Around Jensen’s square principle

Young Researchers in Set Theory

Königswinter, Germany
22-March-2011

Assaf Rinot
Ben-Gurion University of the Negev
Introduction
Ladder systems. A discussion

Definition
A ladder for a limit ordinal α is a cofinal subset of α.

Remark
The existence of ladder systems follows from the axiom of choice.
Ladder systems. A discussion

Definition

A ladder for a limit ordinal α is a cofinal subset of α.
A ladder for a successor ordinal $\alpha + 1$ is the singleton $\{\alpha\}$.
Ladder systems. A discussion

Definition
A ladder for a limit ordinal α is a cofinal subset of α.
A ladder for a successor ordinal $\alpha + 1$ is the singleton $\{\alpha\}$.

Definition
A ladder system over a cardinal κ is a sequence, $\langle A_\alpha \mid \alpha < \kappa \rangle$, such that each A_α is a ladder for α.

Remark
The existence of ladder systems follows from the axiom of choice.
Ladder systems. A discussion

Definition
A ladder for a limit ordinal α is a cofinal subset of α.
A ladder for a successor ordinal $\alpha + 1$ is the singleton $\{\alpha\}$.

Definition
A ladder system over a cardinal κ is a sequence, $\langle A_\alpha \mid \alpha < \kappa \rangle$, such that each A_α is a ladder for α.

Remark
The existence of ladder systems follows from the axiom of choice.
Partitioning a stationary set
The standard proof of the fact that any stationary subset of ω_1 can be partitioned into uncountably many mutually disjoint stationary sets builds on an analysis of ladder systems over ω_1.

Strong colorings, $\omega_1 \not\rightarrow [\omega_1]^2_{\omega_1}$
Todorcevic established the existence of a function $f : [\omega_1]^2 \rightarrow \omega_1$ such that $f``[U]^2 = \omega_1$ for every uncountable $U \subseteq \omega_1$. This function f is determined by a ladder system over ω_1.
A particular ladder system

Definition (Jensen, 1960’s)

\(\square \lambda \) asserts the existence of a ladder system over \(\lambda^+ \),
\(\langle C_\alpha \mid \alpha < \lambda^+ \rangle \), such that for all \(\alpha < \lambda^+ \):

- (Ladders are closed) \(C_\alpha \) is a club in \(\alpha \);
- (Ladders are of bounded type) \(\text{otp}(C_\alpha) \leq \lambda \);
- (Coherence) if \(\text{sup}(C_\alpha \cap \beta) = \beta \), then \(C_\alpha \cap \beta = C_\beta \).
A particular ladder system

Definition (Jensen, 1960’s)
\[\Box_\lambda \text{ asserts the existence of a ladder system over } \lambda^+, \]
\[\langle C_\alpha \mid \alpha < \lambda^+ \rangle, \text{ such that for all } \alpha < \lambda^+: \]
 ▶ (Ladders are closed) \(C_\alpha \) is a club in \(\alpha \);
 ▶ (Ladders are of bounded type) \(\text{otp}(C_\alpha) \leq \lambda \);
 ▶ (Coherence) if \(\sup(C_\alpha \cap \beta) = \beta \), then \(C_\alpha \cap \beta = C_\beta \).

Famous applications
The existence of various sorts of \(\lambda^+ \)-trees; The existence of non-reflecting stationary subsets of \(\lambda^+ \); The existence of other incompact objects.
A particular ladder system

Definition (Jensen, 1960’s)

\square_λ asserts the existence of a ladder system over λ^+,
$\langle C_\alpha \mid \alpha < \lambda^+ \rangle$, such that for all $\alpha < \lambda^+$:

- (Ladders are closed) C_α is a club in α;
- (Ladders are of bounded type) otp(C_α) $\leq \lambda$;
- (Coherence) if $\sup(C_\alpha \cap \beta) = \beta$, then $C_\alpha \cap \beta = C_\beta$.

Today’s talk would be centered around the above principle, but let us dedicate some time to discuss abstract ladder systems.
Triviality of ladder systems

Means of triviality
A ladder system $\langle A_\alpha \mid \alpha < \kappa \rangle$ is considered to be trivial, if, in some sense, it is determined by a single κ-sized object.

Example of such sense: "There exists $A \subseteq \kappa$ such that $A_\alpha = A \cap \alpha$ for club many $\alpha < \kappa$."
Triviality of ladder systems

Means of triviality

A ladder system $\langle A_\alpha \mid \alpha < \kappa \rangle$ is considered to be trivial, if, in some sense, it is determined by a single κ-sized object.

Example of such sense:
“There exists $A \subseteq \kappa$ such that $A_\alpha = A \cap \alpha$ for club many $\alpha < \kappa$.”
Triviality of ladder systems

Means of triviality
A ladder system $\langle A_\alpha \mid \alpha < \kappa \rangle$ is considered to be trivial, if, in some sense, it is determined by a single κ-sized object.
Example of such sense:
“There exists $A \subseteq \kappa$ such that $A_\alpha = A \cap \alpha$ for club many $\alpha < \kappa$.”
If κ is a large cardinal, then we may necessarily face means of triviality.

Fact (Rowbottom, 1970’s)

*If κ is measurable, then every ladder system $\langle A_\alpha \mid \alpha < \kappa \rangle$, admits a set $A \subseteq \kappa$ such that $A_\alpha = A \cap \alpha$ for stationary many $\alpha < \kappa$.***
Triviality of ladder systems

Means of triviality
A ladder system \(\langle A_\alpha \mid \alpha < \kappa \rangle \) is considered to be trivial, if, in some sense, it is determined by a single \(\kappa \)-sized object.
Example of such sense:
“There exists \(A \subseteq \kappa \) such that \(A_\alpha = A \cap \alpha \) for club many \(\alpha < \kappa \).”

On the other hand, if \(\kappa \) is non-Mahlo, then for every cofinal \(A \subseteq \kappa \), the following set contains a club:

\[
\{ \alpha < \kappa \mid \text{cf}(\alpha) < \text{otp}(A \cap \alpha) \}.
\]

This suggests that non-triviality may be insured here, by setting a global bound on \(\text{otp}(A_\alpha) \), e.g., letting \(\text{otp}(A_\alpha) = \text{cf}(\alpha) \) for all \(\alpha \).
Triviality of ladder systems

Means of triviality
A ladder system $\langle A_\alpha \mid \alpha < \kappa \rangle$ is considered to be trivial, if, in some sense, it is determined by a single κ-sized object.

It turns out that requiring that $\text{otp}(A_\alpha) = \text{cf}(\alpha)$ for all α does not eliminate all means of triviality. For instance, it may be the case that any sequence of functions defined on the ladders is necessarily induced from a single κ-sized object.
Triviality of ladder systems

Means of triviality
A ladder system $\langle A_\alpha \mid \alpha < \kappa \rangle$ is considered to be trivial, if, in some sense, it is determined by a single κ-sized object.

It turns out that requiring that $\text{otp}(A_\alpha) = \text{cf}(\alpha)$ for all α does not eliminate all means of triviality. For instance, it may be the case that any sequence of functions defined on the ladders is necessarily induced from a single κ-sized object.

Fact (Devlin-Shelah, 1978)

MA_{ω_1} implies that any ladder system $\langle A_\alpha \mid \alpha < \omega_1 \rangle$ satisfying $\text{otp}(A_\alpha) = \text{cf}(\alpha)$ for every α, is trivial in the following sense. For every sequence of local functions $\langle f_\alpha : A_\alpha \to 2 \mid \alpha < \omega_1 \rangle$ there exists a global function $f : \omega_1 \to 2$ such that for each α:

$$f_\alpha = f \upharpoonright A_\alpha \ (\text{mod finite}).$$
Nontrivial ladder systems over ω_1

In contrast, the following concept yields a ladder system which is resistant to Devlin and Shelah’s notion of triviality.

Definition (Ostaszweski’s ♣)

♣ asserts the existence of a ladder system $\langle A_\alpha \mid \alpha < \omega_1 \rangle$ such that for every cofinal $A \subseteq \omega_1$, there exists a limit $\alpha < \omega_1$ with $A_\alpha \subseteq A$.
Nontrivial ladder systems over ω_1

In contrast, the following concept yields a ladder system which is resistant to Devlin and Shelah’s notion of triviality.

Definition (Ostaszewski’s ♣)

♣ asserts the existence of a ladder system $\langle A_\alpha \mid \alpha < \omega_1 \rangle$ such that for every cofinal $A \subseteq \omega_1$, there exists a limit $\alpha < \omega_1$ with $A_\alpha \subseteq A$.

Indeed, if $\langle A_\alpha \mid \alpha < \omega_1 \rangle$ is a ♣-sequence, then for every global $f : \omega_1 \rightarrow 2$, there exists a limit $\alpha < \omega_1$ for which $f \upharpoonright A_\alpha$ is constant.

Thus, if $f_\alpha : A_\alpha \rightarrow 2$ partitions A_α into two cofinal subsets for all limit α, then no global f trivializes the sequence $\langle f_\alpha \mid \alpha < \omega_1 \rangle$.
Suppose that $\kappa = \lambda^+$ is a successor cardinal. Thus, we are interested in a ladder system $\langle A_\alpha \mid \alpha < \kappa \rangle$ with ALL of the following features:

1. the set $\{\otp(A_\alpha) \mid \alpha < \kappa\}$ is bounded below κ;
2. the ladders are closed;
3. the ladders cohere;
4. yields a canonical partition of κ into mutually disjoint stationary sets;
5. induces strong colorings;
6. a non-triviality condition à la Devlin-Shelah.
The Ostaszewski square
We propose a principle which combines \square_λ together with \clubsuit_λ^+.

\textit{λ-sequences}
We propose a principle which combines \square_λ together with \clubsuit_λ^+. For clarity, let us adopt the next ad-hoc terminology:

Definition
A sequence $\langle A_i \mid i < \lambda \rangle$ is a λ-sequence if the following two holds:

1. each A_i is a cofinal subset of λ^+;
2. if $i < \lambda$ is a limit ordinal, then A_i is moreover closed.

Remark. Clause (2) may be viewed as a continuity condition.
The Ostaszewski square

Definition

\[\spadesuit \lambda \text{ asserts the existence of a ladder system } \vec{C} = \langle C_\alpha \mid \alpha < \lambda^+ \rangle \]

such that:

- \(\text{otp}(C_\alpha) \leq \lambda \) for all \(\alpha < \lambda^+ \);
- \(C_\alpha \) is a club in \(\alpha \) for all limit \(\alpha < \lambda^+ \);
- if \(\sup(C_\alpha \cap \beta) = \beta \), then \(C_\alpha \cap \beta = C_\beta \);
The Ostaszewski square

Definition

\[\clubsuit_\lambda \] asserts the existence of a ladder system \(\vec{\mathcal{C}} = \langle C_\alpha \mid \alpha < \lambda^+ \rangle \) such that:

- \(\vec{\mathcal{C}} \) is a \(\square_\lambda \)-sequence. Let \(C_\alpha(i) \) denote the \(i_{th} \) element of \(C_\alpha \).
The Ostaszewski square

Definition

♣\(\lambda\) asserts the existence of a ladder system \(\vec{C} = \langle C_\alpha | \alpha < \lambda^+ \rangle\) such that:

- \(\vec{C}\) is a □\(\lambda\)-sequence. Let \(C_\alpha(i)\) denote the \(i\)th element of \(C_\alpha\).
- Suppose that \(\langle A_i | i < \lambda \rangle\) is a \(\lambda\)-sequence. Then for every cofinal \(B \subseteq \lambda^+\), and every limit \(\theta < \lambda\), there exists some \(\alpha < \lambda^+\) such that:
 1. \(\text{otp}(C_\alpha) = \theta\);
 2. for all \(i < \theta\), \(C_\alpha(i) \in A_i\);
 3. for all \(i < \theta\), there exists \(\beta_i \in B\) with \(C_\alpha(i) < \beta_i < C_\alpha(i + 1)\).
The Ostaszewski square (cont.)

The Ostaszewski square \(\clubsuit\lambda\) asserts the existence of a \(\square\lambda\)-sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle\) such that for every \(\lambda\)-sequence \(\langle A_i \mid i < \lambda \rangle\), every cofinal \(B \subseteq \lambda^+\), and every limit \(\theta < \lambda\), there exists some \(\alpha < \lambda^+\) such that:

1. the inverse collapse of \(C_\alpha\) is an element of \(\prod_{i<\theta} A_i\);
\[\clubsuit_{\lambda}\] asserts the existence of a \(\square_{\lambda}\)-sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle\) such that for every \(\lambda\)-sequence \(\langle A_i \mid i < \lambda \rangle\), every cofinal \(B \subseteq \lambda^+\), and every limit \(\theta < \lambda\), there exists some \(\alpha < \lambda^+\) such that:

1. the inverse collapse of \(C_\alpha\) is an element of \(\prod_{i<\theta} A_i\);
2. if \(\gamma < \delta\) belong to \(C_\alpha\), then \(B \cap (\gamma, \delta) \neq \emptyset\).
\(\clubsuit_\lambda\) asserts the existence of a \(\square_\lambda\)-sequence \(<C_\alpha \mid \alpha < \lambda^+>\) such that for every \(\lambda\)-sequence \(<A_i \mid i < \lambda>\), every cofinal \(B \subseteq \lambda^+\), and every limit \(\theta < \lambda\), there exists some \(\alpha < \lambda^+\) such that:

1. the inverse collapse of \(C_\alpha\) is an element of \(\prod_{i<\theta} A_i\);
2. if \(\gamma < \delta\) belong to \(C_\alpha\), then \(B \cap (\gamma, \delta) \neq \emptyset\).
\[\clubsuit \lambda \] asserts the existence of a \(\square \lambda \)-sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle \) such that for every \(\lambda \)-sequence \(\langle A_i \mid i < \lambda \rangle \), every cofinal \(B \subseteq \lambda^+ \), and every limit \(\theta < \lambda \), there exists some \(\alpha < \lambda^+ \) such that:

1. the inverse collapse of \(C_\alpha \) is an element of \(\prod_{i<\theta} A_i \);
2. if \(\gamma < \delta \) belong to \(C_\alpha \), then \(B \cap (\gamma, \delta) \neq \emptyset \).

Feature 1. Club guessing

For every club \(D \subseteq \lambda^+ \), there exists \(\alpha < \lambda^+ \) such that \(C_\alpha \subseteq D \).
The Ostaszewski square (cont.)

\[\clubsuit \lambda\] asserts the existence of a \(\square \lambda\)-sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle\) such that for every \(\lambda\)-sequence \(\langle A_i \mid i < \lambda \rangle\), every cofinal \(B \subseteq \lambda^+\), and every limit \(\theta < \lambda\), there exists some \(\alpha < \lambda^+\) such that:

1. the inverse collapse of \(C_\alpha\) is an element of \(\prod_{i<\theta} A_i\);
2. if \(\gamma < \delta\) belong to \(C_\alpha\), then \(B \cap (\gamma, \delta) \neq \emptyset\).

Feature 2. \[\spadesuit \lambda^+\]

For every cofinal \(A \subseteq \lambda^+\), there exists \(\alpha < \lambda^+\) s.t. \(nacc(C_\alpha) \subseteq A\).\(^a\)

\[^a\]nacc\((C_\alpha) = C_\alpha \setminus \text{acc}(C_\alpha)\), where acc\((C_\alpha) := \{\beta \in C_\alpha \mid \sup(C_\alpha \cap \beta) = \beta\}\).
The Ostaszewski square (cont.)

\(\clubsuit_{\lambda} \) asserts the existence of a \(\square_{\lambda} \)-sequence \(\langle C_{\alpha} \mid \alpha < \lambda^+ \rangle \) such that for every \(\lambda \)-sequence \(\langle A_i \mid i < \lambda \rangle \), every cofinal \(B \subseteq \lambda^+ \), and every limit \(\theta < \lambda \), there exists some \(\alpha < \lambda^+ \) such that:

1. the inverse collapse of \(C_{\alpha} \) is an element of \(\prod_{i<\theta} A_i \);
2. if \(\gamma < \delta \) belong to \(C_{\alpha} \), then \(B \cap (\gamma, \delta) \neq \emptyset \).

Feature 3. Canonical partition to stationary sets

Denote \(S_\theta := \{ \alpha < \lambda^+ \mid \text{otp}(C_{\alpha}) = \theta \} \).

Then \(\langle S_\theta \mid 0 \in \theta \in \text{acc}(\lambda) \rangle \) is a canonical partition of the set of limit ordinals \(< \lambda^+ \) into \(\lambda \) many mutually disjoint stationary sets.
\(\spadesuit_\lambda \) asserts the existence of a \(\square_\lambda \)-sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle \) such that for every \(\lambda \)-sequence \(\langle A_i \mid i < \lambda \rangle \), every cofinal \(B \subseteq \lambda^+ \), and every limit \(\theta < \lambda \), there exists some \(\alpha < \lambda^+ \) such that:

1. the inverse collapse of \(C_\alpha \) is an element of \(\prod_{i<\theta} A_i \);
2. if \(\gamma < \delta \) belong to \(C_\alpha \), then \(B \cap (\gamma, \delta) \neq \emptyset \).

Feature 4. Simultaneous \(\clubsuit_\lambda^{\lambda^+} \) & Club guessing

For every cofinal \(A \subseteq \lambda^+ \), every club \(D \subseteq \lambda^+ \), and every \(\theta < \lambda \), there exists \(\alpha \in S_\theta \) such that \(\text{nacc}(C_\alpha) \subseteq A \), and \(\text{acc}(C_\alpha) \subseteq D \).
\[\clubsuit_\lambda\] asserts the existence of a \(\square_\lambda\)-sequence \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle\) such that for every \(\lambda\)-sequence \(\langle A_i \mid i < \lambda \rangle\), every cofinal \(B \subseteq \lambda^+\), and every limit \(\theta < \lambda\), there exists some \(\alpha < \lambda^+\) such that:

1. the inverse collapse of \(C_\alpha\) is an element of \(\prod_{i<\theta} A_i\);
2. if \(\gamma < \delta\) belong to \(C_\alpha\), then \(B \cap (\gamma, \delta) \neq \emptyset\).

Further features
We shall now turn to discuss further features.
Simple constructions of higher Souslin trees
\[\lambda^+-\text{Souslin trees}\]

Jensen proved that “GCH + \square_{\lambda} + \diamond_S\] for all stationary \(S \subseteq \lambda^+\)” yields the existence of a \(\lambda^+\)-Souslin tree, for every singular \(\lambda\). We now suggest a simple construction from a related hypothesis.
λ⁺-Souslin trees

Jensen proved that “GCH + ♠_λ + ♦_S for all stationary S ⊆ λ⁺” yields the existence of a λ⁺-Souslin tree, for every singular λ. We now suggest a simple construction from a related hypothesis.

Proposition

Suppose that λ is an uncountable cardinal. If ♣_λ + ♦_λ⁺ holds, then there exists a λ⁺-Souslin tree.
Jensen proved that “GCH $+ \Box_\lambda + \diamond S$ for all stationary $S \subseteq \lambda^+$” yields the existence of a λ^+-Souslin tree, for every singular λ. We now suggest a simple construction from a related hypothesis.

Proposition
Suppose that λ is an uncountable cardinal.
If $\clubsuit_\lambda + \diamond_{\lambda^+}$ holds, then there exists a λ^+-Souslin tree.

Conventions
A κ-tree T is a tree of height κ, whose underlying set is κ, and levels are of size $< \kappa$.
The α_{th}-level is denoted T_α, and we write $T \upharpoonright \beta := \bigcup_{\alpha < \beta} T_\alpha$.
T is κ-Souslin if it is ever-branching and has no κ-sized antichains.
\(\lambda^+ \)-Souslin trees

Proposition

Suppose that \(\lambda \) is an uncountable cardinal.
If \(\clubsuit_\lambda + \diamondsuit_{\lambda^+} \) holds, then there exists a \(\lambda^+ \)-Souslin tree.

Proof.

Let \(\langle C_\alpha \mid \alpha < \lambda^+ \rangle \) witness \(\clubsuit_\lambda \), and \(\langle S_\gamma \mid \gamma < \lambda^+ \rangle \) witness \(\diamondsuit_{\lambda^+} \).
We build the \(\lambda^+ \)-Souslin tree, \(T \), by recursion on the levels.
\(\lambda^+ \)-Souslin trees

Proposition

Suppose that \(\lambda \) is an uncountable cardinal.
If \(\clubsuit \lambda + \diamondsuit_{\lambda^+} \) holds, then there exists a \(\lambda^+ \)-Souslin tree.

Proof.
Let \(\langle C_{\alpha} \mid \alpha < \lambda^+ \rangle \) witness \(\clubsuit \lambda \), and \(\langle S_{\gamma} \mid \gamma < \lambda^+ \rangle \) witness \(\diamondsuit_{\lambda^+} \).
We build the \(\lambda^+ \)-Souslin tree, \(T \), by recursion on the levels.
Set \(T_0 := \{0\} \).
 Proposition
Suppose that λ is an uncountable cardinal.
If $\clubsuit_\lambda + \diamondsuit_{\lambda^+}$ holds, then there exists a λ^+-Souslin tree.

 Proof.
Let $\langle C_\alpha \mid \alpha < \lambda^+ \rangle$ witness \clubsuit_λ, and $\langle S_\gamma \mid \gamma < \lambda^+ \rangle$ witness \diamondsuit_{λ^+}. We build the λ^+-Souslin tree, T, by recursion on the levels. Set $T_0 := \{0\}$. If $T \upharpoonright \alpha + 1$ is defined, $T_{\alpha+1}$ is obtained by providing each element of T_α with two successors in $T_{\alpha+1}$.
Proposition

Suppose that λ is an uncountable cardinal. If $\clubsuit_\lambda + \diamondsuit_{\lambda^+}$ holds, then there exists a λ^+-Souslin tree.

Proof.

Let $\langle C_\alpha \mid \alpha < \lambda^+ \rangle$ witness \clubsuit_λ, and $\langle S_\gamma \mid \gamma < \lambda^+ \rangle$ witness \diamondsuit_{λ^+}. We build the λ^+-Souslin tree, T, by recursion on the levels. Set $T_0 := \{0\}$. If $T \upharpoonright \alpha + 1$ is defined, $T_{\alpha+1}$ is obtained by providing each element of T_α with two successors in $T_{\alpha+1}$. Assume now that α is a limit ordinal; for every $x \in T \upharpoonright \alpha$, we attach a sequence x_α which is increasing and cofinal in $T \upharpoonright \alpha$, and then T_α is defined as the limit of all these sequences. Consequently, the outcome T_α is of size $\leq |T \upharpoonright \alpha| \leq \lambda$.

λ^+-Souslin trees
\(\lambda^+ \)-Souslin trees (cont.)

For every \(x \in T \upharpoonright \alpha \), pick \(x_\alpha = \langle x_\alpha(\gamma) \mid \gamma \in C_\alpha \setminus \text{ht}(x) + 1 \rangle \) s.t.:

1. \(\text{ht}(x_\alpha(\gamma)) = \gamma \) for all \(\gamma \in \text{dom}(x_\alpha) \);
2. \(x < x_\alpha(\gamma_1) < x_\alpha(\gamma_2) \) whenever \(\gamma_1 < \gamma_2 \);
3. If \(\gamma \in \text{nacc}(\text{dom}(x_\alpha)) \), and \(S_\gamma \) is a maximal antichain in \(T \upharpoonright \gamma \), then \(x_\alpha(\gamma) \) happens to be above some element from \(S_\gamma \).
\(\lambda^+\)-Souslin trees (cont.)

For every \(x \in T \upharpoonright \alpha\), pick \(x_\alpha = \langle x_\alpha(\gamma) \mid \gamma \in C_\alpha \setminus \text{ht}(x) + 1 \rangle\) s.t.:

1. \(\text{ht}(x_\alpha(\gamma)) = \gamma\) for all \(\gamma \in \text{dom}(x_\alpha)\);
2. \(x < x_\alpha(\gamma_1) < x_\alpha(\gamma_2)\) whenever \(\gamma_1 < \gamma_2\);
3. If \(\gamma \in \text{nacc}(\text{dom}(x_\alpha))\), and \(S_\gamma\) is a maximal antichain in \(T \upharpoonright \gamma\), then \(x_\alpha(\gamma)\) happens to be above some element from \(S_\gamma\).

If we make sure to choose \(x_\alpha(\gamma)\) in a canonical way (e.g., using a well-ordering), then the coherence of the square sequence implies that the branches cohere: \(\sup(C_\alpha \cap \delta) = \delta\) implies \(x_\delta = x_\alpha \upharpoonright \delta\).

In turn, we get that the whole construction may be carried, ending up with a \(\lambda^+\)-tree.
λ^+-Souslin trees (cont.)

For every $x \in T \upharpoonright \alpha$, pick $x_\alpha = \langle x_\alpha(\gamma) \mid \gamma \in C_\alpha \setminus \text{ht}(x) + 1 \rangle$ s.t.:

1. $\text{ht}(x_\alpha(\gamma)) = \gamma$ for all $\gamma \in \text{dom}(x_\alpha)$;
2. $x < x_\alpha(\gamma_1) < x_\alpha(\gamma_2)$ whenever $\gamma_1 < \gamma_2$;
3. If $\gamma \in \text{nacc}(\text{dom}(x_\alpha))$, and S_γ is a maximal antichain in $T \upharpoonright \gamma$, then $x_\alpha(\gamma)$ happens to be above some element from S_γ.

Sousliness: towards a contradiction, suppose that $A \subseteq \lambda^+$ is an antichain in T of size λ^+. By \Diamond_{λ^+}, the following set is stationary

$$A' := \{\gamma < \lambda^+ \mid A \cap \gamma = S_\gamma \text{ is a maximal antichain in } T \upharpoonright \gamma\}.$$
For every $x \in T \upharpoonright \alpha$, pick $x_\alpha = \langle x_\alpha(\gamma) \mid \gamma \in C_\alpha \setminus \text{ht}(x) + 1 \rangle$ s.t.:

1. $\text{ht}(x_\alpha(\gamma)) = \gamma$ for all $\gamma \in \text{dom}(x_\alpha)$;
2. $x < x_\alpha(\gamma_1) < x_\alpha(\gamma_2)$ whenever $\gamma_1 < \gamma_2$;
3. If $\gamma \in \text{nacc}(\text{dom}(x_\alpha))$, and S_γ is a maximal antichain in $T \upharpoonright \gamma$, then $x_\alpha(\gamma)$ happens to be above some element from S_γ.

Sousliness: towards a contradiction, suppose that $A \subseteq \lambda^+$ is an antichain in T of size λ^+. By \diamondsuit_{λ^+}, the following set is stationary

$$A' := \{ \gamma < \lambda^+ \mid A \cap \gamma = S_\gamma \text{ is a maximal antichain in } T \upharpoonright \gamma \}$$

Let $\langle A_i \mid i < \lambda \rangle$ be a λ-sequence with $A_{i+1} = A'$ for all $i < \lambda$. Pick $\alpha < \lambda^+$ such that $C_\alpha(i) \in A_i$ for all $i < \text{otp}(C_\alpha)$.

Then $\text{nacc}(C_\alpha) \subseteq A'$, and hence clause (3) above applies to the construction of x_α for each and every $x \in T \upharpoonright \alpha$.

λ⁺-Souslin trees (cont.)
For every $x \in T \upharpoonright \alpha$, pick $x_\alpha = \langle x_\alpha(\gamma) \mid \gamma \in C_\alpha \setminus \text{ht}(x) + 1 \rangle$ s.t.:

1. $\text{ht}(x_\alpha(\gamma)) = \gamma$ for all $\gamma \in \text{dom}(x_\alpha)$;
2. $x < x_\alpha(\gamma_1) < x_\alpha(\gamma_2)$ whenever $\gamma_1 < \gamma_2$;
3. If $\gamma \in \text{nacc}(\text{dom}(x_\alpha))$, and S_γ is a maximal antichain in $T \upharpoonright \gamma$, then $x_\alpha(\gamma)$ happens to be above some element from S_γ.

Sousliness: towards a contradiction suppose that $A \subseteq \lambda^+$ is an antichain in T of size λ^+. By \diamondsuit_{λ^+}, the following set is stationary

$$A' := \{ \gamma < \lambda^+ \mid A \cap \gamma = S_\gamma \text{ is a maximal antichain in } T \upharpoonright \gamma \}$$

Let $\langle A_i \mid i < \lambda \rangle$ be a λ-sequence with $A_{i+1} = A'$ for all $i < \lambda$. Pick $\alpha < \lambda^+$ such that $C_\alpha(i) \in A_i$ for all $i < \text{otp}(C_\alpha)$.

Then $\text{nacc}(C_\alpha) \subseteq A'$, and hence clause (3) above applies to all x_α. As every element of T_α is the limit of some x_α, every element of T_α happens to be above some element from $A \cap \alpha$. So, $A \cap \alpha$ is a maximal antichain in T. This is a contradiction. ■
So, what do we gain from the fact that we may guess a λ-sequence if at the end of the day we are only concerned with guessing a single set?

Suppose we wanted the resulted tree to be, in addition, rigid. Then fix a \diamondsuit_{λ^+} sequence that guesses functions $\langle f_\gamma \mid \gamma < \lambda^+ \rangle$.

Given an hypothetical maximal antichain A, and a non-trivial automorphism f, the following sets would be cofinal (in fact, stat.):

$A_0 := \{ \gamma < \lambda^+ \mid A \cap \gamma = S_{\gamma} \text{ is a maximal antichain in } T \upharpoonright \gamma \}$;

$A_1 := \{ \gamma < \lambda^+ \mid f \upharpoonright \gamma = f_{\gamma} \text{ is a n.t. automorphism of } T \upharpoonright \gamma \}$.

So, we could find C_α whose odd nacc points are in A_0, and even nacc points are in A_1. Meaning that we could overcome A and f along the way.

Similarly, we may overcome λ^+ many obstructions in a very elegant way.
\(\lambda^+\)-Souslin trees. The aftermath

So, what do we gain from the fact that we may guess a \(\lambda \)-sequence if at the end of the day we are only concerned with guessing a single set?

Suppose we wanted the resulted tree to be, in additional, rigid. Then fix a \(\diamond \lambda^+ \) sequence that guesses functions \(\langle f_\gamma \mid \gamma < \lambda^+ \rangle \).

Given an hypothetical maximal antichain \(A \), and a non-trivial automorphism \(f \), the following sets would be cofinal (in fact, stat.):

\[
A_0 := \{ \gamma < \lambda^+ \mid A \cap \gamma = S_\gamma \text{ is a maximal antichain in } T \upharpoonright \gamma \}; \\
A_1 := \{ \gamma < \lambda^+ \mid f \upharpoonright \gamma = f_\gamma \text{ is a n.t. automorphism of } T \upharpoonright \gamma \}.
\]

So, we could find \(C_\alpha \) whose odd nacc points are in \(A_0 \), and even nacc points are in \(A_1 \). Meaning that we could overcome \(A \) and \(f \) along the way.
λ^+-Souslin trees. The aftermath

So, what do we gain from the fact that we may guess a λ-sequence if at the end of the day we are only concerned with guessing a single set?

Suppose we wanted the resulted tree to be, in additional, rigid. Then fix a \diamondsuit_{λ^+} sequence that guesses functions $\langle f_\gamma \mid \gamma < \lambda^+ \rangle$.

Given an hypothetical maximal antichain A, and a non-trivial automorphism f, the following sets would be cofinal (in fact, stat.):

\[
A_0 := \{ \gamma < \lambda^+ \mid A \cap \gamma = S_\gamma \text{ is a maximal antichain in } T \upharpoonright \gamma \};
\]
\[
A_1 := \{ \gamma < \lambda^+ \mid f \upharpoonright \gamma = f_\gamma \text{ is a n.t. automorphism of } T \upharpoonright \gamma \}.
\]

So, we could find C_α whose odd nacc points are in A_0, and even nacc points are in A_1. Meaning that we could overcome A and f along the way. Similarly, we may overcome λ many obstructions in a very elegant way.
Question
What do we gain from the fact that we may guess a λ-sequence if we are only concerned with guessing a single cofinal set?

Answer
We can smoothly construct complicated objects, taking into account λ many independent considerations.
\(\lambda^+\)-Souslin trees. The aftermath

We can smoothly construct complicated objects, having in mind \(\lambda\) many independent considerations.

Question

“smoothly”?
We can smoothly construct complicated objects, having in mind \(\lambda \) many independent considerations.

Question

“smoothly”?

Answer

Jensen’s original construction consists of two distinct components; one which is responsible for insuring that the construction may be carried up to height \(\lambda^+ \), and the other responsible for sealing potential large antichains. This distinction affects the completeness degree of the tree. In contrast, here, the potential antichains are sealed along the way.
\(\lambda^+\)-Souslin trees. The aftermath

We can smoothly construct complicated objects, having in mind \(\lambda\) many independent considerations.

A complaint

“smoothly”… okay! But Jensen’s construction is from

\[\text{GCH} + \square_\lambda + \diamond S \text{ for all stationary } S \subseteq \lambda^+,\]

while the other construction requires \(\clubsuit_\lambda!!\)
We can smoothly construct complicated objects, having in mind λ many independent considerations.

A complaint

"smoothly"... okay! But Jensen’s construction is from

$$\text{GCH} + \Box_\lambda + \Diamond_S \text{ for all stationary } S \subseteq \lambda^+,$$

while the other construction requires $\spadesuit_\lambda!!$

Answer

If you are serious about purchasing my \spadesuit_λ, let me make a price quote.
Ostaszewski square - the price

It should be clear that the usual fine-structural-type of arguments yield that ♣_λ holds in L for all λ. But that’s an high price to pay.
Ostaszewski square - the price

It should be clear that the usual fine-structural-type of arguments yield that \clubsuit_λ holds in L for all λ. But that’s an high price to pay.

Main Theorem
Suppose that \square_λ holds for a given cardinal λ.

1. If λ is a limit cardinal, then $\lambda^\lambda = \lambda^+$ entails \clubsuit_λ.
2. If λ is a successor, then $\lambda^{<\lambda} < \lambda^\lambda = \lambda^+$ entails \clubsuit_λ.

Corollary
Assume GCH. Then for every uncountable cardinal λ, TFAE:

- \square_λ;
- \clubsuit_λ.
Ostaszewski square - the price

It should be clear that the usual fine-structural-type of arguments yield that \clubsuit_λ holds in L for all λ. But that’s an high price to pay.

Main Theorem

Suppose that \square_λ holds for a given cardinal λ.

1. If λ is a limit cardinal, then $\lambda^\lambda = \lambda^+$ entails \clubsuit_λ.

2. If λ is a successor, then $\lambda^{<\lambda} < \lambda^\lambda = \lambda^+$ entails \clubsuit_λ.

Corollary

Assume GCH. Then for every uncountable cardinal λ, TFAE:

- \square_λ;
- \clubsuit_λ.

So, for the Jensen setup, you pay no extra!
Ostaszewski square - the price

It should be clear that the usual fine-structural-type of arguments yield that \clubsuit_λ holds in L for all λ. But that’s an high price to pay.

Main Theorem
Suppose that \Box_λ holds for a given cardinal λ.

1. If λ is a limit cardinal, then $\lambda^\lambda = \lambda^+$ entails \clubsuit_λ.
2. If λ is a successor, then $\lambda^{<\lambda} < \lambda^\lambda = \lambda^+$ entails \clubsuit_λ.

Corollary
Assume GCH. Then for every uncountable cardinal λ, TFAE:

- \Box_λ;
- \clubsuit_λ.

So, for the Jensen setup, you pay no extra! In fact, you pay less, since $\Box_\lambda + \text{GCH}$ implies $\clubsuit_\lambda + \Diamond_{\lambda^+}$.
Reflection
Reflection of stationary sets

Definition

We say that a stationary subset $S \subseteq \kappa$ reflects at an ordinal $\alpha < \kappa$, if $S \cap \alpha$ is stationary (as a subset of α).

Fact (Hanf-Scott, 1960’s)

*If κ is a weakly compact cardinal, then every stationary subset of κ reflects at some $\alpha < \kappa$.***
Reflection of stationary sets

Definition
We say that a stationary subset $S \subseteq \kappa$ reflects at an ordinal $\alpha < \kappa$, if $S \cap \alpha$ is stationary (as a subset of α).

Fact (Hanf-Scott, 1960’s)
If κ is a weakly compact cardinal, then every stationary subset of κ reflects at some $\alpha < \kappa$.

Proof.
By Todorcevic, κ is weakly compact iff every ladder system $\langle A_\alpha \mid \alpha < \kappa \rangle$ whose ladders are closed, is trivial in the following sense. There exists a club $C \subseteq \kappa$ such that for all $\beta < \kappa$, there exists $\alpha \geq \beta$ for which $A_\alpha \cap \beta = C \cap \beta$.
Reflection of stationary sets

Definition
We say that a stationary subset $S \subseteq \kappa$ reflects at an ordinal $\alpha < \kappa$, if $S \cap \alpha$ is stationary (as a subset of α).

Fact (Hanf-Scott, 1960’s)
If κ is a weakly compact cardinal, then every stationary subset of κ reflects at some $\alpha < \kappa$.

Proof.
By Todorcevic, κ is weakly compact iff every ladder system \(\langle A_\alpha \mid \alpha < \kappa \rangle \) whose ladders are closed, is trivial in the following sense. There exists a club $C \subseteq \kappa$ such that for all $\beta < \kappa$, there exists $\alpha \geq \beta$ for which $A_\alpha \cap \beta = C \cap \beta$.

Suppose now that $S \subseteq \kappa$ is stationary and non-reflecting. Then there exists a ladder system as above with $A_\alpha \cap S = \emptyset$ for all limit α. This contradicts the fact that there exists a limit $\beta \in S \cap C$. \qed
A \square_λ-sequence $\langle C_\alpha \mid \alpha < \lambda^+ \rangle$ is non-trivial in the above sense.
Weak square

A \square_λ-sequence $\langle C_\alpha \mid \alpha < \lambda^+ \rangle$ is non-trivial in the above sense. Indeed, since the ladders cohere, $S_\theta = \{ \alpha < \lambda^+ \mid \text{otp}(C_\alpha) = \theta \}$ does not reflect for any $\theta < \lambda$, whereas by Fodor’s lemma, there must exist some $\theta < \lambda$ for which S_θ is stationary.
A \square_λ-sequence $\langle C_\alpha \mid \alpha < \lambda^+ \rangle$ is non-trivial in the above sense. Indeed, since the ladders cohere, $S_\theta = \{ \alpha < \lambda^+ \mid \otp(C_\alpha) = \theta \}$ does not reflect for any $\theta < \lambda$, whereas by Fodor’s lemma, there must exist some $\theta < \lambda$ for which S_θ is stationary.

Definition (Jensen, 1960’s)

\square_λ^* asserts the existence of a ladder system, $\langle C_\alpha \mid \alpha < \lambda^+ \rangle$, s.t.:

- $\otp(C_\alpha) \leq \lambda$;
- C_α is closed;
- for all $\beta < \lambda^+$, $\{ C_\alpha \cap \beta \mid \alpha < \lambda^+ \}$ is of size at most λ.

\square_λ^* follows from \square_λ, but also from $\lambda < \lambda = \lambda$, hence the main interest in \square_λ^* is whenever λ is singular.
Weak square

A \square_λ-sequence $\langle C_\alpha \mid \alpha < \lambda^+ \rangle$ is non-trivial in the above sense. Indeed, since the ladders cohere, $S_\theta = \{ \alpha < \lambda^+ \mid \text{otp}(C_\alpha) = \theta \}$ does not reflect for any $\theta < \lambda$, whereas by Fodor’s lemma, there must exist some $\theta < \lambda$ for which S_θ is stationary.

Definition (Jensen, 1960’s)

\square^*_λ asserts the existence of a ladder system, $\langle C_\alpha \mid \alpha < \lambda^+ \rangle$, s.t.:

- $\text{otp}(C_\alpha) \leq \lambda$;
- C_α is closed;
- for all $\beta < \lambda^+$, $\{ C_\alpha \cap \beta \mid \alpha < \lambda^+ \}$ is of size at most λ.

\square^*_λ follows from \square_λ, but also from $\lambda^{<\lambda} = \lambda$, hence the main interest in \square^*_λ is whenever λ is singular.
Squares and reflection of stationary sets

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of infinitely many supercompact cardinals, that all of the following holds simultaneously:

- GCH;
- $\square^*_{\aleph_\omega}$;
- every stationary subset of $\aleph_{\omega + 1}$ reflects.

So, unlike square, weak square does not imply non-reflection.
Squares and reflection of stationary sets

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of infinitely many supercompact cardinals, that all of the following holds simultaneously:

- GCH;
- \(\Box^*_{\aleph_\omega} \);
- every stationary subset of \(\aleph_{\omega+1} \) reflects.

Cummings-Foreman-Magidor and Aspero-Krueger-Yoshinobu found that (for a singular \(\lambda \),) \(\Box^*_\lambda \) implies sorts of non-reflection, but of generalized stationary sets (in the sense of \(P_\kappa(\lambda) \), \(P_\kappa(\lambda^+) \)).
Squares and reflection of stationary sets

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of infinitely many supercompact cardinals, that all of the following holds simultaneously:

- GCH;
- □^*_\omega;
- every stationary subset of \(\aleph_{\omega+1}\) reflects.

We found out that □^*_\lambda does entail ordinary non-reflection; it is just that the non-reflection takes place in an outer universe...
Weak squares and reflection of stationary sets

Theorem

Suppose that $2^\lambda = \lambda^+$ for a strong limit singular cardinal λ. If \square_λ^* holds, then in $V^{\text{Add}(\lambda^+ , 1)}$, there exists a non-reflecting stationary subset of λ^+. So, this aspect of non-triviality of the weak square system is witnessed in a generic extension.
Weak squares and reflection of stationary sets

Theorem

Suppose that $2^\lambda = \lambda^+$ for a strong limit singular cardinal λ. If \square^*_λ holds, then in $V^{\text{Add}(\lambda^+, 1)}$, there exists a non-reflecting stationary subset of $\{\alpha < \lambda^+ \mid \text{cf}(\alpha) = \text{cf}(\lambda)\}$.

So, this aspect of non-triviality of the weak square system is witnessed in a generic extension.
Weak squares and reflection of stationary sets

Theorem
Suppose that $2^\lambda = \lambda^+$ for a strong limit singular cardinal λ. If \Box^*_λ holds, then in $V^{Add(\lambda^+, 1)}$, there exists a non-reflecting stationary subset of $\{\alpha < \lambda^+ | \text{cf}(\alpha) = \text{cf}(\lambda)\}$. So, this aspect of non-triviality of the weak square system is witnessed in a generic extension.

Compare with the following.

Example
Suppose that $\lambda > \kappa > \text{cf}(\lambda)$, where λ is a strong limit, and κ is a Laver-indestructible supercompact cardinal. Then $2^\lambda = \lambda^+$ holds for the strong limit singular cardinal λ, while in $V^{Add(\lambda^+, 1)}$, every stationary subset of $\{\alpha < \lambda^+ | \text{cf}(\alpha) = \text{cf}(\lambda)\}$ do reflect.
Strong Colorings
Suppose that $\vec{C} = \langle C_\alpha \mid \alpha < \kappa \rangle$ is a ladder system whose ladders are closed. For every $\alpha < \beta < \kappa$, let $\beta = \beta_0 > \cdots > \beta_{k+1} = \alpha$ denote the minimal walk from β down to α along \vec{C}. Let $[\alpha, \beta]_n$ denote the n_{th} element in the walk from β to α.

Fact (Todorcevic, Shelah, 1980's) Suppose that S is a stationary subset of κ such that $S \cap C_\alpha = \emptyset$ for every limit $\alpha < \kappa$. (So, S is non-reflecting). Then there exists an oscillating function $o : [\kappa]^2 \to \omega$ such that $S \setminus \bigcup \{[\alpha, \beta]_o(\alpha, \beta) \mid \alpha < \beta \text{ in } A \}$ is non-stationary for every cofinal $A \subseteq \kappa$.
Strong colorings

Suppose that $\vec{C} = \langle C_\alpha \mid \alpha < \kappa \rangle$ is a ladder system whose ladders are closed. For every $\alpha < \beta < \kappa$, let $\beta = \beta_0 > \cdots > \beta_{k+1} = \alpha$ denote the minimal walk from β down to α along \vec{C}. Let $[\alpha, \beta]_n$ denote the n^{th} element in the walk from β to α.

Fact (Todorcevic, Shelah, 1980’s)

Suppose that S is a stationary subset of κ such that $S \cap C_\alpha = \emptyset$ for every limit $\alpha < \kappa$. (So, S is non-reflecting).

Then there exists an oscillating function $o : [\kappa]^2 \to \omega$ such that

$$S \setminus \bigcup \left\{ [\alpha, \beta]_{o(\alpha, \beta)} \mid \alpha < \beta \text{ in } A \right\}$$

is non-stationary for every cofinal $A \subseteq \kappa$.
Simply definable strong colorings

Suppose that $\vec{C} = \langle C_\alpha \mid \alpha < \lambda^+ \rangle$ witnesses ♣_λ, and let $[\alpha, \beta]_n$ denote the n_{th} element in the \vec{C}-walk from β to α.
Simply definable strong colorings

Suppose that \(\vec{C} = \langle C_\alpha \mid \alpha < \lambda^+ \rangle \) witnesses \(\clubsuit \lambda \), and let \([\alpha, \beta]_n \) denote the \(n_{th} \) element in the \(\vec{C} \)-walk from \(\beta \) to \(\alpha \).

Proposition

For every cofinal \(B \subseteq \lambda^+ \), there exists an \(n < \omega \) such that for every cofinal \(A \subseteq \lambda^+ \), the set

\[
\{ [\alpha, \beta]_n \mid \alpha \in A, \beta \in B, \alpha < \beta \}
\]

is co-bounded in \(\lambda^+ \).
Simply definable strong colorings

Suppose that $\vec{C} = \langle C_\alpha \mid \alpha < \lambda^+ \rangle$ witnesses ♣_\lambda, and let $[\alpha, \beta]_n$ denote the n_{th} element in the \vec{C}-walk from β to α.

Proposition

For every cofinal $B \subseteq \lambda^+$, there exists an $n < \omega$ such that for every cofinal $A \subseteq \lambda^+$, the set

$$\{ [\alpha, \beta]_n \mid \alpha \in A, \beta \in B, \alpha < \beta \}$$

is co-bounded in λ^+.

Corollary

For every cofinal $B \subseteq \lambda^+$, there exists an $n < \omega$ such that for every cofinal $A \subseteq \lambda^+$, the set

$$\{ \otp(C[\alpha, \beta]_n) \mid \alpha \in A, \beta \in B, \alpha < \beta \}$$

contains each and every limit ordinal $< \lambda$.
Simply definable strong colorings

Suppose that $\vec{C} = \langle C_\alpha \mid \alpha < \lambda^+ \rangle$ witnesses ♠_\lambda, and let $[\alpha, \beta]_n$ denote the n_{th} element in the \vec{C}-walk from β to α.

Proposition

For every cofinal $B \subseteq \lambda^+$, there exists an $n < \omega$ such that for every cofinal $A \subseteq \lambda^+$, the set

$$\{[\alpha, \beta]_n \mid \alpha \in A, \beta \in B, \alpha < \beta\}$$

is co-bounded in λ^+.

Remark

The above is optimal in the sense that for every $n < \omega$, there exists a cofinal $B \subseteq \lambda^+$, such that

$$\{[\alpha, \beta]_n \mid \alpha, \beta \in B, \alpha < \beta\}$$

omits any limit ordinal $< \lambda^+$.
Simply definable strong colorings

Suppose that $\vec{C} = \langle C_\alpha \mid \alpha < \lambda^+ \rangle$ witnesses $\clubsuit\lambda$, and let $[\alpha, \beta]_n$ denote the n_{th} element in the \vec{C}-walk from β to α.

Proposition

For every cofinal $B \subseteq \lambda^+$, there exists an $n < \omega$ such that for every cofinal $A \subseteq \lambda^+$, the set

$$\{[\alpha, \beta]_n \mid \alpha \in A, \beta \in B, \alpha < \beta\}$$

is co-bounded in λ^+.

Conjecture

There exists a one-place function $o : \lambda^+ \rightarrow \omega$ such that for every cofinal $A, B \subseteq \lambda^+$, the set

$$\{[\alpha, \beta]_{o(\beta)} \mid \alpha \in A, \beta \in B, \alpha < \beta\}$$

is co-bounded in λ^+.
Squares and small forcings
Some people (including the speaker) speculated at some point in time that \square_λ cannot be introduced by a forcing notion of size $\ll \lambda$. This indeed sounds plausible, However:
Squares and small forcing notions

Some people (including the speaker) speculated at some point in time that □_λ cannot be introduced by a forcing notion of size \(\ll \lambda \). This indeed sounds plausible, However:

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact cardinal that □_{\aleph_\omega} is introduced by a forcing of size \(\aleph_1 \).
Some people (including the speaker) speculated at some point in time that \square_λ cannot be introduced by a forcing notion of size $\ll \lambda$. This indeed sounds plausible, however:

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact cardinal that \square_{\aleph_ω} is introduced by a forcing of size \aleph_1.

The idea of the proof is to cook up a model in which \square_{\aleph_ω} fails, while $\{\alpha < \aleph_{\omega+1} \mid \text{cf}(\alpha) > \omega_1\}$ does carry a so-called partial square. Then, to overcome the lack of coherence over $\{\alpha < \aleph_{\omega+1} \mid \text{cf}(\alpha) = \omega_1\}$, they Levy collapse \aleph_1 into countable cardinality.
Squares and small forcing notions

Some people (including the speaker) speculated at some point in time that \Box_λ cannot be introduced by a forcing notion of size $\ll \lambda$. This indeed sounds plausible, However:

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact cardinal that \Box_{\aleph_ω} is introduced by a forcing of size \aleph_1.

The idea of the proof is to cook up a model in which \Box_{\aleph_ω} fails, while $\{\alpha < \aleph_{\omega+1} \mid \text{cf}(\alpha) > \omega_1\}$ does carry a so-called partial square. Then, to overcome the lack of coherence over $\{\alpha < \aleph_{\omega+1} \mid \text{cf}(\alpha) = \omega_1\}$, they Levy collapse \aleph_1 into countable cardinality. The latter trivially overcomes the failure of \Box_{\aleph_ω}, and is a forcing notion of size \aleph_1.
Squares and small forcing notions

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact cardinal that \square_{\aleph_ω} is introduced by $\text{coll}(\omega, \omega_1)$.

A rant

Insuring coherence by collapsing cardinals? this is cheating!!
Let me correct my conjecture.
Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact cardinal that □_{\aleph_\omega} is introduced by coll(\omega, \omega_1).

Speculation, revised

Square/weak square cannot be introduced by a small forcing that does not collapse cardinals.
Squares and small forcing notions

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact cardinal that \(\Box_{\aleph_\omega} \) is introduced by \(\text{coll}(\omega, \omega_1) \).

False speculation

Square/weak square cannot be introduced by a small forcing that does not collapse cardinals.

Theorem

*It is relatively consistent with the existence of two supercompact cardinals that \(\Box^*_{\aleph_\omega_1} \) is introduced by a cofinality preserving forcing of size \(\aleph_3 \).*
Squares and small forcing notions

Theorem (Cummings-Foreman-Magidor, 2001)
It is relatively consistent with the existence of a supercompact cardinal that \square_{\aleph_ω} is introduced by $\text{coll}(\omega, \omega_1)$.

Theorem
It is relatively consistent with the existence of two supercompact cardinals that $\square^*_{\aleph_{\omega_1}}$ is introduced by a cofinality preserving forcing of size \aleph_3.

Conjecture
As \aleph_1-sized notion of forcing suffices to introduce \square_{\aleph_ω}, then \aleph_2-sized notion of forcing should suffice to introduce (in a cofinality-preserving manner!) $\square^*_{\aleph_{\omega_1}}$.
Open Problems
Two problems

Question
Suppose that $\clubsuit_\lambda + \diamondsuit_{\lambda^+}$ holds for a given singular cardinal λ. Does there exists an homogenous λ^+-Souslin tree?
Two problems

Question
Suppose that ♣_λ + ◊_λ⁺ holds for a given singular cardinal λ. Does there exists an homogenous λ⁺-Souslin tree?

Theorem (Dolinar-Džamonja, 2010)
□_ω₁ may be introduced by a forcing notion whose working parts are finite. (that is, the part in the forcing conditions which approximates the generic square sequence is finite.)

Conjecture
□^*_N_ω₁ may be introduced by a small, cofinality preserving forcing notion whose working parts are finite.
Epilogue

Summary

- ♣_\lambda is a particular form of □_\lambda whose intrinsic complexity allows to derive complex objects (such as trees, partitions of stationary sets, and strong colorings) in a canonical way;
- ♣_\lambda and □_\lambda are equivalent, assuming GCH;
- weak square may be introduced by a small forcing that preserves the cardinal structure;
- weak square implies the existence of a non-reflecting stationary set in a generic extension by Cohen forcing.