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STANDARD SYSTEMS

Suppose M = (M,E ) is a non ω-standard model of ZF±∞,
and c ∈ M.

Recall cE := {x ∈ M : xEc}.
SSy(M) := {cE ∩ ω : c ∈ M} = the standard system of M.

A family A ⊆ P(ω) is a Scott set if A is a Boolean algebra
closed under Turing reducibility which satisfies the property
“every infinite subtree of 2<ω has an infinite branch”.

Theorem. [Scott]
(a) SSy(M) is a Scott set for every M |= ZF±∞.
(b) IfA is a countable Scott set, then A can be realized as
SSy(M) for some model of ZF±∞.
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STANDARD SYSTEMS, CONT’D

Theorem. [Ehrenfeucht, Knight-Nadel] In (b) above |A| = ℵ0

can be relaxed to |A| ≤ ℵ1.

Corollary. Under CH, A is a Scott set iff A can be realized
as SSy(M) for some model of ZF±∞.

Scott Set Problem. Is every Scott set of the form SSy(M)
for some model of ZF±∞?

Kanovei’s Problem. Is there a Borel model of ZF±∞ such
that SSy(M) = P(ω)?

Theorem [Gitman]. (ZFC + PFA) Suppose A ⊆ P(ω) is
arithmetically closed and A/fin is proper. Then A is the
standard system of some model of ZF±∞.

Theorem [E, Shelah] There exists A ⊆ P(ω) that is is
arithmetically closed and A/fin is proper; indeed A can be
arranged to be Borel.
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RECURSIVE SATURATION

Proposition. M is recursively saturated iff (1)M is not
ω-standard, and (2) VMα ≺M for cofinally many α ∈ OrdM.

Theorem. [Ehrenfeucht-Jensen] The isomorphism type of a
countable recursively saturated model M of arithmetic is
determined by the following two invariants (1) Th(M) and
(2) SSy(M).

(1) Recursively saturated models are homogeneous, i.e., if
(M, a1, · · ·, an) ≡ (M, b1, · · ·, bn), then for every c ∈ M there
is d ∈ M such that (M, a1, · · ·, an, c) ≡ (M, b1, · · ·, bn, d) .
(2) The set of n-types that are coded in a recursively
saturated model of arithmetic are precisely those finitely
satisfiable types whose Gödel numbers are coded in SSy(M).
(3) Any two countable homogeneous models that satisfy the
same set of types are isomorphic. This is established by a
back-and-forth argument.
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FRIEDMAN’S SELF-EMBEDDING THEOREM

Theorem. [Friedman] Every countable nonstandard model
M |= ZF±∞ is isomorphic to a proper rank initial segment of
itself.

Proof (for the non ω-standard case).

VMα is recursively saturated for every α ∈ OrdM.

Fix c ∈ ωM\ω and for each α ∈ OrdM, consider Th≤c(VMα ).

By ReplacementM ∃α0 ∈ OrdM such that M satisfies:{
α ∈ OrdM : Th≤c(VMα )) = Th≤c(VMα0

)
}

is unbounded in
Ord.

Let N �endM. There is some β ∈ OrdN \OrdM such that
Th≤c(VMβ ) = Th≤c(VMα0

).

VMβ
∼= VMα0

. By restricting any isomorphism between them to
M we obtain an embedding of M into a proper rank initial
segment of itself.
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THE EHRENFEUCHT-MOSTOWSKI THEOREM

Theorem. (Ehrenfeucht and Mostowski). Given any infinite
model M0 and any linear order L, there is an elementary
extension ML of M0 such that

Aut(L) ↪→ Aut(ML).

Usual Proof: Specify an appropriate set of sentences, and
build a model of them using:

Ramsey’s Theorem.

Compactness Theorem.
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GAIFMAN’S PROOF OF EM THEOREM

Fix a nonprincipal ultrafilter U .

Build the L-iterated ultrapower.

MU ,L :=
∏
U , L
M0.

M0 ≺MU ,L and L is a set of order indiscernibles in MU ,L.
There is a group embedding

j 7→ ̂

of Aut(L) into Aut(MU ,L) such that

fix(̂) =M′

for every fixed-point free j .
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NATURAL QUESTIONS FOR A THEORY T

1 If T has an ω-standard model, then does T also have an
ω-standard model that admits an automorphism?

2 Does T have a model that that admits an automorphism that
moves all undefinable elements?

3 Does T have a model with an automorphism that fixes
precisely a proper rank initial segement?

4 Does T have a model M with Aut(M) ∼= Aut(L) for any
prescribed linear order L?

5 More generally, what groups can arise as Aut(M) for M � T ?

6 Does T have a rigid model?
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THE LEVY SCHEME

Let λn(κ) be the sentence in set theory asserting that κ is
an n-Mahlo cardinal and Vκ ≺n V.

Λ := {∃κ λn(κ) : n ∈ ω}.

Λ is also axiomatized by formulas of the form
ψC ,n := C (x) is CUB → ∃κ C (κ) and κ is n-Mahlo.
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ROBUSTNESS

Theorem. If M |= ZFC + Λ , and c ∈ M, then LM(c) |= Λ.

Theorem. If M |= ZFC + Λ and P ∈ M, then MP |= Λ.
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EST and GW

EST(L) is obtained from the usual axiomatization of ZFC(L)
by deleting Power Set and Replacement, and adding
∆0(L)-Separation.

GW is the conjunction of the following 3 axioms.

(a) “C is a global well-ordering”.

(b) ∀x∀y(x ∈ y → x C y).

(c) ∀x∃y∀z(z ∈ y ←→ z C x).

I-∆0
PA ∼ EST(∈,C)+GW

ZFC+Λ

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS



EST and GW

EST(L) is obtained from the usual axiomatization of ZFC(L)
by deleting Power Set and Replacement, and adding
∆0(L)-Separation.

GW is the conjunction of the following 3 axioms.

(a) “C is a global well-ordering”.

(b) ∀x∀y(x ∈ y → x C y).

(c) ∀x∃y∀z(z ∈ y ←→ z C x).

I-∆0
PA ∼ EST(∈,C)+GW

ZFC+Λ

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS



EST and GW

EST(L) is obtained from the usual axiomatization of ZFC(L)
by deleting Power Set and Replacement, and adding
∆0(L)-Separation.

GW is the conjunction of the following 3 axioms.

(a) “C is a global well-ordering”.

(b) ∀x∀y(x ∈ y → x C y).

(c) ∀x∃y∀z(z ∈ y ←→ z C x).

I-∆0
PA ∼ EST(∈,C)+GW

ZFC+Λ

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS



EST and GW

EST(L) is obtained from the usual axiomatization of ZFC(L)
by deleting Power Set and Replacement, and adding
∆0(L)-Separation.

GW is the conjunction of the following 3 axioms.

(a) “C is a global well-ordering”.

(b) ∀x∀y(x ∈ y → x C y).

(c) ∀x∃y∀z(z ∈ y ←→ z C x).

I-∆0
PA ∼ EST(∈,C)+GW

ZFC+Λ

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS



EST and GW

EST(L) is obtained from the usual axiomatization of ZFC(L)
by deleting Power Set and Replacement, and adding
∆0(L)-Separation.

GW is the conjunction of the following 3 axioms.

(a) “C is a global well-ordering”.

(b) ∀x∀y(x ∈ y → x C y).

(c) ∀x∃y∀z(z ∈ y ←→ z C x).

I-∆0
PA ∼ EST(∈,C)+GW

ZFC+Λ

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS



EST and GW

EST(L) is obtained from the usual axiomatization of ZFC(L)
by deleting Power Set and Replacement, and adding
∆0(L)-Separation.

GW is the conjunction of the following 3 axioms.

(a) “C is a global well-ordering”.

(b) ∀x∀y(x ∈ y → x C y).

(c) ∀x∃y∀z(z ∈ y ←→ z C x).

I-∆0
PA ∼ EST(∈,C)+GW

ZFC+Λ

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS



EST and GW

EST(L) is obtained from the usual axiomatization of ZFC(L)
by deleting Power Set and Replacement, and adding
∆0(L)-Separation.

GW is the conjunction of the following 3 axioms.

(a) “C is a global well-ordering”.

(b) ∀x∀y(x ∈ y → x C y).

(c) ∀x∃y∀z(z ∈ y ←→ z C x).

I-∆0
PA ∼ EST(∈,C)+GW

ZFC+Λ

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS


