Projective measure without projective Baire

D. Schrittesser

Universität Bonn

YST 2011
Outline

1. Some context
 - Some classical results on measure and category
 - Separating category and measure (two ways)

2. Some ideas of the proof
 - Sketch of the iteration
 - Coding
 - Stratified forcing
 - Amalgamation
Outline

1. Some context
 - Some classical results on measure and category
 - Separating category and measure (two ways)

2. Some ideas of the proof
 - Sketch of the iteration
 - Coding
 - Stratified forcing
 - Amalgamation
Two notions of regularity

This talk is about regularity of sets in the projective hierarchy.

<table>
<thead>
<tr>
<th>Two ways in which a set of reals can be regular:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• $X \subseteq \mathbb{R}$ is Lebesgue-measurable (LM) $\iff X = B \triangle N$ (B Borel, N null).</td>
</tr>
<tr>
<td>• $X \subseteq \mathbb{R}$ has the Baire property (BP) $\iff X = B \triangle M$, where B is Borel (or open), M meager.</td>
</tr>
</tbody>
</table>

We’re interested in the projective hierarchy:

- projective sets are Σ^1_n or Π^1_n sets, i.e. definable by a formula with quantifiers ranging over reals and real parameters.
This talk is about regularity of sets in the projective hierarchy.

Two ways in which a set of reals can be regular:

- $X \subseteq \mathbb{R}$ is Lebesgue-measurable (LM) $\iff X = B \Delta N \ (B \text{ Borel, } N \text{ null})$.
- $X \subseteq \mathbb{R}$ has the Baire property (BP) $\iff X = B \Delta M$, where B is Borel (or open), M meager.

We’re interested in the projective hierarchy:

projective sets are Σ^1_n or Π^1_n sets, i.e. definable by a formula with quantifiers ranging over reals and real parameters.
Two notions of regularity

This talk is about regularity of sets in the projective hierarchy.

Two ways in which a set of reals can be regular:

- \(X \subseteq \mathbb{R} \) is **Lebesgue-measurable (LM)** \(\iff X = B \Delta N \) (\(B \) Borel, \(N \) null).
- \(X \subseteq \mathbb{R} \) has the **Baire property (BP)** \(\iff X = B \Delta M \), where \(B \) is Borel (or open), \(M \) meager.

We’re interested in the projective hierarchy:

Projective sets are \(\Sigma^1_n \) or \(\Pi^1_n \) sets, i.e. definable by a formula with quantifiers ranging over reals and real parameters.

D. Schrittesser Projective (LM without BP)
This talk is about regularity of sets in the projective hierarchy.

Two ways in which a set of reals can be regular:

- $X \subseteq \mathbb{R}$ is Lebesgue-measurable (LM) $\iff X = B \triangle N$ (B Borel, N null).
- $X \subseteq \mathbb{R}$ has the Baire property (BP) $\iff X = B \triangle M$, where B is Borel (or open), M meager.

We’re interested in the projective hierarchy:

projective sets are Σ^1_n or Π^1_n sets, i.e. definable by a formula with quantifiers ranging over reals and real parameters.
We don’t know what’s regular...

\[V = L \]

There is a \(\Delta^1_2 \) well-ordering of \(\mathbb{R} \) and thus irregular \(\Delta^1_2 \)-sets.

Solovay’s model

If there is an inaccessible, you can force all projective sets to be measurable and have the Baire property.

Woodin cardinals...

There are models where

- every \(\Sigma^1_n \) set is regular (LM, BP ...)
- irregular \(\Delta^1_{n+1} \) sets (from a well-ordering).
We don’t know what’s regular...

$V = L$

There is a Δ^1_2 well-ordering of \mathbb{R} and thus irregular Δ^1_2-sets.

Solovay’s model

If there is an inaccessible, you can force all projective sets to be measurable and have the Baire property.

Woodin cardinals...

There are models where
- every Σ^1_n set is regular (LM, BP ...)
- irregular Δ^1_{n+1} sets (from a well-ordering).
We don’t know what’s regular...

\[V = L \]

There is a \(\Delta_2^1 \) well-ordering of \(\mathbb{R} \) and thus irregular \(\Delta_2^1 \)-sets.

Solovay’s model

If there is an inaccessible, you can force all projective sets to be measurable and have the Baire property.

Woodin cardinals...

There are models where

- every \(\Sigma_n^1 \) set is regular (LM, BP ...)
- irregular \(\Delta_{n+1}^1 \) sets (from a well-ordering).
Do LM and BP always fail or hold at the same level of the projective hierarchy?
Some context

Some classical results on measure and category
Seperating category and measure (two ways)

2
Some ideas of the proof

Sketch of the iteration
Coding
Stratified forcing
Amalgamation
Do LM and BP always fail or hold at the same level of the projective hierarchy?
Answer: no.

Theorem (Shelah)

From just CON(ZFC) you can force:

- all projective sets have BP
- but there is a projective set without LM (in fact, it’s Σ^1_3).
Do LM and BP always fail or hold at the same level of the projective hierarchy?
Answer: no.

Theorem (Shelah)

From just CON(ZFC) you can force:

- all projective sets have BP
- but there is a projective set without LM (in fact, it’s Σ^1_3).
Main result and its precursor

What to do next: switch roles of category and measure.

Theorem (Shelah)

Assume there is an inaccessible. Then, consistently
- every set is measurable,
- there’s a set without the Baire-property.

Theorem (joint work with S. Friedman)

Assume there is a Mahlo and $V = L$. In a forcing extension,
- every projective set is measurable,
- there’s a Δ^1_3 set without the Baire-property.

By a theorem of Shelah, we need to assume at least an inaccessible.
Main result and its precursor

What to do next: switch roles of category and measure.

Theorem (Shelah)

Assume there is an inaccessible. Then, consistently
- every set is measurable,
- there’s a set without the Baire-property.

Theorem (joint work with S. Friedman)

Assume there is a Mahlo and $V = L$. In a forcing extension,
- every projective set is measurable,
- there’s a Δ^1_3 set without the Baire-property.

By a theorem of Shelah, we need to assume at least an inaccessible.
Main result and its precursor

What to do next: switch roles of category and measure.

Theorem (Shelah)

Assume there is an inaccessible. Then, consistently

- every set is measurable,
- there’s a set without the Baire-property.

Theorem (joint work with S. Friedman)

Assume there is a Mahlo and $V = L$. In a forcing extension,

- every projective set is measurable,
- there’s a Δ^1_3 set without the Baire-property.

By a theorem of Shelah, we need to assume at least an inaccessible.
Outline

1. Some context
 - Some classical results on measure and category
 - Separating category and measure (two ways)

2. Some ideas of the proof
 - Sketch of the iteration
 - Coding
 - Stratified forcing
 - Amalgamation
Let κ be the least Mahlo in L.
We will force with an iteration P_κ of length κ.

- κ will be ω_1 in the end but remain Mahlo after $< \kappa$ many steps.
- At limits ξ, we don’t know if P_ξ collapses the continuum; so we force to collapse it, as Jensen coding requires GCH.
- We define a set Γ which does not have BP.
- We make Γ projective using Jensen coding.
- The coding makes use of indepent κ^+-Suslin trees, to which we add branches at the very beginning.
- We use amalgamation to ensure P_κ is sufficiently homogeneous.
A sketch of the iteration

1. Force over L with $\prod_{\xi < \kappa}^{<\kappa} T(\xi)$, the κ^+-cc product of constructible κ-closed, κ^+-Suslin trees to add branches $B(\xi)$, $\xi < \kappa$.

2. In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_\xi \times \text{Col}(\omega, c^{L[\bar{B}][G_\xi]})$ (at some stages)
 - $P_\xi \times \text{Add}(\kappa)^L$
 - $P_\xi \times J(B(\xi)_{\xi \in I})$ (to make “$r \in \Gamma$” definable for a real r)
 - $(D_\xi)^f - f$ an isomorphism of Random subalgebras of P_ξ, D_ξ
 - Dense in P_ξ
 - $(P_\xi)^\mathbb{Z} - \Phi$ an automorphism added by a previous amalgamation

3. Γ (the set w/o BP) = “every other Cohen real” added in the iteration (closed of under automorphisms)
A sketch of the iteration

1. Force over L with $\prod_{\xi < \kappa}^\kappa T(\xi)$, the κ^+-cc product of constructible κ-closed, κ^+-Suslin trees to add branches $B(\xi)$, $\xi < \kappa$.

2. In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_\xi \ast \text{Col}(\omega, c^{L[\bar{B}][G_\xi]})$ (at some stages)
 - $P_\xi \times \text{Add}(\kappa)^L$
 - $P_\xi \ast J(B(\xi)_{\xi \in I})$ (to make “$r \in \Gamma$” definable for a real r)
 - $(D_\xi)_f^Z$ - f an isomorphism of Random subalgebras of P_ξ, D_ξ dense in P_ξ
 - $(P_\xi)_\Phi^Z$ - Φ an automorphism added by a previous amalgamation

3. Γ (the set w/o BP) = “every other Cohen real” added in the iteration (closed under automorphisms)
A sketch of the iteration

1. Force over L with $\prod_{\xi < \kappa}^{< \kappa} T(\xi)$, the κ^+-cc product of constructible κ-closed, κ^+-Suslin trees to add branches $B(\xi)$, $\xi < \kappa$.

2. In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_\xi \ast \text{Col}(\omega, c^{L[\bar{B}][G_\xi]})$ (at some stages)
 - $P_\xi \times \text{Add}(\kappa)^L$
 - $P_\xi \ast J(B(\xi)_{\xi \in I})$ (to make “$r \in \Gamma$” definable for a real r)
 - $(D_\xi)_f^Z$ - f an isomorphism of Random subalgebras of P_ξ, D_ξ
 - dense in P_ξ
 - $(P_\xi)_\Phi^Z$ - Φ an automorphism added by a previous amalgamation

3. Γ (the set w/o BP) = “every other Cohen real” added in the iteration (closed of under automorphisms)
A sketch of the iteration

1. Force over L with $\prod_{\xi < \kappa}^\zeta T(\xi)$, the κ^+-cc product of constructible κ-closed, κ^+-Suslin trees to add branches $B(\xi)$, $\xi < \kappa$.

2. In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_\xi \ast \text{Col}(\omega, c^{L[\bar{B}][G_\xi]})$ (at some stages)
 - $P_\xi \times \text{Add}(\kappa)^L$
 - $P_\xi \ast J(B(\xi)_{\xi \in I})$ (to make “$r \in \Gamma$” definable for a real r)
 - $(D_\xi)^Z_f$ - f an isomorphism of Random subalgebras of P_ξ, D_ξ
 - dense in P_ξ
 - $(P_\xi)^Z_\Phi$ - Φ an automorphism added by a previous amalgamation

3. Γ (the set w/o BP) = “every other Cohen real” added in the iteration (closed of under automorphisms)
A sketch of the iteration

1. Force over L with $\prod_{\xi < \kappa} T(\xi)$, the κ^+-cc product of constructible κ-closed, κ^+-Suslin trees to add branches $B(\xi)$, $\xi < \kappa$.

2. In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_\xi \ast \text{Col}(\omega, c^{L[\bar{B}][G_\xi]}$) (at some stages)
 - $P_\xi \ast \text{Add}(\kappa)^L$
 - $P_\xi \ast J(B(\xi)_{\xi \in I})$ (to make "$r \in \Gamma$" definable for a real r)
 - $(D_\xi)^Z_f$ - f an isomorphism of Random subalgebras of P_ξ, D_ξ dense in P_ξ
 - $(P_\xi)^Z_\Phi$ - Φ an automorphism added by a previous amalgamation

3. Γ (the set w/o BP) = “every other Cohen real” added in the iteration (closed of under automorphisms)
A sketch of the iteration

1. Force over L with $\prod_{\xi < \kappa}^\kappa T(\xi)$, the κ^+-cc product of constructible κ-closed, κ^+-Suslin trees to add branches $B(\xi), \xi < \kappa$.

2. In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_\xi \ast \text{Col}(\omega, c^{L[\bar{B}][G_\xi]})$ (at some stages)
 - $P_\xi \times \text{Add}(\kappa)^L$
 - $P_\xi \ast J(B(\xi)_{\xi \in I})$ (to make "$r \in \Gamma$" definable for a real r)
 - $(D_\xi)^{Z_f}$ - f an isomorphism of Random subalgebras of P_ξ, D_ξ
 - dense in P_ξ
 - $(P_\xi)^{Z_\phi}$ - ϕ an automorphism added by a previous amalgamation

3. Γ (the set w/o BP) = “every other Cohen real” added in the iteration (closed of under automorphisms)
A sketch of the iteration

1. Force over L with $\prod_{\xi < \kappa}^{<\kappa} T(\xi)$, the κ^+-cc product of constructible κ-closed, κ^+-Suslin trees to add branches $B(\xi), \xi < \kappa$.

2. In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_\xi \ast \text{Col}(\omega, c^{L[\bar{B}][G_\xi]})$ (at some stages)
 - $P_\xi \times \text{Add}(\kappa)^L$
 - $P_\xi \ast J(B(\xi): \xi \in I)$ (to make “$r \in \Gamma$” definable for a real r)
 - $(D_\xi)^{\mathbb{Z}_f}$ - f an isomorphism of Random subalgebras of P_ξ, D_ξ
 - dense in P_ξ
 - $(P_\xi)^{\mathbb{Z}_\Phi}$ - Φ an automorphism added by a previous amalgamation

3. Γ (the set w/o BP) = “every other Cohen real” added in the iteration (closed of under automorphisms)
A sketch of the iteration

1. Force over L with $\prod_{\xi < \kappa}^\kappa T(\xi)$, the κ^+-cc product of constructible κ-closed, κ^+-Suslin trees to add branches $B(\xi)$, $\xi < \kappa$.

2. In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_\xi \ast \text{Col}(\omega, c^{L[\bar{B}][G_\xi]})$ (at some stages)
 - $P_\xi \times \text{Add}(\kappa)^L$
 - $P_\xi \ast J(B(\xi)_{\xi \in I})$ (to make “$r \in \Gamma$” definable for a real r)
 - $(D_\xi)^Z_f$ - f an isomorphism of Random subalgebras of P_ξ, D_ξ
 dense in P_ξ
 - $(P_\xi)^Z_\Phi$ - Φ an automorphism added by a previous amalgamation

3. Γ (the set w/o BP) $= “$every other Cohen real” added in the iteration (closed of under automorphisms)
Outline

1. Some context
 - Some classical results on measure and category
 - Separating category and measure (two ways)

2. Some ideas of the proof
 - Sketch of the iteration
 - Coding
 - Stratified forcing
 - Amalgamation
Getting a projective set without BP

Question: how do we get a set without BP?
Shelah: A set containing every other Cohen real!
Let Γ be s.t. for any $\xi < \kappa$, there’s a dense set of reals Cohen over V^{P_ξ} both in Γ and $\neg \Gamma$.
We collapse everything below a Mahlo, so it’s easy to find such Γ.

How do you make Γ projective?

$$r \in \Gamma \iff \exists s \Psi(s, r)$$

(where Ψ is Π^1_2)
We force the above “real by real”: for every real added in the iteration, we add s by forcing.
Getting a projective set without BP

Question: how do we get a set without BP?

Shelah: A set containing every other Cohen real!

Let Γ be s.t. for any $\xi < \kappa$, there’s a dense set of reals Cohen over V^{P_ξ} both in Γ and $\neg \Gamma$.

We collapse everything below a Mahlo, so it’s easy to find such Γ.

How do you make Γ projective?

$$r \in \Gamma \iff \exists s \Psi(s, r)$$

(where Ψ is Π^1_2)

We force the above “real by real”: for every real added in the iteration, we add s by forcing.
Getting a projective set without BP

Question: how do we get a set without BP?
Shelah: A set containing every other Cohen real!
Let Γ be s.t. for any $\xi < \kappa$, there’s a dense set of reals Cohen over V^{P_ξ} both in Γ and $\neg \Gamma$.
We collapse everything below a Mahlo, so it’s easy to find such Γ.

How do you make Γ projective?

$$ r \in \Gamma \iff \exists s \Psi(s, r) $$

(where Ψ is Π^1_2)
We force the above “real by real”: for every real added in the iteration, we add s by forcing.
Getting a projective set without BP

Question: how do we get a set without BP?
Shelah: A set containing every other Cohen real!
Let Γ be s.t. for any $\xi < \kappa$, there’s a dense set of reals Cohen over V^{P_ξ} both in Γ and $\neg \Gamma$.
We collapse everything below a Mahlo, so it’s easy to find such Γ.

How do you make Γ projective?

$$r \in \Gamma \iff \exists s \Psi(s, r)$$

(where Ψ is Π^1_2)
We force the above “real by real”: for every real added in the iteration, we add s by forcing.
What’s the Σ^1_3 definition of Γ?

At some stage ξ we are given r by book-keeping, and we pick \check{Q}_ξ so that the following holds in $L[\check{B}][G_{\xi+1}]$:

$$r \in \Gamma \iff \exists s \text{ s.t. all } T(\xi) \text{ with } \xi \in I(r) \text{ have a branch in } L[s],$$

where $I(r) \subset \kappa$ and r can be obtained from $I(r)$.

I.e. let Q_ξ be Jensen coding to add s coding the right branches.

In fact, we use a variant (David’s trick), which makes a stronger statement true:

$$r \in \Gamma \iff \exists s \forall^* \alpha < \kappa L_\alpha[s] \models \text{just the right } T(\xi) \text{ have branches}$$

This second, stronger statement is Σ^1_3.

That \iff holds (in $L[\check{B}][G_{\kappa}]$) requires a careful choice of $I(r)$.
What’s the Σ^1_3 definition of Γ?

At some stage ξ we are given r by book-keeping, and we pick \check{Q}_ξ so that the following holds in $L[\check{B}][G_{\xi+1}]$:

$$r \in \Gamma \iff \exists s \text{ s.t. all } T(\xi) \text{ with } \xi \in I(r) \text{ have a branch in } L[s],$$

where $I(r) \subset \kappa$ and r can be obtained from $I(r)$. I.e. let Q_ξ be Jensen coding to add s coding the right branches.

In fact, we use a variant (David’s trick), which makes a stronger statement true:

$$r \in \Gamma \iff \exists s \forall^* \alpha < \kappa L_\alpha[s] \models \text{just the right } T(\xi) \text{ have branches}$$

This second, stronger statement is Σ^1_3. That \iff holds (in $L[\check{B}][G_\kappa]$) requires a careful choice of $I(r)$.
What’s the Σ^1_3 definition of Γ?

At some stage ξ we are given r by book-keeping, and we pick Q_ξ so that the following holds in $L[\bar{B}][G_{\xi+1}]$:

$$r \in \Gamma \iff \exists s \text{ s.t. all } T(\xi) \text{ with } \xi \in I(r) \text{ have a branch in } L[s],$$

where $I(r) \subset \kappa$ and r can be obtained from $I(r)$.

I.e. let Q_ξ be Jensen coding to add s coding the right branches. In fact, we use a variant (David’s trick), which makes a stronger statement true:

$$r \in \Gamma \iff \exists s \forall^* \alpha < \kappa L_\alpha[s] \models \text{just the right } T(\xi) \text{ have branches}$$

This second, stronger statement is Σ^1_3.

That \iff holds (in $L[\bar{B}][G_\kappa]$) requires a careful choice of $I(r)$.

D. Schrittesser Projective (LM without BP)
What’s the Σ^1_3 definition of Γ?

At some stage ξ we are given r by book-keeping, and we pick \check{Q}_{ξ} so that the following holds in $L[\bar{B}][G_{\xi+1}]$:

$$r \in \Gamma \iff \exists s \text{ s.t. all } T(\xi) \text{ with } \xi \in I(r) \text{ have a branch in } L[s],$$

where $I(r) \subset \kappa$ and r can be obtained from $l(r)$.

I.e. let Q_{ξ} be Jensen coding to add s coding the right branches.

In fact, we use a variant (David’s trick), which makes a stronger statement true:

$$r \in \Gamma \iff \exists s \forall^* \alpha < \kappa L_{\alpha}[s] \models \text{just the right } T(\xi) \text{ have branches}$$

This second, stronger statement is Σ^1_3.

That \iff holds (in $L[\bar{B}][G_{\kappa}]$) requires a careful choice of $l(r)$.
What’s \(I(r) \)? The Problem

The most obvious choice

\[
I(r) = \{ \xi \cdot \omega + n \mid n \in r \}
\]

must fail: this would force a well-ordering of reals of length \(\omega_1 \) in \(L[\bar{B}][G_\kappa] \). Observe: if

\[
1 \models \bar{T} \ast P_\kappa \exists s L_\alpha[s] \models \xi \in I(\dot{r}) \Rightarrow T(\xi) \text{ has a branch.}
\]

and \(\Phi \) is an automorphism of \(\bar{T} \ast P_\kappa \), then also

\[
1 \models \bar{T} \ast P_\kappa \exists s L_\alpha[s] \models \xi \in \Phi(I(\dot{r})) \Rightarrow T(\xi) \text{ has a branch.}
\]

I.e. we should expect \(\Gamma \) to be closed under such \(\Phi \). This makes it harder to show \(r \in \Gamma \Leftarrow \exists s \Psi(s, r) \).
What’s $I(r)$? The Problem

The most obvious choice

$$I(r) = \{\xi \cdot \omega + n \mid n \in r\}$$

must fail: this would force a well-ordering of reals of length ω_1 in $L[\bar{B}][G_\kappa]$. Observe: if

$$1 \models \bar{T} \ast P_\kappa \exists sL_\alpha[s] \models \xi \in I(\dot{r}) \Rightarrow T(\xi) \text{ has a branch.}$$

and Φ is an automorphism of $\bar{T} \ast P_\kappa$, then also

$$1 \models \bar{T} \ast P_\kappa \exists sL_\alpha[s] \models \xi \in \Phi(I(\dot{r})) \Rightarrow T(\xi) \text{ has a branch.}$$

i.e. we should expect Γ to be closed under such Φ. This makes it harder to show $r \in \Gamma \iff \exists s\Psi(s, r)$.

D. Schrittesser
Projective (LM without BP)
What's \(l(r) \)? The Problem

The most obvious choice

\[
l(r) = \{\xi \cdot \omega + n \mid n \in r\}
\]

must fail: this would force a well-ordering of reals of length \(\omega_1 \) in \(L[\bar{B}] [G_\kappa] \). Observe: if

\[
1 \Vdash \bar{T}_* P_\kappa \exists s L_\alpha [s] \models \xi \in l(\dot{r}) \Rightarrow T(\xi) \text{ has a branch.}
\]

and \(\Phi \) is an automorphism of \(\bar{T}_* P_\kappa \), then also

\[
1 \Vdash \bar{T}_* P_\kappa \exists s L_\alpha [s] \models \xi \in \Phi(l(\dot{r})) \Rightarrow T(\xi) \text{ has a branch.}
\]

I.e. we should expect \(\Gamma \) to be closed under such \(\Phi \). This makes it harder to show \(r \in \Gamma \iff \exists s \Psi(s, r) \).
Let C be an $\text{Add}(\kappa)^L$ generic added at stage $\xi - 1$. Set

$$I(r) = \{(\sigma, n, i) \mid \sigma \triangleleft C, r(n) = i\}$$

where \triangleleft denotes “initial segment”.

One can show $\Phi(\dot{C}) \neq \dot{C}$ whenever $\dot{r} \neq \Phi(\dot{r})$, for any automorphism coming from amalgamation. This uses that C is κ-closed. Thus $I(r)$ and $\Phi(I(r))$ are almost disjoint.
Finally, ψ

$$\forall^* \alpha < \kappa \quad L_\alpha[s] \models \exists \text{ a large set } C \text{ s.t.}$$

$$(r(n) = i \text{ and } \sigma \triangleleft C) \Rightarrow T^\alpha(\sigma, n, i, 0) \text{ has a branch.}$$

Excuse the change of notation in the indexing of the trees.
1. Some context
 - Some classical results on measure and category
 - Separating category and measure (two ways)

2. Some ideas of the proof
 - Sketch of the iteration
 - Coding
 - Stratified forcing
 - Amalgamation
To show we preserve cardinals:

We need a property that is
- iterable with the right support
- Jensen coding has it
- it is preserved by amalgamation.

Jensen coding is nice because for every regular λ, you can write it as $P^\lambda \ast \dot{P}_\lambda$, where P^λ is (almost) λ^+-closed and $P^\lambda \Vdash P_\lambda$ is λ-centered.

Does this iterate? We formulate an abstraction, called “stratified”, satisfying above requirements.
Careful!

We do collapse everything below κ. Stratification does not help much at the final stage κ. The Mahlo-ness of κ is used to show:

- κ remains a cardinal in $L[\mathcal{B}]^{P_\kappa}$
- No reals are added at stage κ, every real is contained in some $L[\mathcal{B}]^{P_\xi}$, $\xi < \kappa$.

We need to use Easton-like Jensen coding!
P is stratified above λ_0 means we have relations for each regular $\lambda \geq \lambda_0$ such that:

1. \preccurlyeq^λ is a pre-order on P stronger than \leq: a notion of direct extension
2. $\langle P, \preccurlyeq^\lambda \rangle$ is closed under definable, strategic sequences
3. $C^\lambda \subseteq P \times \lambda$ is similar to a centering function
4. \preccurlyeq^λ is a binary relation on P weaker than \leq
5. If $C^\lambda(r) \cap C^\lambda(q) \neq \emptyset$ and $r \preccurlyeq^\lambda q$ then $r \cdot q \neq 0$
6. If $r \leq q$ there is $p \preccurlyeq^\lambda q$ such that $p \preccurlyeq^\lambda r$
7. $\text{dom}(C^\lambda)$ is dense (in the sense of $\preccurlyeq^{\lambda'}$ for any $\lambda' < \lambda$)
8. C^λ is “continuous”.
Some context
Some ideas of the proof
Questions

Sketch of the iteration
Coding
Stratified forcing
Amalgamation

P is stratified above λ_0 means we have relations for each regular $\lambda \geq \lambda_0$ such that:

1. \triangleleft^λ is a pre-order on P stronger than \leq: a notion of direct extension
2. $\langle P, \triangleleft^\lambda \rangle$ is closed under definable, strategic sequences
3. $C^\lambda \subseteq P \times \lambda$ is similar to a centering function
4. \triangleright^λ is a binary relation on P weaker than \leq
5. If $C^\lambda(r) \cap C^\lambda(q) \neq \emptyset$ and $r \triangleleft^\lambda q$ then $r \cdot q \neq 0$
6. If $r \leq q$ there is $p \triangleleft^\lambda q$ such that $p \triangleleft^\lambda r$
7. $\text{dom}(C^\lambda)$ is dense (in the sense of \triangleleft^λ' for any $\lambda' < \lambda$)
8. C^λ is “continuous”.

D. Schrittesser
Projective (LM without BP)
P is stratified above λ_0 means we have relations for each regular $\lambda \geq \lambda_0$ such that:

1. \prec^λ is a pre-order on P stronger than \leq: a notion of direct extension
2. $\langle P, \prec^\lambda \rangle$ is closed under definable, strategic sequences
3. $C^\lambda \subseteq P \times \lambda$ is similar to a centering function
4. \prec^λ is a binary relation on P weaker than \leq
5. If $C^\lambda(r) \cap C^\lambda(q) \neq \emptyset$ and $r \preceq^\lambda q$ then $r \cdot q \neq 0$
6. If $r \leq q$ there is $p \preceq^\lambda q$ such that $p \preceq^\lambda r$
7. $\text{dom}(C^\lambda)$ is dense (in the sense of $\preceq^{\lambda'}$ for any $\lambda' < \lambda$)
8. C^λ is “continuous”.
P is stratified above λ_0 means we have relations for each regular $\lambda \geq \lambda_0$ such that:

1. \bowtie^λ is a pre-order on P stronger than \leq: a notion of direct extension
2. $\langle P, \bowtie^\lambda \rangle$ is closed under definable, strategic sequences
3. $C^\lambda \subseteq P \times \lambda$ is similar to a centering function
4. \bowtie^λ is a binary relation on P weaker than \leq
5. If $C^\lambda(r) \cap C^\lambda(q) \neq \emptyset$ and $r \bowtie^\lambda q$ then $r \cdot q \neq 0$
6. If $r \leq q$ there is $p \bowtie^\lambda q$ such that $p \bowtie^\lambda r$
7. $\text{dom}(C^\lambda)$ is dense (in the sense of $\bowtie^{\lambda'}$ for any $\lambda' < \lambda$)
8. C^λ is “continuous”.

P is stratified above λ_0 means we have relations for each regular $\lambda \geq \lambda_0$ such that:

1. \preceq^λ is a pre-order on P stronger than \leq: a notion of direct extension
2. $\langle P, \preceq^\lambda \rangle$ is closed under definable, strategic sequences
3. $C^\lambda \subseteq P \times \lambda$ is similar to a centering function
4. \preceq^λ is a binary relation on P weaker than \leq
5. If $C^\lambda(r) \cap C^\lambda(q) \neq \emptyset$ and $r \preceq^\lambda q$ then $r \cdot q \neq 0$
6. If $r \leq q$ there is $p \preceq^\lambda q$ such that $p \preceq^\lambda r$
7. $\text{dom}(C^\lambda)$ is dense (in the sense of $\preceq^{\lambda'}$ for any $\lambda' < \lambda$)
8. C^λ is “continuous”.

D. Schrittesser | Projective (LM without BP)
P is stratified above λ_0 means we have relations for each regular $\lambda \geq \lambda_0$ such that:

1. \preceq^λ is a pre-order on P stronger than \leq: a notion of direct extension

2. $\langle P, \preceq^\lambda \rangle$ is closed under definable, strategic sequences

3. $C^\lambda \subseteq P \times \lambda$ is similar to a centering function

4. \prec^λ is a binary relation on P weaker than \leq

5. If $C^\lambda(r) \cap C^\lambda(q) \neq \emptyset$ and $r \prec^\lambda q$ then $r \cdot q \neq 0$

6. If $r \leq q$ there is $p \preceq^\lambda q$ such that $p \preceq^\lambda r$

7. $\text{dom}(C^\lambda)$ is dense (in the sense of \preceq^λ' for any $\lambda' < \lambda$)

8. C^λ is “continuous”.

D. Schrittesser
Projective (LM without BP)
P is stratified above λ_0 means we have relations for each regular $\lambda \geq \lambda_0$ such that:

1. \prec^λ is a pre-order on P stronger than \leq: a notion of direct extension
2. $\langle P, \prec^\lambda \rangle$ is closed under definable, strategic sequences
3. $C^\lambda \subseteq P \times \lambda$ is similar to a centering function
4. \preceq^λ is a binary relation on P weaker than \leq
5. If $C^\lambda(r) \cap C^\lambda(q) \neq \emptyset$ and $r \prec^\lambda q$ then $r \cdot q \neq 0$
6. If $r \leq q$ there is $p \preceq^\lambda q$ such that $p \preceq^\lambda r$
7. $\text{dom}(C^\lambda)$ is dense (in the sense of $\preceq^{\lambda'}$ for any $\lambda' < \lambda$)
8. C^λ is “continuous”.
P is stratified above λ_0 means we have relations for each regular $\lambda \geq \lambda_0$ such that:

1. \preceq^λ is a pre-order on P stronger than \leq: a notion of direct extension
2. $\langle P, \preceq^\lambda \rangle$ is closed under definable, strategic sequences
3. $C^\lambda \subseteq P \times \lambda$ is similar to a centering function
4. \preceq^λ is a binary relation on P weaker than \leq
5. If $C^\lambda(r) \cap C^\lambda(q) \neq \emptyset$ and $r \preceq^\lambda q$ then $r \cdot q \neq 0$
6. If $r \leq q$ there is $p \preceq^\lambda q$ such that $p \preceq^\lambda r$
7. $\text{dom}(C^\lambda)$ is dense (in the sense of $\preceq^{\lambda'}$ for any $\lambda' < \lambda$)
8. C^λ is “continuous”.
P is stratified above λ_0 means we have relations for each regular $\lambda \geq \lambda_0$ such that:

1. \preccurlyeq^λ is a pre-order on P stronger than \leq: a notion of direct extension

2. $\langle P, \preccurlyeq^\lambda \rangle$ is closed under definable, strategic sequences

3. $C^\lambda \subseteq P \times \lambda$ is similar to a centering function

4. \preccurlyeq^λ is a binary relation on P weaker than \leq

5. If $C^\lambda(r) \cap C^\lambda(q) \neq \emptyset$ and $r \preccurlyeq^\lambda q$ then $r \cdot q \neq 0$

6. If $r \leq q$ there is $p \preccurlyeq^\lambda q$ such that $p \preccurlyeq^\lambda r$

7. $\text{dom}(C^\lambda)$ is dense (in the sense of $\preccurlyeq^{\lambda'}$ for any $\lambda' < \lambda$)

8. C^λ is “continuous”.

D. Schrittesser

Projective (LM without BP)
Some context
Some ideas of the proof
Questions

Sketch of the iteration
Coding
Stratified forcing
Amalgamation

P is stratified above λ_0 means we have relations for each regular $\lambda \geq \lambda_0$ such that:

1. \prec^λ is a pre-order on P stronger than \leq: a notion of direct extension
2. $\langle P, \prec^\lambda \rangle$ is closed under definable, strategic sequences
3. $C^\lambda \subseteq P \times \lambda$ is similar to a centering function
4. \preceq^λ is a binary relation on P weaker than \leq
5. If $C^\lambda(r) \cap C^\lambda(q) \neq \emptyset$ and $r \preceq^\lambda q$ then $r \cdot q \neq 0$
6. If $r \leq q$ there is $p \preceq^\lambda q$ such that $p \preceq^\lambda r$
7. $\text{dom}(C^\lambda)$ is dense (in the sense of \preceq^λ' for any $\lambda' < \lambda$)
8. C^λ is “continuous”.

D. Schrittesser
Projective (LM without BP)
A closer look at “quasi-closure”

We work in a model of the form $L[A]$. There is a function $F: \lambda \times V \times P \to P$ definable by a \mathcal{A}^1 formula such that for any $\lambda \leq \bar{\lambda}$, both regular

- $F(\lambda, x, p) \leq^\lambda p$
- if $p \leq^\lambda 1$ then $F(\lambda, x, p) \leq^\bar{\lambda} 1$
- every λ-adequate sequence $\bar{p} = (p_\xi)_{\xi<\rho}$ has a greatest lower bound

where \bar{p} is adequate iff $\rho \leq \lambda$, \bar{p} is \leq^λ-descending and there is x such that

- $p_{\xi+1} \leq^{\lambda'} F(\lambda, x, p_\xi)$ for some regular λ'
- \bar{p} is $\Delta^A_1(\lambda, x)$
- for limits $\xi < \rho$, p_ξ is a greatest lower bound of $(p_\xi)_{\bar{\xi}<\bar{\xi}}$

We also need that $p \leq^\lambda p_\xi$ for each $\xi < \rho$ and if all $p_\xi \leq^\bar{\lambda} 1$, then $p \leq^\bar{\lambda} 1$.
The right support to iterate stratified forcing is diagonal support: Let \(\lambda \) be regular. Let \(\bar{P} = (P_\xi, Q_\xi)_{\xi < \theta} \) be an iteration of stratified forcings, and let \(\pi_\xi \) be the projection to \(P_\xi \).

Definition

\[
\text{supp}^\lambda(p) = \{ \xi \mid \pi_{\xi+1}(p) \not\leq^\lambda \pi_\xi(p) \}
\]

For diagonal support on \(P_\theta \) we demand that \(\text{supp}(p) \) be of size \(< \lambda\).

We also need to demand of \(\bar{P} \) that for each regular \(\lambda \) there is \(\iota < \lambda^+ \) such that

\[
\forall p \in P_\theta \quad p \leq^\lambda \pi_\iota(p).
\]
When $P_{\xi+1}$ results from an amalgamation of P_{ξ}, $P_{\xi+1} : P_{\xi}$ is not forced to be stratified by P_{ξ}. Therefore we introduce the notion of (Q, P) being a stratified extension above λ_0.

- $(P, P \ast \dot{Q})$ is a stratified extension, if $\Vdash_P Q$ is stratified
- So is $(P, P \times Q)$ if P and Q are stratified
- Same for $(P, A(P))$, where $A(P)$ denotes an amalgamation of P
- P is stratified $\iff (\{1_P\}, P)$ is a stratified extension
- If (Q, P) is a stratified extension, P is stratified
Most importantly:

Theorem

If \((P_\xi)_{\xi \leq \theta} \) has diagonal supports and for all \(\xi < \theta \), \((P_\xi, P_{\xi+1}) \) is a stratified extension, then \(P_\theta \) is stratified.
Outline

1. Some context
 - Some classical results on measure and category
 - Separating category and measure (two ways)

2. Some ideas of the proof
 - Sketch of the iteration
 - Coding
 - Stratified forcing
 - Amalgamation
How to get all sets LM.

Why do all projective sets have a measure in Solovay's model? If we force with an iteration \((P_\xi, \dot{Q}_\xi)_{\xi<\kappa}\) of length \(\kappa\) and the following holds in \(V^{P_\kappa}\):

- \(\mathbb{R} \cap V^{P_\xi}\) is null (meager) for any \(\xi < \kappa\)
- every real is small generic, i.e. every \(r \in \mathbb{R}\) is in some \(V^{P_\xi}\), for \(\xi < \kappa\).
- \(P_\kappa\) has many automorphisms.

Then every projective set is measurable (has BP). In Solovay's model, projective sets are both BP and LM because \(\text{Col}(\omega, < \kappa)\) is very homogeneous. Shelah: only just enough automorphism to get one kind of regularity.
How to get all sets LM.

Why do all projective sets have a measure in Solovay's model? If we force with an iteration $(P_\xi, \dot{Q}_\xi)_{\xi<\kappa}$ of length κ and the following holds in V^{P_κ}:

- $\mathbb{R} \cap V^{P_\xi}$ is null (meager) for any $\xi < \kappa$
- every real is small generic, i.e. every $r \in \mathbb{R}$ is in some V^{P_ξ}, for $\xi < \kappa$
- P_κ has many automorphisms.

Then every projective set is measurable (has BP). In Solovay's model, projective sets are both BP and LM because $\text{Col}(\omega, < \kappa)$ is very homogeneous.

Shelah: only just enough automorphism to get one kind of regularity.
How to get all sets LM.

Why do all projective sets have a measure in Solovay’s model? If we force with an iteration \((P_\xi, \dot{Q}_\xi)_{\xi<\kappa}\) of length \(\kappa\) and the following holds in \(V^{P_\kappa}\):

- \(\mathbb{R} \cap V^{P_\xi}\) is null (meager) for any \(\xi < \kappa\)
- every real is small generic, i.e. every \(r \in \mathbb{R}\) is in some \(V^{P_\xi}\), for \(\xi < \kappa\).
- \(P_\kappa\) has many automorphisms.

Then every projective set is measurable (has BP). In Solovay’s model, projective sets are both BP and LM because \(Col(\omega, < \kappa)\) is very homogeneous. Shelah: only just enough automorphism to get one kind of regularity.
To get all projective sets LM, P_κ has enough automorphisms means:

Extend isomorphisms of Random subalgebras

Say r_0, r_1 are Random reals over V^{P_ι}. Let \hat{B}_i be the complete sub-algebra of $ro(P_\xi : P_\iota)$ generated by r_i in V^{P_ι}, let $B_i = P_\iota \ast \hat{B}_i$ and let f be the isomorphism:

$$f : B_0 \to B_1$$

Then there is an automorphism

$$\Phi : P_\kappa \to P_\kappa$$

which extends f.
Here’s an adaptation of Shelah’s amalgamation more apt to preserve closure:
Let \(f : B_0 \to B_1 \) be an isomorphism of two sub-algebras of \(\text{ro}(P) \). Let \(\pi_i : P_\xi \to B_i \) denote the canonical projection.

Amalgamation

\(P_f^Z \) consists of all \(\bar{p} : \mathbb{Z} \to P \cdot B_0 \cdot B_1 \) such that

\[
\forall i \in \mathbb{Z} \quad f(\pi_0(\bar{p}(i))) = \pi_1(\bar{p}(i + 1))
\]

- The map \(p \mapsto (\ldots, f^{-1}(\pi_1(p)), p, f(\pi_0(p)), \ldots) \) is a complete embedding
- The left shift is an automorphism extending \(f \).
How amalgamation is used

- For any \(\iota < \kappa \) and any two reals \(r_0, r_1 \) random over \(L[\bar{B}]^{P_{\iota}} \) there should be \(\xi < \kappa \) such that
 \[
 P_{\xi+1} = (P_{\xi})^{\mathbb{Z}}
 \]
 where \(B_i = P_{\iota} \ast \dot{B}(r_i) \) and \(f \) is the isomorphism of \(B_0 \) and \(B_1 \).
- Then \(P_{\xi+1} \) has an automorphism \(\Phi \)
- Of course you have to extend this \(\Phi \) to \(\Phi' : P_{\xi'} \rightarrow P_{\xi'} \), for cofinally many \(\xi' < \kappa \).
- Amalgamation may collapse the current \(\omega_1 \).
Amalgamation and stratification

Problem: preserve some closure

- P carries an auxiliary ordering \preccurlyeq
- Certain “adequate” \preccurlyeq-descending sequences have lower bounds in P
- π_i not continuous, why should

$$f(\pi_0(\bar{p}(i))) = \pi_1(\bar{p}(i + 1))$$

hold for the coordinatewise limit of a sequence $\bar{p}_\xi \in P_f^\mathbb{Z}$?
Problem: preserve some closure

Why should $f(\pi_0(\bar{p}(i))) = \pi_1(\bar{p}(i + 1))$ hold for the coordinatewise limit of a sequence $\bar{p}_\xi \in P^\mathbb{Z}_f$?

Solution:

Replace P by a dense subset D, where $p \in D$ if:

$$\forall q \preceq p \quad \forall b \in B_0 \quad \pi_1(q \cdot b) = \pi_1(p \cdot b)$$

Fine point:

To show D completely embeds into $D^\mathbb{Z}_f$, we need:

- $Q \subseteq D$
- $Q \cdot D \subseteq D$.
Amalgamation and stratification

Problem: preserve some closure

Why should \(f(\pi_0(\bar{p}(i))) = \pi_1(\bar{p}(i + 1)) \) hold for the coordinatewise limit of a sequence \(\bar{p}_\xi \in P_f^\mathbb{Z} \)?

Solution:

Replace \(P \) by a dense subset \(D \), where \(p \in D \iff \forall q \preceq p \forall b \in B_0 \pi_1(q \cdot b) = \pi_1(p \cdot b) \)

Fine point:
To show \(D \) completely embedds into \(D_f^\mathbb{Z} \), we need

- \(Q \subseteq D \)
- \(Q \cdot D \subseteq D \).
A few questions

So projective measure does not imply projective Baire.

Questions:

- Can we make $\Gamma \Delta^1_{k+1}$, keeping the Baire-property for all Σ^1_k sets, $k \geq 3$?
- For which σ-ideals can we substitute “Borel modulo I” for either of them?
- Force \negCH at the same time?
- Prove the Mahlo is necessary or get rid of it?
So projective measure does not imply projective Baire.

Questions:

- Can we make $\Gamma \Delta^1_{k+1}$, keeping the Baire-property for all Σ^1_k sets, $k \geq 3$?
- For which σ-ideals can we substitute “Borel modulo I” for either of them?
- Force \negCH at the same time?
- Prove the Mahlo is necessary or get rid of it?
Again, the question:
How do you separate regularity properties in the projective hierarchy?

Theorem (A blueprint for a theorem)

The following is consistent, assuming small large cardinals (for any k,n):

1. Every Σ^1_n set is regular, but there is a non-regular Δ^1_{n+1} set.
2. Every Σ^1_k set is regular, but there is a non-regular Δ^1_{k+1} set.