this chapter was first described in
Irrgang [17].
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