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MORASSES AND FINITE SUPPORT ITERATIONS

BERNHARD IRRGANG

Abstract. We introduce a method of constructing a forcing along a simpli-
fied (κ, 1)-morass such that the forcing satisfies the κ-chain condition. Alter-

natively, this may be seen as a method to thin out a larger forcing to get a
chain condition. As an application, we construct a ccc forcing that adds an

ω2-Suslin tree. Related methods are Shelah’s historic forcing and Todorcevic’s

ρ-functions.

1. Introduction

There are a number of consistency questions from two-cardinal combinatorics
that were answered by Shelah’s method of historic forcing or with the help of Todor-
cevic’s ρ-functions: Can there exist a superatomic Boolean algebra with width ω
and height ω2 (Baumgartner and Shelah [1], Martinez [13])? Is it possible, that
there is a function f : ω2 × ω2 → ω, such that f is non-constant on any rectan-
gle with infinite sides (Todorcevic [24, 22])? Can one prove in ZFC, that every
initially ω1-compact T3-space with countable tightness is already compact (Rabus
[17], Juhasz and Soukup [10])? Is there consistently a forcing that satisfies ccc and
adds a Kurepa tree (Jensen [8], Velickovic [26])? There are many more examples,
but we cannot give a comprehensive overview here. In all cases there is a natural
forcing with finite conditions that would solve the problem if it preserved cardinals.
Since the conditions are finite, the suitable property of the forcing to guarantee
cardinal preservation is the countable chain condition (ccc). Therefore one thins
out the natural forcing in such a way that the remaining forcing satisfies ccc.

In the following, we will present the simplest case of a morass approach to such
questions, i.e. to construct a ccc-forcing of size ω2. The basic idea is simple: We
try to generalize iterated forcing with finite support. Classical iterated forcing with
finite support as introduced by Solovay and Tennenbaum [18] works with continu-
ous, commutative systems of complete embeddings of Boolean algebras or partial
orders which are indexed along a well-order. The following holds: If every forcing
of the system satisfies ccc, then also the direct limit does. So if e.g. all forcings of
the system are countable, then its direct limit satisfies ccc. It will, however, have
size ≤ ω1 since it is a direct limit, while we want to construct a forcing of size ω2.
To overcome this limitation, we will not consider a linear system indexed along a
well-order but a two-dimensional system indexed along a simplified (ω1, 1)-morass.
Since we want to obtain complete embeddings, we have to thin out the natural
forcings. The way to do this follows very naturally from our approach. As an
example how the thinning out is done, we will construct a ccc forcing that adds an
ω2-Suslin tree. The basic forcing we thin out is Tennenbaum’s forcing for adding a
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Suslin tree with finite conditions.

Morasses were introduced by R. Jensen in the early 1970’s to solve the cardinal
transfer problem of model theory in L (see e.g. Devlin [2]). For the proof of the
gap-2 transfer theorem a gap-1 morass is used. For higher-gap transfer theorems
Jensen has developed so-called higher-gap morasses [9]. In his Ph.D. thesis, the
author generalized these to gaps of arbitrary size (see [7, 6, 5]). The theory of
morasses is far developed and well examined. In particular, it is known how to
construct morasses in L [2, 4, 7, 5] and how to force them [19, 20]. Moreover, D.
Velleman has defined so-called simplified morasses, along which morass construc-
tions can be carried out more easily [27, 30, 29]. Their existence is equivalent to
the existence of ordinary morasses [3, 15]. The fact that the theory of morasses
is so far developed is an advantage of the morass approach compared to historic
forcing or ρ-functions. It allows straightforward generalizations to higher cardinals
while the conditions of the forcings can be kept finite.

While the general method presented here works for higher cardinals, we can in gen-
eral not expect that the consistency statements can naively be extended by raising
the cardinal parameters. For example, we force an ω2-Suslin tree along a gap-1
morass. An innocent generalization of the argument that the resulting tree has
neither a branch nor an antichain of size ω2, would yield a tree on ω3 that has
neither a branch nor an antichain of size ω2, which is of course impossible. The
reason why this generalization does not work is that the gap-2 case yields a three-
dimensional construction. Therefore, the finite conditions of our forcing have to
fit together appropriately in three directions instead of two directions and that is
impossible. So if and how a statement generalizes to higher gaps depends heavily
on the concrete conditions.

The exact relationship between our approach and the methods of historic forcing
and ρ-functions is an open question. The crucial step in our proof that chain condi-
tions are preserved is the definition of the support of a condition. It resembles the
definition of the “history” t∗(α) of an ordinal α given by Baumgartner and Shelah
[1]. However, there are various ways to set things up and the definition of a FS
system given below is just one of them. As far as ρ-functions are concerned, it is
possible to directly read off a ρ-function from a simplified gap-1 morass. This is a
result of C. Morgan’s in [14]. It is, however, unclear how this relates to an approach
as below which generalizes finite support iterations.

If P is the limit of a finite support iteration indexed along α, then we can understand
a P-generic extension as being obtained successively in α-many steps. Moreover,
there are names for the forcings used in every step. This raises the question if a
similar analysis is possible for a forcing which is constructed with our method. It
would justify to call them FS iterations along morasses instead of FS systems along
a morass, which was the name the author used until the referee pointed out the
shortcoming concerning successive extensions.

We should also mention that besides historic forcing and ρ-functions there is an-
other, quite different method to prove consistencies in two-cardinal combinatorics.
This is the method of forcing with models as side conditions or with side conditions
in morasses. Models as side conditions were introduced by S. Todorcevic [23, 25],
which was further developed by P. Koszmider [11] to side conditions in morasses.
Unlike the other methods, it produces proper forcings which are usually not ccc.
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This is sometimes necessary. For example, Koszmider proved that if CH holds,
then there is no ccc forcing that adds a sequence of ω2 many functions f : ω1 → ω1

which is ordered by strict domination mod finite. However, he is able to produce a
proper forcing which adds such a sequence [11]. More on the method can be found
in Morgan’s paper [16]. In the context of our approach, this raises the question if
it is possible to define something like a countable support iteration along a morass.

2. FS Iterations

Let P and Q be partial orders. A map σ : P → Q is called a complete embedding
if
(1) ∀p, p′ ∈ P (p′ ≤ p → σ(p′) ≤ σ(p))
(2) ∀p, p′ ∈ P (p and p′ are incompatible ↔ σ(p) and σ(p′) are incompatible)
(3) ∀q ∈ Q ∃p ∈ P ∀p′ ∈ P (p′ ≤ p → (σ(p′) and q are compatible in Q)).
In (3), we call p a reduction of q to P with respect to σ.

If only (1) and (2) hold, we say that σ is an embedding. If P ⊆ Q such that the
identity is an embedding, then we write P ⊆⊥ Q.

We say that P ⊆ Q is completely contained in Q if id � P : P → Q is a complete
embedding.

Let α ∈ Lim. A finite support (FS) iteration is a sequence 〈Pξ | ξ ≤ α〉 of
partial orders together with a commutative system 〈σξη | ξ < η ≤ α〉 of complete
embeddings σξη : Pξ → Pη such that

⋃
{σξη[Pξ] | ξ < η} = Pη for limit η.

This is the original definition by Solovay and Tennenbaum in [18], except that they
use Boolean algebras instead of partial orders. Moreover, it is well known that if
σ : P1 → P2 is a complete embedding then there is a P1-name Q̇ such that P2

and P1 ∗ Q̇ are forcing equivalent. This leads to the more common definition of
FS iterations where conditions are sequences of names. For the exact relationship
between the two approaches see Kunen’s textbook [12], chapter VIII §5 and exercise
K.

An important property of FS iterations is that they preserve the κ-cc:

Theorem 2.1. Let 〈〈Pξ | ξ ≤ α〉, 〈σξη | ξ < η ≤ α〉〉 be a FS iteration. Assume
that all Pξ with ξ < α satisfy the κ-cc. Then Pα also satisfies the κ-cc.

Proof. See the original article by Solovay and Tennenbaum [18] or any standard
textbook. �

3. Morasses

A simplified (κ, 1)-morass is a structure M = 〈〈θα | α ≤ κ〉, 〈Fαβ | α < β ≤ κ〉〉
satisfying the following conditions:
(P0) (a) θ0 = 1, θκ = κ+, ∀α < κ 0 < θα < κ.
(b) Fαβ is a set of order-preserving functions f : θα → θβ .
(P1) |Fαβ | < κ for all α < β < κ.
(P2) If α < β < γ, then Fαγ = {f ◦ g | f ∈ Fβγ , g ∈ Fαβ}.
(P3) If α < κ, then Fα,α+1 = {id � θα, fα} where fα is such that fα � δ = id � δ
and fα(δ) ≥ θα for some δ < θα.
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(P4) If α ≤ κ is a limit ordinal, β1, β2 < α and f1 ∈ Fβ1α, f2 ∈ Fβ2α, then there
are a β1, β2 < γ < α, g ∈ Fγα and h1 ∈ Fβ1γ , h2 ∈ Fβ2γ such that f1 = g ◦ h1 and
f2 = g ◦ h2.
(P5) For all α > 0, θα =

⋃
{f [θβ ] | β < α, f ∈ Fβα}.

Lemma 3.1. Let α < β ≤ κ, τ1, τ2 < θα, f1, f2 ∈ Fαβ and f1(τ1) = f2(τ2). Then
τ1 = τ2 and f1 � τ1 = f2 � τ2.

Proof by induction over β. The base case of the induction is β = α + 1. Then the
claim follows immediately from (P3). So assume that β = γ + 1. Let, by (P2),
fi = gi ◦ f ′i where f ′i ∈ Fαγ , gi ∈ Fγβ . Let τ ′i = f ′i(τi). It follows like in the base
case that τ ′1 = τ ′2 and f ′1 � τ1 = f ′2 � τ2. So, by the induction hypothesis, τ1 = τ2

and f ′1 � τ1 = f ′2 � τ2. Hence f1 � τ1 = f2 � τ2.
Finally, let β ∈ Lim. Then there exists by (P4) α < γ < β and g ∈ Fγβ such

that fi = g ◦ f ′i , f ′i ∈ Fαγ . So f ′1(τ1) = f ′2(τ2). Hence τ1 = τ2 and f ′1 � τ1 = f ′2 � τ2

by the induction hypothesis. Therefore f1 � τ1 = f2 � τ2. �

A simplified morass defines a tree 〈T,≺〉:

Let T = {〈α, γ〉 | α ≤ κ, γ < θα}.
For t = 〈α, ν〉 ∈ T set α(t) = α and ν(t) = ν.
Let 〈α, ν〉 ≺ 〈β, τ〉 iff α < β and f(ν) = τ for some f ∈ Fαβ .
If s := 〈α, ν〉 ≺ 〈β, τ〉 =: t, f ∈ Fαβ and f(ν) = τ , then f � (ν(s) + 1) does not
depend on f by lemma 3.1. So we may define πst := f � (ν(s) + 1).

Lemma 3.2. The following hold:
(a) ≺ is a tree, htT (t) = α(t).
(b) If t0 ≺ t1 ≺ t2, then πt0t1 = πt1t2 ◦ πt0t1 .
(c) Let s ≺ t and π = πst. If π(ν′) = τ ′, s′ = 〈α(s), ν′〉 and t′ = 〈α(t), τ ′〉, then
s′ ≺ t′ and πs′t′ = π � (ν′ + 1).
(d) Let γ ≤ κ, γ ∈ Lim. Let t ∈ Tγ . Then ν(t) + 1 =

⋃
{rng(πst) | s ≺ t}.

Proof. (a) First, we prove that ≺ is transitive. Let 〈α, ν〉 ≺ 〈β, τ〉 be witnessed
by f ∈ Fαβ and 〈β, τ〉 ≺ 〈γ, η〉 by g ∈ Fαβ . Set h = g ◦ f ∈ Fαγ by (P2). Then
h(ν) = η. So 〈α, ν〉 ≺ 〈γ, η〉.

Now, let 〈α, ν〉, 〈β, τ〉 ≺ 〈γ, η〉 and 〈α, ν〉 6= 〈β, τ〉. It follows from lemma 3.1 that
α 6= β. Let w.l.o.g. α < β. Let 〈α, ν〉 ≺ 〈γ, η〉 be witnessed by f ∈ Fαγ . By (P2)
choose g ∈ Fβγ and h ∈ Fαβ such that f = g ◦ h. Then 〈α, ν〉 ≺ 〈β, h(ν)〉 ≺ 〈γ, η〉.
However, h(ν) = τ by lemma 3.1. Hence 〈α, ν〉 ≺ 〈β, τ〉. This proves that ≺ is a
tree.

Finally, by (P2), for all t ∈ T there is s ≺ t such that α(s) = β if β < α(t). This
shows the second claim.
(b) follows immediately from (a) and the definition.
(c) Let s ≺ t be witnessed by f ∈ Fαβ . Then s′ ≺ t′ is also witnessed by f and
πs′t′ = π � (ν′ + 1) holds by definition.
(d) It suffices to prove ⊆. Let ν = ν(t) and τ < ν. By (P5) choose α1, α2 < γ
and fi ∈ Fαiγ such that τ ∈ rng(f1) and ν ∈ rng(f2). By (P4) choose β such that
α1, α2 < β < γ and f ′i ∈ Fαiβ , g ∈ Fβγ where fi = g ◦ f ′i . Then τ, ν ∈ rng(g). So



MORASSES AND FINITE SUPPORT ITERATIONS 5

let g(τ̄) = τ and g(ν̄) = ν. Hence τ̄ < ν̄, since g is order-preserving. Let s = 〈β, ν̄〉.
Then s ≺ t and πst(τ̄) = τ . �

Lemma 3.3. Let α < β ≤ κ. Then id � θα ∈ Fαβ.

Proof by induction on β. The base case of the induction is β = α + 1. Then the
claim is part of (P3). So assume that β = γ + 1. By the induction hypothesis,
id � θα ∈ Fαγ . By (P3), id � θγ ∈ Fγβ . Hence id � θα = (id � θγ) ◦ (id � θα) ∈ Fαβ

by (P2).
Finally, let β ∈ Lim. Assume towards a contradiction that id � θα /∈ Fαβ .

Let f ∈ Fαβ be such that sup(f [θα]) is minimal. Since f 6= id � θα, there are
ν < τ ∈ θβ such that ν /∈ rng(f) and τ ∈ rng(f). Let t = 〈β, τ〉. By lemma 3.2
(d), there is an s ≺ t such that ν ∈ rng(πst). Let s = 〈γ + 1, τ̄〉 be the minimal
such s. Let ν = πst(ν̄). Furthermore, let f = f3 ◦ f2 ◦ f1 where f3 ∈ Fγ+1,β ,
f2 ∈ Fγ,γ+1 and f1 ∈ Fαγ . Then πst = f3 � τ̄ + 1. Hence by the minimality of s,
f2 6= id � θγ , ν̄ < θγ and τ̄ ≥ θγ . Define g := f3 ◦ (id � θγ) ◦ f1. Then g ∈ Fαγ

by (P2) and rng(g) ⊆ f3[θγ ] ⊆ f3(τ̄) = τ . Hence sup(f [θα]) was not minimal.
Contradiction! �

Theorem 3.4. (a) If V = L, then there is a simplified (κ, 1)-morass for all regular
κ > ω.
(b) If κ is an uncountable regular cardinal such that κ+ is not inaccessible in L,
then there is a simplified (κ, 1)-morass.
(c) For every regular κ > ω, there is a κ-complete (i.e. every decreasing sequence
of length < κ has a lower bound) forcing P satisfying κ+-cc such that P 
 ( there
is a simplified (κ, 1)-morass).

Proof. (a) see Devlin [2], VIII 2 and 4 or Velleman [27].
(b) see Devlin [2], VIII 4 and exercise 6, or Velleman [28].
(c) see Velleman [27]. �

4. FS Systems Along Morasses

Let M be a simplified (κ, 1)-morass. We want to define a generalization of a FS
iteration which is not indexed along an ordinal but along M. One way of doing
this is the following definition:

We say that 〈〈Pη | η ≤ κ+〉, 〈σst | s ≺ t〉, 〈eα | α < κ〉〉 is a FS system along M if
the following conditions hold:

(FS1) 〈Pη | η ≤ κ+〉 is a sequence of partial orders such that Pη ⊆⊥ Pν if η ≤ ν
and Pλ =

⋃
{Pη | η < λ} for λ ∈ Lim.

(FS2) 〈σst | s ≺ t〉 is a commutative system of injective embeddings σst : Pν(s)+1 →
Pν(t)+1 such that if t is a limit point in ≺, then Pν(t)+1 =

⋃
{σst[Pν(s)+1] | s ≺ t}.

(FS3) eα : Pθα+1 → Pθα
.

(FS4) Let s ≺ t and π = πst. If π(ν′) = τ ′, s′ = 〈α(s), ν′〉 and t′ = 〈α(t), τ ′〉, then
σst : Pν(s)+1 → Pν(t)+1 extends σs′t′ : Pν′+1 → Pτ ′+1.

Hence for f ∈ Fαβ , we may define σf =
⋃
{σst | s = 〈α, ν〉, t = 〈β, f(ν)〉}.

(FS5) If πst = id � ν(s) + 1, then σst = id � Pν(s)+1.

(FS6)(a) If α < κ, then Pθα
is completely contained in Pθα+1 in such a way that
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eα(p) is a reduction of p ∈ Pθα+1 .
(b) If α < κ, then σα := σfα

: Pθα
→ Pθα+1 is a complete embedding such that

eα(p) is a reduction of p ∈ Pθα+1 .

(FS7)(a) If α < κ and p ∈ Pθα , then eα(p) = p.
(b) If α < κ and p ∈ rng(σα), then eα(p) = σ−1

α (p).

To simplify notation, set P := Pκ+ .

Unlike in the case of FS iterations, it is unclear how a generic extension with re-
spect to Pκ+ can be viewed as being obtained by successive extensions. This would
justify to call a FS system along M a FS iteration along M.

However, like in the case of FS iterations it is sometimes more convenient to repre-
sent P as a set of functions p∗ : κ → V such that p∗(α) ∈ Pθα

for all α < κ.

To define such a function p∗ from p ∈ P set recursively
p0 = p

νn(p) = min{η | pn ∈ Pη+1}
tn(p) = 〈κ, νn(p)〉
p(n)(α) = σ−1

st (pn) if s ∈ Tα, s ≺ tn(p) and pn ∈ rng(σst).

Note that, by lemma 3.2 (a), s is uniquely determined by α and tn(p). Hence we
really define a function. Set

γn(p) = min(dom(p(n))).

By (FS2), γn(p) is a successor ordinal or 0. Hence, if γn(p) 6= 0, we may define
pn+1 = eγn(p)−1(p(n)(γn(p))).

If γn(p) = 0, we let pn+1 be undefined.

Finally, set p∗ =
⋃
{p(n) � [γn(p), γn−1(p)[ | n ∈ ω} where γ−1(p) = κ.

Note: If n > 0 and α ∈ [γn(p), γn−1(p)[, then p∗(α) = σ−1
st̄ (pn) where t̄ = 〈γn(p)−

1, νn(p)〉 because p∗(α) = p(n)(α) = σ−1
st (pn) = (σt̄t ◦ σst̄)−1(pn) = σst̄(pn) where

the first two equalities are just the definitions of p∗ and p(n). For the third equality
note that t̄ ≺ t since id � θα ∈ Fαβ for all α < β ≤ κ by lemma 3.3. So the equality
follows from the commutativity of 〈σst | s ≺ t〉. The last equality holds by (FS5).

It follows from the previous observation that 〈γn(p) | n ∈ ω〉 is decreasing. So
the recursive definition above breaks down at some point, i.e. γn(p) = 0 for some
n ∈ ω. However, that is good news because of the following.

The support of p is defined by supp(p) = {γn(p) | n ∈ ω}. Hence supp(p) is finite.

Lemma 4.1. If p∗(α) and q∗(α) are compatible for α = max(supp(p) ∩ supp(q)),
then p and q are compatible.

Proof. Suppose that p and q are incompatible. Without loss of generality let ν :=
min{η | p ∈ Pη+1} ≤ min{η | q ∈ Pη+1} =: τ . Set s = 〈κ, ν〉 and t = 〈κ, τ〉.
Let t′ ≺ t be minimal such that ν ∈ rng(πt′t) and p, q ∈ rng(σt′t). By (FS2),
t′ ∈ Tα0+1 for some α < κ. Let πt′t(ν′) = ν and s′ = 〈α + 1, ν′〉. Let s̄, t̄ be
the direct predecessors of s′ and t′ in ≺. Set p′ = σ−1

s′s(p), q′ = σ−1
t′t (q). Then

p′ = p∗(α0 +1), q′ = q∗(α0 +1) by the definition of p∗. Moreover, p′ and q′ are not
compatible, because if r ≤ p′, q′, then σt′t(r) ≤ p, q by (FS2). Now, we consider
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several cases.

Case 1: ν′ /∈ rng(πt̄t′)
Then πs̄s′ = id � ν(s̄)+1 and σs̄s′ = id � Pν(s̄)+1 by the minimality of α0. Moreover,
p̄ := p′ and q̄ := eα(q′) are not compatible, because if r ≤ p′, eα(q′), then there is
u ≤ r, q′, p′ by (FS6)(a). There is no difference between compatibility in Pθα+1 and
in Pν(t′)+1 by (FS1). Finally, note that p̄ = p∗(α0) and q̄ = q∗(α0) by the definition
of p∗ and (FS7).

Case 2: ν′ ∈ rng(πt̄t′) and πs̄s′ = id � ν(s̄) + 1
Then πt̄t′ 6= id � ν(t̄)+1 by the minimality of α0 and p̄ := p′ and q̄ := eα(q′) are not
compatible (like in case 1). However, p̄ = p∗(α0) and q̄ = q∗(α0) by the definition
of p∗ and (FS7).

Case 3: ν′ ∈ rng(πt̄t′), πs̄s′ 6= id � ν(s̄) + 1 and α0 + 1 /∈ supp(p)
Then πt̄t′ 6= id � ν(t̄) + 1 by the minimality of α0. Set p̄ := σ−1

s̄s′ (p′) and q̄ = eα(q′).
Then p̄ and q̄ are not compatible, because if r ≤ p̄, q̄, then there is u ≤ σα(r), q′, p′

by (FS6)(b). However, p̄ = p∗(α0) and q̄ = q∗(α0) by the definition of p∗ and (FS7).

Case 4: ν′ ∈ rng(πt̄t′), πs̄s′ 6= id � ν(s̄) + 1 and α0 + 1 /∈ supp(q)
Then πt̄t′ 6= id � ν(t̄) + 1. Set q̄ := σ−1

s̄s′ (q′) and p̄ = eα(p′). Then q̄ and p̄ are not
compatible, because if r ≤ p̄, q̄, then there is u ≤ σα(r), p′, q′ by (FS6)(b).

Case 5: α0 + 1 ∈ supp(p) ∩ supp(q)
Then α0 + 1 = max(supp(p) ∩ supp(q)), since α0 + 1 ≥ max(supp(q)) because by
definition q ∈ rng(σrt) where r ≺ t and r ∈ Tmax(supp(q)). However, p′ = p∗(α0+1),
q′ = q∗(α0 + 1) are not compatible. Contradiction.

So in case 5 we are finished. If we are in cases 1 - 4, we define recursively αn+1

from p∗(αn) and q∗(αn) in the same way as we defined α0 from p and q. Like in
the previous proof that 〈γn(p) | n ∈ ω〉 is decreasing, we see that 〈αn | n ∈ ω〉 is
decreasing. Hence the recursion breaks off, we end up in case 5 and get the desired
contradiction. �

Theorem 4.2. Let µ, κ > ω be cardinals, κ regular. Let 〈〈Pη | η ≤ κ+〉, 〈σst | s ≺
t〉, 〈eα | α < κ〉〉 be a FS system along a (κ, 1)-morass M. Assume that all Pη with
η < κ satisfy the µ-cc. Then Pκ+ also does.

Proof. Let A ⊆ Pκ+ be a set of size µ. Assume by the ∆-system lemma that
{supp(p) | p ∈ A} forms a ∆-system with root ∆. Set α = max(∆). Then Pθα

satisfies the µ-cc by the hypothesis of the lemma. So there are p 6= q ∈ A such that
p∗(α) and q∗(α) are compatible. Hence p and q are compatible by the previous
lemma. �

5. A CCC Forcing That Adds An ω2-Suslin Tree

As an application, we construct along an (ω1, 1)-morass a ccc forcing P that adds
an ω2-Suslin tree.
The natural forcing to do this with finite conditions is Tennenbaum’s forcing (see
[21]): Define P (θ) as the set of all finite trees p = 〈xp, <p〉, xp ⊆ θ, such that α < β
if α <p β.
Set p ≤ q iff xp ⊃ xq and <q=<p ∩x2

q.
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For θ = ω1, P (θ) is Tennenbaum’s forcing to add an ω1-Suslin tree which satisfies
ccc.
However, if θ > ω1 + 1, then

A = {p ∈ P (θ) | xp = {α, α + 1, α + 2, ω1, ω1 + 1}, α < ω1,

α <p α + 1 <p ω1, α <p α + 2 <p ω1 + 1, α + 1 6<p α + 2}

is an antichain of size ω1.
So P (θ) does not satisfy the ccc and in order to thin it out so that it obtains ccc,
we have to restrict the possible values of the infima in our trees.
Let π : θ̄ → θ be a order-preserving map. Then π : θ̄ → θ induces maps π : θ̄2 → θ2

and π : P (θ̄) → P (θ) in the obvious way:

π : θ̄2 → θ2, 〈α, β〉 7→ 〈π(α), π(β)〉

π : P (θ̄) → P (θ), 〈xp, <p〉 7→ 〈π[xp], π[<p]〉.
If p ∈ P (θ), then set

π−1[p] := 〈π−1[xp ∩ rng(π)], π−1[<p ∩rng(π)]〉.

It is easily seen that then π−1[p] ∈ P (θ̄).

Now, let us assume that we restrict the allowed values of the infimum ip(α, β) of
α, β ∈ xp in the tree p ∈ P (θ) to a set F (α, β). For δ < θ, we want to find a
reduction of p ∈ P (θ) with respect to id � δ. Let us look for example at a p with
xp = {α, β} and <p= {〈α, β〉} such that α < δ < β. Then we cannot just take
(id � δ)−1 as reduction because we could extend it to a condition q such that iq(α, γ)
exists for some γ ∈ δ. However, iq(α, γ) could have any value in F (α, γ), while in
a common extension r of p and q we have ir(γ, β) = iq(α, γ) and ir(α, β) has to be
an element of F (α, β). We can solve this problem by taking s with xs = {α, β′}
and <s= {〈α, β′〉} as reduction for some β′ with F (α, β′) = F (α, β). This leads
to the following definition in which the F (α, β) are not needed anymore. But they
could be introduced as the ranges of the morass maps. A similar problem arises in
Baumgartner’s and Shelah’s forcing to add a a thin-very tall superatomic Boolean
algebra [1]. They explicitly define a function F like above, which they obtain by
historic forcing.

We define our FS system by induction on β ≤ ω1.

Base Case: β = 0

Then we need to define only P1. Set P1 := P (1).

Successor Case: β = α + 1

We first define Pθβ
. To do so, let

P′θβ
:= {〈xp ∪ xfα(p), <p ∪ <fα(p)〉 | p ∈ Pθα}

∪{〈xp ∪ xfα(p), tc(<p ∪ <fα(p) ∪{〈η, min{γ ∈ [θα, θα+1[| γ ≤fα(p) fα(η)}〉}〉

| p ∈ Pθα , η ∈ xp, η < fα(η)}.
In this definition, tc(x) denotes the transitive closure of the binary relation x. As
we know from Tennenbaum’s original proof, every element of P′θβ

is an element of
P (θβ) which extends p and fα(p). This is easily seen.
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Now, define
Pθβ

:= {p ∈ P (θβ) | r ≤ p for some r ∈ P′θβ
}.

For t ∈ Tβ set Pν(t)+1 = P (ν(t) + 1) ∩ Pθβ
and Pλ =

⋃
{Pη | η < λ} for λ ∈ Lim.

Let σst : Pν(s)+1 → Pν(t)+1, p 7→ πst(p).
We still need to define eα. If p ∈ rng(σα), then set eα(p) = σ−1

α (p). If p ∈ Pθα ,
then set eα(p) = p. Finally, if p /∈ rng(σα) ∪ Pθα

, then pick an r ∈ P′θβ
such that

r ≤ p and set eα(p) = f−1
α [r].

Limit Case: β ∈ Lim

Then everything is already uniquely determined by (FS1) and (FS2). That is, for
t ∈ Tβ set Pν(t)+1 =

⋃
{σst[Pν(s)+1] | s ≺ t} and Pλ =

⋃
{Pη | η < λ} for λ ∈ Lim.

Let σst : Pν(s)+1 → Pν(t)+1, p 7→ πst(p).

Lemma 5.1. P satisfies the ccc.

Proof. Since all P (θ) for θ < ω1 have size ≤ ω, it suffices by theorem 4.2 to show
that 〈〈Pη | η ≤ κ+〉, 〈σst | s ≺ t〉, 〈eα | α < κ〉〉 is a FS system along the morass.
Most conditions of the definition of a FS system are clear. We only prove (FS6).
Let p ∈ Pθβ

and β = α + 1. We may assume that p ∈ P′θβ
, because by definition

Pθβ
is dense in P′θβ

. We have to prove that σ−1
α [p] is a reduction of p with respect

to σα and id � Pθα . To do so for σα, let q ≤ σ−1
α [p] =: s. We have to find

an r ≤ p, σα(q) such that r ∈ Pθβ
. We consider two cases. If p is of the form

〈xs ∪ xfα(s), <s ∪ <fα(s)〉, then define r := 〈xq ∪ xfα(q), <p ∪ <fα(q)〉. It is easily
seen that this is an extension of p and σα(q). If p is of the form

〈xs ∪ xfα(s), tc(<s ∪ <fα(s) ∪{〈η, min{γ ∈ [θα, θα+1[| γ ≤fα(s) fα(η)}〉}〉
for some η ∈ xs, then define r as

〈xq ∪ xfα(q), tc(<q ∪ <fα(q) ∪{〈η, min{γ ∈ [θα, θα+1[| γ ≤fα(q) fα(η)}〉}〉.
Again, it is easily seen that this is an extension of p and σα(q). That proves that
σ−1

α [p] is a reduction of p with respect to σα. The proof that σ−1
α [p] is a reduction

of p with respect to id � Pθα
is completely analogous. �

Lemma 5.2. If γ0(p) = γ0(q), p∗(γ0(p)) = q∗(γ0(q)), π : p ∼= q and α ≤ π(α),
then there exists an r ≤ p, q such that 〈α, π(α)〉 ∈≤r.

Proof. Let p and q be as in the hypothesis of the lemma. We prove by induction
over η ∈ [γ0(p), ω1] that if π : p∗(η) ∼= q∗(η) (where p∗(ω1) := p) and α ≤ π(α),
then there exists an r ≤ p∗(η), q∗(η) such that 〈α, π(α)〉 ∈≤r.
Base Case: η = γ0(p) = γ0(q)
In this case the claim is trivial because p∗(η) = q∗(η).
Successor Case: η = γ + 1
Let π : p∗(η) ∼= q∗(η) and α ≤ π(α). Let σp : p∗(γ) ∼= p∗(η), σq : q∗(γ) ∼= q∗(η)
and σp(ᾱp) = α, σq(ᾱq) = π(α). By the induction hypothesis, there is an s ≤
p∗(γ), q∗(γ) such that 〈ᾱq, ᾱp〉 ∈≤s or 〈ᾱp, ᾱq〉 ∈≤s. Let ᾱ := max{ᾱp, ᾱq}. Now,
we consider two cases. If ᾱ < fγ(ᾱ), we define r as

〈xs ∪ xfα(s), tc(<s ∪ <fα(s) ∪{〈ᾱ, min{β ∈ [θγ , θγ+1[| β ≤fα(s) fγ(ᾱ)}〉}〉.
If ᾱ = fγ(ᾱ), then we define

r := 〈xs ∪ xfα(s), <s ∪ <fα(s)〉.
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In both cases, it is easily seen that r ≤ p∗(η), q∗(η) and 〈α, π(α)〉 ∈≤r.
Limit Case: η ∈ Lim

By (FS1) and (FS2), there are a t ∈ Tη and an s ≺ t such that p∗(η), q∗(η) ∈
rng(σst). Let s ∈ Tγ , σst(ᾱ) = α and σst ◦ π̄ = π ◦ σst. Then σst(p∗(η)) = p∗(γ)
and σst(q∗(η)) = q∗(γ). Moreover, by the induction hypothesis, there is a r̄ ≤
p∗(γ), q∗(γ) such that 〈ᾱ, π̄(ᾱ)〉 ∈≤r̄. Set r := σst(r̄). Then r is as desired. �

Lemma 5.3. If γ0(p) = γ0(q), p∗(γ0(p)) = q∗(γ0(q)), π : p ∼= q and α ≤ π(α),
then there exists an r ≤ p, q such that 〈α, π(α)〉 /∈<r.

Proof. Basically the proof proceeds like the proof of lemma 5.3. However, in the suc-
cessor case, we always use common extensions of the form 〈xp ∪xfγ(p), <p ∪ <fγ(p)

〉. �

Theorem 5.4. If there is a simplified (ω1, 1)-morass, then there is a ccc forcing
that adds an ω2-Suslin tree.

Proof. We show that P forces an ω2-Suslin tree. To do so, we prove that the
generic tree has neither an antichain nor a chain of size ω2. First, assume towards
a contradiction that there is an antichain of size ω2. Then there is a p ∈ P and
by ccc of P a sequence 〈ẋi | i ∈ ω2〉 such that p 
 ({ẋi | i ∈ ω2} is an antichain).
Let 〈αi | i ∈ ω2〉 and 〈pi | i ∈ ω2〉 be such that pi ≤ p for all i ∈ ω2 and
pi 
 (ẋi = α̌i ∧ ẋi ∈ x̌pi). Since card(Pω1) = ω1, there is q ∈ Pω1 , η ∈ ω1 and a
subset X ⊆ ω2 of size ω2 such that γ0(pi) = η and p∗i (γ0(pi)) = q for all i ∈ X.
Hence all pi with i ∈ X are isomorphic. Since xq is finite, there are i 6= j ∈ X
such that π(αi) = αj and αi ≤ αj where π : pi

∼= pj . By lemma 5.2, there exists
an r ≤ pi, pj such that 〈αi, αj〉 ∈≤r. Hence r 
 (αi and αj are comparable). That
contradicts the definition of p. The proof that there is no chain of size ω2 works
the same using lemma 5.3 instead of lemma 5.2. �
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[23] Stevo Todorčević. Directed sets and cofinal types. Trans. Amer. Math. Soc., 290(2):711–723,
1985.
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