ARITHMETIC, SET THEORY, AND THEIR MODELS PART ONE: END EXTENSIONS

Ali Enayat

YOUNG SET THEORY WORKSHOP

KÖNIGSWINTER, MARCH 21-25, 2011

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

伺 ト く ヨ ト く ヨ ト

(1) [Koepke-Koerwien] SO ≈ ZFC.
 SO = Second Order Theory of Ordinals.

- (1) [Koepke-Koerwien] SO ≈ ZFC.
 SO = Second Order Theory of Ordinals.
- $T^{-\infty} := T \setminus \{ Infinity \} \cup \{ \neg Infinity \}.$

- (1) [Koepke-Koerwien] SO ≈ ZFC.
 SO = Second Order Theory of Ordinals.
- $T^{-\infty} := T \setminus \{ Infinity \} \cup \{ \neg Infinity \}.$
- (2) [Mostowski] $Z_2 + \Pi_{\infty}^1 AC =$

(Second Order Arithmetic + Choice Scheme) \approx

- (1) [Koepke-Koerwien] SO ≈ ZFC.
 SO = Second Order Theory of Ordinals.
- $T^{-\infty} := T \setminus \{ Infinity \} \cup \{ \neg Infinity \}.$
- (2) [Mostowski] $Z_2 + \Pi_{\infty}^1$ -AC = (Second Order Arithmetic + Choice Scheme) \approx
- $\mathsf{ZFC} \setminus \{\mathsf{Power}\} + \mathbf{V} = \mathrm{H}(\aleph_1) \approx$
- KMC⁻.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

く 戸 と く ヨ と く ヨ と …

(3) [Ackermann, Mycielski, Kaye-Wong]
 ACA₀ ≈ GBC^{-∞} + TC.
 PA ≈ ZF^{-∞} + TC.

- (3) [Ackermann, Mycielski, Kaye-Wong] $ACA_0 \approx GBC^{-\infty} + TC.$ $PA \approx ZF^{-\infty} + TC.$
- (4) [Gaifman-Dimitracopoulos]
 EFA (Elementary Function Arithmetic)≈ Mac^{-∞}.

- (3) [Ackermann, Mycielski, Kaye-Wong] $ACA_0 \approx GBC^{-\infty} + TC.$ $PA \approx ZF^{-\infty} + TC.$
- (4) [Gaifman-Dimitracopoulos]
 EFA (Elementary Function Arithmetic)≈ Mac^{-∞}.
- (5) [Szmielew-Tarski]

Robinson's $Q \approx AST$ (Adjunctive Set Theory).

FAMILIAR INTERPRETATIONS

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

• **Example A:** Poincare's interpretation of hyperbolic geometry in euclidean geometry.

• **Example A:** Poincare's interpretation of hyperbolic geometry in euclidean geometry.

• Example B: Hamilton's interpretation of ACF₀ in RCF.

• **Example A:** Poincare's interpretation of hyperbolic geometry in euclidean geometry.

• Example B: Hamilton's interpretation of ACF₀ in RCF.

• Example C: von Neumann's interpretation of PA in ZF.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

聞 と く き と く き と

An interpretation of a theory S in a theory T, written,
 I : S → T consists of a translation of each formula φ of S into a formula φ^I in the language of T such that

$$(S \vdash \varphi) \Longrightarrow T \vdash \varphi^{\mathcal{I}}.$$

An interpretation of a theory S in a theory T, written,
 I : S → T consists of a translation of each formula φ of S into a formula φ^I in the language of T such that

$$(S \vdash \varphi) \Longrightarrow T \vdash \varphi^{\mathcal{I}}.$$

The translation φ → φ^I is induced by the following:
 (a) A universe of discourse designated by a first order formula U of T;

(b) A distinguished definable equivalence relation E on to interpret equality on U;

(c) A *T*-formula $\varphi_R(x_0, \dots, x_{n-1})$ for each *n*-ary relation symbol of *S*.

An interpretation of a theory S in a theory T, written,
 I : S → T consists of a translation of each formula φ of S into a formula φ^I in the language of T such that

$$(S \vdash \varphi) \Longrightarrow T \vdash \varphi^{\mathcal{I}}.$$

The translation φ → φ^I is induced by the following:
 (a) A universe of discourse designated by a first order formula U of T;

(b) A distinguished definable equivalence relation E on to interpret equality on U;

- (c) A *T*-formula $\varphi_R(x_0, \dots, x_{n-1})$ for each *n*-ary relation symbol of *S*.
- We write $S \leq_{I} T$ if S can be interpreted in T.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

 In model theoretic terms: if S ≤_I T, then one can uniformly interpret a model B_A of S in every model A of T.

 In model theoretic terms: if S ≤_I T, then one can uniformly interpret a model B_A of S in every model A of T.

• S and T are said to be *bi-interpretable* if

• In model theoretic terms: if $S \leq_{I} T$, then one can uniformly interpret a model $\mathcal{B}_{\mathcal{A}}$ of S in every model \mathcal{A} of T.

• S and T are said to be *bi-interpretable* if

• (1) \mathcal{T} can verify that $\mathcal{A}\cong\mathcal{A}_{\mathcal{B}_{\mathcal{A}}}$, and

• In model theoretic terms: if $S \leq_{I} T$, then one can uniformly interpret a model $\mathcal{B}_{\mathcal{A}}$ of S in every model \mathcal{A} of T.

• S and T are said to be *bi-interpretable* if

• (1) T can verify that $\mathcal{A}\cong\mathcal{A}_{\mathcal{B}_{\mathcal{A}}}$, and

• (2) S can verify that $\mathcal{B} \cong \mathcal{B}_{\mathcal{A}_{\mathcal{B}}}$.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

聞 と く き と く き と

• **Theorem.** Suppose S and T are axiomatizable theories. Then $S \leq_{I} T \Rightarrow Con(T) \rightarrow Con(S)$.

- **Theorem.** Suppose S and T are axiomatizable theories. Then $S \leq_{I} T \Rightarrow Con(T) \rightarrow Con(S)$.
- But the converse of the above can be false, e.g., for S = GB, and T = ZF.

- **Theorem.** Suppose S and T are axiomatizable theories. Then $S \leq_{I} T \Rightarrow Con(T) \rightarrow Con(S)$.
- But the converse of the above can be false, e.g., for S = GB, and T = ZF.
- Therefore "interpretability strength" is a *refinement* of "consistency strength".

- **Theorem.** Suppose S and T are axiomatizable theories. Then $S \leq_{I} T \Rightarrow Con(T) \rightarrow Con(S)$.
- But the converse of the above can be false, e.g., for S = GB, and T = ZF.
- Therefore "interpretability strength" is a *refinement* of "consistency strength".
- **Theorem.** [Mostowski-Robinson-Tarski] If T is axiomatizable and $Q \leq_I T$, then T is essentially undecidable.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

伺 ト く ヨ ト く ヨ ト

• Theorem. EFA \vdash Con(ZF) \rightarrow Con(ZF + V = L).

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

3

- Theorem. EFA \vdash Con(ZF) \rightarrow Con(ZF + V = L).
- Proof: Syntactically unwind the usual proof!

- Theorem. EFA \vdash Con(ZF) \rightarrow Con(ZF + V = L).
- Proof: Syntactically unwind the usual proof!
- The above works since Gödel's L has a uniform definition across all model of ZF, and ZF ⊢ (ZF + V = L)^L.

- Theorem. $EFA \vdash Con(ZF) \rightarrow Con(ZF + V = L)$.
- Proof: Syntactically unwind the usual proof!
- The above works since Gödel's L has a uniform definition across all model of ZF, and ZF ⊢ (ZF + V = L)^L.
- Theorem. EFA \vdash Con(ZF) \rightarrow Con(ZF + \neg CH).

- Theorem. $EFA \vdash Con(ZF) \rightarrow Con(ZF + V = L)$.
- Proof: Syntactically unwind the usual proof!
- The above works since Gödel's L has a uniform definition across all model of ZF, and ZF ⊢ (ZF + V = L)^L.
- Theorem. EFA \vdash Con(ZF) \rightarrow Con(ZF $+ \neg$ CH).
- Proof: Move within L and build L^B, where B =c.b.a for adding ℵ₂ Cohen reals; then mod out L^B by the L-least ultrafilter on B.

SET THEORETICAL COUNTERPART OF SECOND ORDER ARITHMETIC-PART II

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

伺 ト く ヨ ト く ヨ ト

SET THEORETICAL COUNTERPART OF SECOND ORDER ARITHMETIC-PART II

Second order arithmetic (Z₂) is a two-sorted theory; one sort for *numbers*, and the other sort for *reals*. Models of Z₂ are of the form (M, A), where A ⊆ P(M), such that

(1) For each
$$X \in A$$
, $(M, X) \models PA(X)$, and

(2) If $X \subseteq M$ is parametrically definable in $(\mathcal{M}, \mathcal{A})$, then $X \in \mathcal{A}$.
Second order arithmetic (Z₂) is a two-sorted theory; one sort for *numbers*, and the other sort for *reals*. Models of Z₂ are of the form (M, A), where A ⊆ P(M), such that

(1) For each
$$X \in \mathcal{A}$$
, $(\mathcal{M}, X) \models \mathsf{PA}(X)$, and

(2) If $X \subseteq M$ is parametrically definable in $(\mathcal{M}, \mathcal{A})$, then $X \in \mathcal{A}$.

• The Choice Scheme $\Pi^1_\infty\text{-AC}$ consists of the universal closure of formulae of the form

$$\forall n \exists X \varphi(n, X) \to \exists Y \forall n \varphi(n, (Y)_n)$$

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

伺 ト く ヨ ト く ヨ ト

•
$$T_{\text{analysis}} := Z_2 + \Pi_{\infty}^1$$
-AC, and
 $T_{\text{set}} := ZFC \setminus \{Power\} + \mathbf{V} = H(\aleph_1) \text{ are bi-interpretable.}$

伺 ト く ヨ ト く ヨ ト

- $T_{analysis} := Z_2 + \Pi_{\infty}^1$ -AC, and $T_{set} := ZFC \setminus \{Power\} + \mathbf{V} = H(\aleph_1)$ are *bi-interpretable*.
- In particular, there is a canonical one-to-one correspondence between models of $T_{analysis}$ and T_{set} ; ω -models of $T_{analysis}$ correspond to ω -models of T_{set} .

- $T_{\text{analysis}} := Z_2 + \Pi_{\infty}^1$ -AC, and $T_{\text{set}} := ZFC \setminus \{Power\} + \mathbf{V} = H(\aleph_1) \text{ are bi-interpretable.}$
- In particular, there is a canonical one-to-one correspondence between models of $T_{analysis}$ and T_{set} ; ω -models of $T_{analysis}$ correspond to ω -models of T_{set} .
- To interpret an model 𝔅 ⊨ T_{set} within a model
 (ℕ*, 𝔅) ⊨ T_{analysis}, one defines the notion of "suitable trees",
 and an equivalence relation =* among suitable trees, and a
 binary relation ∈* among the equivalence classes of =* This
 yields a model 𝔅 = (𝔅, 𝔅) of T_{set}; where 𝔅 is the set of
 equivalence classes of =* and 𝔅 = ∈*.

- $T_{analysis} := Z_2 + \Pi_{\infty}^1$ -AC, and $T_{set} := ZFC \setminus \{Power\} + \mathbf{V} = H(\aleph_1)$ are *bi-interpretable*.
- In particular, there is a canonical one-to-one correspondence between models of $T_{analysis}$ and T_{set} ; ω -models of $T_{analysis}$ correspond to ω -models of T_{set} .
- To interpret an model 𝔅 ⊨ T_{set} within a model
 (ℕ*, 𝔅) ⊨ T_{analysis}, one defines the notion of "suitable trees",
 and an equivalence relation =* among suitable trees, and a
 binary relation ∈* among the equivalence classes of =* This
 yields a model 𝔅 = (𝔅, 𝔅) of T_{set}; where 𝔅 is the set of
 equivalence classes of =* and 𝔅 = ∈*.
- Conversely, if \mathfrak{A} is a model of T_{set} , then the "standard model of second order arithmetic" in the sense of \mathfrak{A} is a model of $T_{analysis}$.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

聞 と く き と く き と

• **Theorem.** [Ackermann, 1940] Let E be defined by aEb iff the a-th component of the base-2 expansion of b is 1. Then

 $(\omega, \mathsf{E}) \cong (V_{\omega}, \in).$

• **Theorem.** [Ackermann, 1940] Let E be defined by aEb iff the a-th component of the base-2 expansion of b is 1. Then

 $(\omega, \mathsf{E}) \cong (V_{\omega}, \in).$

• Theorem. PA is bi-interpretable with ZF_{fin}.

• **Theorem.** [Ackermann, 1940] Let E be defined by aEb iff the a-th component of the base-2 expansion of b is 1. Then

 $(\omega, \mathsf{E}) \cong (V_{\omega}, \in).$

- Theorem. PA is bi-interpretable with ZF_{fin}.
- Models of ZF_{fin} all "believe" that $\mathbf{V} = H(\aleph_0)$.

• **Theorem.** [Ackermann, 1940] Let E be defined by aEb iff the a-th component of the base-2 expansion of b is 1. Then

 $(\omega, \mathsf{E}) \cong (V_{\omega}, \in).$

- Theorem. PA is bi-interpretable with ZF_{fin}.
- Models of ZF_{fin} all "believe" that $\mathbf{V} = H(\aleph_0)$.
- **Theorem.** ACA₀ is bi-interpretable with $GBC^{-\infty}$.

• **Theorem.** [Ackermann, 1940] Let E be defined by aEb iff the a-th component of the base-2 expansion of b is 1. Then

 $(\omega, \mathsf{E}) \cong (V_{\omega}, \in).$

- Theorem. PA is bi-interpretable with ZF_{fin}.
- Models of $\mathsf{ZF}_{\mathsf{fin}}$ all "believe" that $\mathbf{V} = \mathrm{H}(\aleph_0).$
- **Theorem.** ACA₀ is bi-interpretable with $GBC^{-\infty}$.
- Models of ACA₀ are of the form $(\mathcal{M}, \mathcal{A})$, where $\mathcal{A} \subseteq \mathcal{P}(M)$, such that

(1) For each $X \in A$, $(M, X) \models PA(X)$, and (2) Given A_1, \dots, A_n in A, if $X \subseteq M$ is parametrically first order definable in (M, A_1, \dots, A_n) , then $X \in A$.

• **Theorem.** [Ackermann, 1940] Let E be defined by aEb iff the a-th component of the base-2 expansion of b is 1. Then

 $(\omega, \mathsf{E}) \cong (V_{\omega}, \in).$

- Theorem. PA is bi-interpretable with ZF_{fin}.
- Models of $\mathsf{ZF}_{\mathsf{fin}}$ all "believe" that $\mathbf{V} = \mathrm{H}(\aleph_0)$.
- **Theorem.** ACA₀ is bi-interpretable with $GBC^{-\infty}$.
- Models of ACA₀ are of the form $(\mathcal{M}, \mathcal{A})$, where $\mathcal{A} \subseteq \mathcal{P}(M)$, such that
 - (1) For each $X \in A$, $(M, X) \models PA(X)$, and (2) Given A_1, \dots, A_n in A, if $X \subseteq M$ is parametrically first order definable in (M, A_1, \dots, A_n) , then $X \in A$.
- Theorem. $Z_2 + \Pi_{\infty}^1$ -AC is bi-interpretable with KMC^{- ∞}.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ● � � � �

• Models of set theory are of the form $\mathcal{M} = (M, E)$, where $E = \in^{\mathcal{M}}$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Models of set theory are of the form $\mathcal{M} = (M, E)$, where $E = \in^{\mathcal{M}}$.
- \mathcal{M} is *standard* if *E* is well-founded.

э

- Models of set theory are of the form $\mathcal{M} = (M, E)$, where $E = \in^{\mathcal{M}}$.
- \mathcal{M} is *standard* if *E* is well-founded.
- \mathcal{M} is ω -standard if $(\omega, <)^{\mathcal{M}} \cong (\omega, <)$.

- Models of set theory are of the form $\mathcal{M} = (M, E)$, where $E = \in^{\mathcal{M}}$.
- \mathcal{M} is *standard* if *E* is well-founded.
- \mathcal{M} is ω -standard if $(\omega, <)^{\mathcal{M}} \cong (\omega, <)$.
- Proposition. Suppose *M* ⊨ ZF^{±∞} + TC. *M* is nonstandard iff (Ord, ∈)^{*M*} is not well-founded.

- Models of set theory are of the form $\mathcal{M} = (M, E)$, where $E = \in^{\mathcal{M}}$.
- \mathcal{M} is *standard* if *E* is well-founded.
- \mathcal{M} is ω -standard if $(\omega, <)^{\mathcal{M}} \cong (\omega, <)$.
- Proposition. Suppose *M* ⊨ ZF^{±∞} + TC. *M* is nonstandard iff (Ord, ∈)^{*M*} is not well-founded.
- Proposition. Every *M* has a elementary extension that is not ω-standard.

- Models of set theory are of the form $\mathcal{M} = (M, E)$, where $E = \in^{\mathcal{M}}$.
- \mathcal{M} is *standard* if *E* is well-founded.
- \mathcal{M} is ω -standard if $(\omega, <)^{\mathcal{M}} \cong (\omega, <)$.
- Proposition. Suppose *M* ⊨ ZF^{±∞} + TC. *M* is nonstandard iff (Ord, ∈)^{*M*} is not well-founded.
- Proposition. Every *M* has a elementary extension that is not ω-standard.
- **Theorem** [Keisler-Morely]. Every ω -standard countable $\mathcal{M} \models \mathsf{ZF}$ has a nonstandard elementary extension that is ω -standard.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ● � � � �

• For
$$\mathcal{M} = (M, E)$$
, and $m \in M$,

$$m_E := \{x \in M : xEm\}.$$

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ● � � � �

• For
$$\mathcal{M} = (M, E)$$
, and $m \in M$,

$$m_E := \{x \in M : xEm\}.$$

• $X \subseteq M$ is **coded** in \mathcal{M} if $X = m_E$ for some $m \in M$.

A B + A B +

• For
$$\mathcal{M} = (M, E)$$
, and $m \in M$,

$$m_E := \{x \in M : xEm\}.$$

- $X \subseteq M$ is **coded** in \mathcal{M} if $X = m_E$ for some $m \in M$.
- Suppose $\mathcal{M} \subseteq \mathcal{N} = (N, F)$ with $m \in M$. \mathcal{N} is said to fix m if $m_E = m_F$, else \mathcal{N} enlarges m.

• For
$$\mathcal{M} = (M, E)$$
, and $m \in M$,

$$m_E := \{x \in M : xEm\}.$$

- $X \subseteq M$ is **coded** in \mathcal{M} if $X = m_E$ for some $m \in M$.
- Suppose $\mathcal{M} \subseteq \mathcal{N} = (N, F)$ with $m \in M$. \mathcal{N} is said to fix m if $m_E = m_F$, else \mathcal{N} enlarges m.
- $\mathcal{M} \subseteq_{end} \mathcal{N}$, if $m_E = m_F$ for every $m \in M$.

• For
$$\mathcal{M} = (M, E)$$
, and $m \in M$,

$$m_E := \{x \in M : xEm\}.$$

- $X \subseteq M$ is **coded** in \mathcal{M} if $X = m_E$ for some $m \in M$.
- Suppose $\mathcal{M} \subseteq \mathcal{N} = (N, F)$ with $m \in M$. \mathcal{N} is said to fix m if $m_E = m_F$, else \mathcal{N} enlarges m.
- $\mathcal{M} \subseteq_{end} \mathcal{N}$, if $m_E = m_F$ for every $m \in M$.
- $\mathcal{M} \subseteq_{rank} \mathcal{N}$ for every $x \in N \setminus M$, and every $y \in M$, $\mathcal{N} \vDash \rho(x) > \rho(y)$.

• For
$$\mathcal{M} = (M, E)$$
, and $m \in M$,

$$m_E := \{x \in M : xEm\}.$$

- $X \subseteq M$ is **coded** in \mathcal{M} if $X = m_E$ for some $m \in M$.
- Suppose $\mathcal{M} \subseteq \mathcal{N} = (N, F)$ with $m \in M$. \mathcal{N} is said to fix m if $m_E = m_F$, else \mathcal{N} enlarges m.
- $\mathcal{M} \subseteq_{end} \mathcal{N}$, if $m_E = m_F$ for every $m \in M$.
- $\mathcal{M} \subseteq_{rank} \mathcal{N}$ for every $x \in N \setminus M$, and every $y \in M$, $\mathcal{N} \vDash \rho(x) > \rho(y)$.
- *M* ⊆_{cons} *N* if the intersection of any parametrically definable subset of *N* with *M* is also parametrically definable in *M*.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

-

Proposition.

(a) Rank extensions are end extensions, but not vice versa.

(b) If
$$\mathcal{M} \leq_{end} \mathcal{N} \models \mathsf{ZFC}$$
, then $\mathcal{M} \subseteq_{rank} \mathcal{N}$.

(c) If $\mathcal{M} \models \mathsf{ZF}_{\mathsf{fin}}$ and $\mathcal{M} \preceq_{\mathit{cons}} \mathcal{N}$, then $\mathcal{M} \subseteq_{\mathit{end}} \mathcal{N}$.

Proposition.

- (a) Rank extensions are end extensions, but not vice versa.
 (b) If M ≤_{end} N ⊨ ZFC, then M ⊆_{rank} N.
 (c) If M ⊨ ZF_{fin} and M ≤_{cons} N, then M ⊆_{end} N.
- **Theorem** [Splitting Theorem]. Suppose $\mathcal{M} \prec \mathcal{N}$ where \mathcal{M} is a model of $ZF^{\pm \infty}$. There exist a model \mathcal{N}^* such that

$$\mathcal{M} \preceq_{cofinal} \mathcal{N}^* \preceq_{end} \mathcal{N}.$$

Proposition.

- (a) Rank extensions are end extensions, but not vice versa.
 (b) If M ≤_{end} N ⊨ ZFC, then M ⊆_{rank} N.
 (c) If M ⊨ ZF_{fin} and M ≤_{cons} N, then M ⊆_{end} N.
- **Theorem** [Splitting Theorem]. Suppose $\mathcal{M} \prec \mathcal{N}$ where \mathcal{M} is a model of $ZF^{\pm \infty}$. There exist a model \mathcal{N}^* such that

$$\mathcal{M} \preceq_{cofinal} \mathcal{N}^* \preceq_{end} \mathcal{N}.$$

• **Theorem** [E]. If $\mathcal{M} \preceq_{cons} \mathcal{N} \models \mathsf{ZFC}$ and \mathcal{N} fixes $\omega^{\mathcal{M}}$, then \mathcal{M} is cofinal in \mathcal{N} .

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theorem [Keisler-Tarski; Scott] κ is a measurable cardinal iff
 V ≺_{κ-end} N for some N (note: κ = ω allowed!).

- Theorem [Keisler-Tarski; Scott] κ is a measurable cardinal iff
 V ≺_{κ-end} N for some N (note: κ = ω allowed!).
- Suppose κ is a cardinal in $\mathcal{M} \models \mathsf{ZFC}$.

- Theorem [Keisler-Tarski; Scott] κ is a measurable cardinal iff
 V ≺_{κ-end} N for some N (note: κ = ω allowed!).
- Suppose κ is a cardinal in $\mathcal{M} \models \mathsf{ZFC}$.
- (a) $\mathcal{M} \prec_{\kappa\text{-end}} \mathcal{N}$ if $\mathcal{M} \prec \mathcal{N}$ and κ is end extended in the passage from \mathcal{M} to \mathcal{N} , i.e., \mathcal{N} enlarges κ but \mathcal{N} fixes every element of κ_E (where $E = \in^{\mathcal{M}}$).

- Theorem [Keisler-Tarski; Scott] κ is a measurable cardinal iff
 V ≺_{κ-end} N for some N (note: κ = ω allowed!).
- Suppose κ is a cardinal in $\mathcal{M} \models \mathsf{ZFC}$.
- (a) $\mathcal{M} \prec_{\kappa\text{-end}} \mathcal{N}$ if $\mathcal{M} \prec \mathcal{N}$ and κ is end extended in the passage from \mathcal{M} to \mathcal{N} , i.e., \mathcal{N} enlarges κ but \mathcal{N} fixes every element of κ_E (where $E = \in^{\mathcal{M}}$).
- (b) M ≺_{κ-cons-end} N if M ≺_{κ-end} N, and the intersection of any parametrically definable (or equivalently: coded) subset of N with the "old" elements of κ is coded in M.
KAPPA ELEMENTARY END EXTENSIONS

- Theorem [Keisler-Tarski; Scott] κ is a measurable cardinal iff
 V ≺_{κ-end} N for some N (note: κ = ω allowed!).
- Suppose κ is a cardinal in $\mathcal{M} \models \mathsf{ZFC}$.
- (a) $\mathcal{M} \prec_{\kappa\text{-end}} \mathcal{N}$ if $\mathcal{M} \prec \mathcal{N}$ and κ is end extended in the passage from \mathcal{M} to \mathcal{N} , i.e., \mathcal{N} enlarges κ but \mathcal{N} fixes every element of κ_E (where $E = \in^{\mathcal{M}}$).
- (b) M ≺_{κ-cons-end} N if M ≺_{κ-end} N, and the intersection of any parametrically definable (or equivalently: coded) subset of N with the "old" elements of κ is coded in M.
- (c) An ultrafilter U over the Boolean algebra P^M(κ) is said to be M-complete if for each f : κ → λ < κ in M, f is constant on some member of U.

KAPPA ELEMENTARY END EXTENSIONS

- Theorem [Keisler-Tarski; Scott] κ is a measurable cardinal iff
 V ≺_{κ-end} N for some N (note: κ = ω allowed!).
- Suppose κ is a cardinal in $\mathcal{M} \models \mathsf{ZFC}$.
- (a) $\mathcal{M} \prec_{\kappa\text{-end}} \mathcal{N}$ if $\mathcal{M} \prec \mathcal{N}$ and κ is end extended in the passage from \mathcal{M} to \mathcal{N} , i.e., \mathcal{N} enlarges κ but \mathcal{N} fixes every element of κ_E (where $E = \in^{\mathcal{M}}$).
- (b) M ≺_{κ-cons-end} N if M ≺_{κ-end} N, and the intersection of any parametrically definable (or equivalently: coded) subset of N with the "old" elements of κ is coded in M.
- (c) An ultrafilter U over the Boolean algebra P^M(κ) is said to be M-complete if for each f : κ → λ < κ in M, f is constant on some member of U.
- (d) An *M*-complete ultrafilter *U* is *M*-normal if for each regressive f : κ → κ in *M* ∃α < κ f⁻¹{α} ∈ U.

KAPPA ELEMENTARY END EXTENSIONS

- Theorem [Keisler-Tarski; Scott] κ is a measurable cardinal iff
 V ≺_{κ-end} N for some N (note: κ = ω allowed!).
- Suppose κ is a cardinal in $\mathcal{M} \models \mathsf{ZFC}$.
- (a) $\mathcal{M} \prec_{\kappa\text{-end}} \mathcal{N}$ if $\mathcal{M} \prec \mathcal{N}$ and κ is end extended in the passage from \mathcal{M} to \mathcal{N} , i.e., \mathcal{N} enlarges κ but \mathcal{N} fixes every element of κ_E (where $E = \in^{\mathcal{M}}$).
- (b) M ≺_{κ-cons-end} N if M ≺_{κ-end} N, and the intersection of any parametrically definable (or equivalently: coded) subset of N with the "old" elements of κ is coded in M.
- (c) An ultrafilter U over the Boolean algebra P^M(κ) is said to be M-complete if for each f : κ → λ < κ in M, f is constant on some member of U.
- (d) An *M*-complete ultrafilter *U* is *M*-normal if for each regressive f : κ → κ in *M* ∃α < κ f⁻¹{α} ∈ U.
- (e) An \mathcal{M} -complete ultrafilter \mathcal{U} is \mathcal{M} -iterable if for each $f : \kappa \to \kappa$ in $\mathcal{M} \{ \alpha < \kappa : f^{-1}\{\alpha\} \in \mathcal{U} \} \in \mathcal{M}.$

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

A B + A B +

3

Theorem Suppose M is a model of ZFC, κ is a cardinal of M, and U is a nonprincipal ultrafilter over P^M(κ), and M_U := M^κ/U.

- Theorem Suppose M is a model of ZFC, κ is a cardinal of M, and U is a nonprincipal ultrafilter over P^M(κ), and M_U := M^κ/U.
- (1) \mathcal{U} is \mathcal{M} -complete iff $\mathcal{M} \prec_{\kappa\text{-end}} \mathcal{M}_{\mathcal{U}}$.

- Theorem Suppose *M* is a model of ZFC, κ is a cardinal of *M*, and *U* is a nonprincipal ultrafilter over *P^M(κ)*, and *M_U* := *M^κ/U*.
- (1) \mathcal{U} is \mathcal{M} -complete iff $\mathcal{M} \prec_{\kappa\text{-end}} \mathcal{M}_{\mathcal{U}}$.
- (2) U is M-normal iff M ≺_{κ-end}M_U and [id]_U is the least new ordinal.

- Theorem Suppose M is a model of ZFC, κ is a cardinal of M, and U is a nonprincipal ultrafilter over P^M(κ), and M_U := M^κ/U.
- (1) \mathcal{U} is \mathcal{M} -complete iff $\mathcal{M} \prec_{\kappa\text{-end}} \mathcal{M}_{\mathcal{U}}$.
- (2) U is M-normal iff M ≺_{κ-end}M_U and [id]_U is the least new ordinal.
- (3) \mathcal{U} is \mathcal{M} -iterable iff $\mathcal{M} \prec_{\kappa\text{-cons-end}} \mathcal{M}_{\mathcal{U}}$.

- Theorem Suppose M is a model of ZFC, κ is a cardinal of M, and U is a nonprincipal ultrafilter over P^M(κ), and M_U := M^κ/U.
- (1) \mathcal{U} is \mathcal{M} -complete iff $\mathcal{M} \prec_{\kappa\text{-end}} \mathcal{M}_{\mathcal{U}}$.
- (2) U is M-normal iff M ≺_{κ-end}M_U and [id]_U is the least new ordinal.
- (3) \mathcal{U} is \mathcal{M} -iterable iff $\mathcal{M} \prec_{\kappa\text{-cons-end}} \mathcal{M}_{\mathcal{U}}$.
- Theorem. Suppose *M* is a countable model of ZFC and κ is a cardinal in *M*.

- Theorem Suppose M is a model of ZFC, κ is a cardinal of M, and U is a nonprincipal ultrafilter over P^M(κ), and M_U := M^κ/U.
- (1) \mathcal{U} is \mathcal{M} -complete iff $\mathcal{M} \prec_{\kappa\text{-end}} \mathcal{M}_{\mathcal{U}}$.
- (2) U is M-normal iff M ≺_{κ-end}M_U and [id]_U is the least new ordinal.
- (3) \mathcal{U} is \mathcal{M} -iterable iff $\mathcal{M} \prec_{\kappa\text{-cons-end}} \mathcal{M}_{\mathcal{U}}$.
- Theorem. Suppose *M* is a countable model of ZFC and κ is a cardinal in *M*.
- (1) κ is a regular cardinal in \mathcal{M} iff there is an \mathcal{M} -complete ultrafilter \mathcal{U} over $\mathcal{P}^{\mathcal{M}}(\kappa)$.

- Theorem Suppose *M* is a model of ZFC, κ is a cardinal of *M*, and *U* is a nonprincipal ultrafilter over *P^M(κ)*, and *M_U* := *M^κ/U*.
- (1) \mathcal{U} is \mathcal{M} -complete iff $\mathcal{M} \prec_{\kappa\text{-end}} \mathcal{M}_{\mathcal{U}}$.
- (2) U is M-normal iff M ≺_{κ-end}M_U and [id]_U is the least new ordinal.
- (3) \mathcal{U} is \mathcal{M} -iterable iff $\mathcal{M} \prec_{\kappa\text{-cons-end}} \mathcal{M}_{\mathcal{U}}$.
- Theorem. Suppose *M* is a countable model of ZFC and κ is a cardinal in *M*.
- (1) κ is a regular cardinal in \mathcal{M} iff there is an \mathcal{M} -complete ultrafilter \mathcal{U} over $\mathcal{P}^{\mathcal{M}}(\kappa)$.
- (2) κ is weakly compact in M iff there is an M-iterable ultrafilter U over P^M(κ).

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

聞 と く き と く き と

3

• **Theorem.** Suppose \mathcal{M} is a model of ZFC, κ is a regular cardinal of \mathcal{M} , and $|\mathcal{P}^{\mathcal{M}}(\kappa)| = \aleph_0$. Then \mathcal{M} has a proper κ -e.e.e.

- Theorem. Suppose *M* is a model of ZFC, κ is a regular cardinal of *M*, and |*P^M*(κ)| = ℵ₀. Then *M* has a proper κ-e.e.e.
- Moreover, if κ is weakly compact in M, then the extension can be arranged to be κ-conservative.
- Theorem [Kleinberg] Suppose M is a countable well-founded model of ZFC. κ is completely ineffable in M iff there is an ultrafilter U on P^M(κ) such that U is both Miterable and M-normal.

- Theorem. Suppose *M* is a model of ZFC, κ is a regular cardinal of *M*, and |*P^M*(κ)| = ℵ₀. Then *M* has a proper κ-e.e.e.
- Moreover, if κ is weakly compact in M, then the extension can be arranged to be κ-conservative.
- Theorem [Kleinberg] Suppose M is a countable well-founded model of ZFC. κ is completely ineffable in M iff there is an ultrafilter U on P^M(κ) such that U is both Miterable and M-normal.
- **Theorem** [E] There is no set Φ of first order sentences in the language $\{\in, \kappa\}$ such that for all countable models \mathcal{M} of ZFC, $\mathcal{M} \models \Phi$ iff there is an ultrafilter \mathcal{U} on $\mathcal{P}^{\mathcal{M}}(\kappa)$ such that \mathcal{U} is both \mathcal{M} -iterable and \mathcal{M} -normal.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

-

- Theorem [MacDowell-Specker, Gaifman, Phillips]
 - (a) Every model \mathcal{M} of $ZF^{-\infty} + TC$ has an e.e.e \mathcal{N} .
 - (b) Moreover, \mathcal{N} can be required to be a minimal and conservative extension of \mathcal{M} .

- Theorem [MacDowell-Specker, Gaifman, Phillips]
 - (a) Every model \mathcal{M} of $ZF^{-\infty} + TC$ has an e.e.e \mathcal{N} .
 - (b) Moreover, \mathcal{N} can be required to be a minimal and conservative extension of \mathcal{M} .
- **Theorem** [Keisler-Morley] *Every model of* ZF *of* **countable cofinality** *has an e.e.e of any prescribed cardinality.*

- Theorem [MacDowell-Specker, Gaifman, Phillips]
 - (a) Every model \mathcal{M} of $ZF^{-\infty} + TC$ has an e.e.e \mathcal{N} .
 - (b) Moreover, \mathcal{N} can be required to be a minimal and conservative extension of \mathcal{M} .
- **Theorem** [Keisler-Morley] *Every model of* ZF *of* **countable cofinality** *has an e.e.e of any prescribed cardinality.*
- Theorem [Knight, Schmerl-Kossak, E] Every countable model of ZF^{-∞} + TC has continuum-many superminimal e.e.e.'s.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

-

 Theorem [Keisler-Silver] If κ is the first inaccessible cardinal, then (V_κ, ∈) has no e.e.e.

- Theorem [Keisler-Silver] If κ is the first inaccessible cardinal, then (V_κ, ∈) has no e.e.e.
- **Theorem** [Kaufmann-E] *No model of* ZFC *has a conservative e.e.e.*

- Theorem [Keisler-Silver] If κ is the first inaccessible cardinal, then (V_κ, ∈) has no e.e.e.
- **Theorem** [Kaufmann-E] *No model of* ZFC *has a conservative e.e.e.*
- **Theorem** [Kaufmann-E] Every consistent extension of ZFC has a model \mathcal{M} of power \aleph_1 such that \mathcal{M} has no e.e.e.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS

э

E ▶

Theorem [Kaufmann-E] The following are equivalent for a consistent complete extension T of ZFC:
(a) T can be expanded to a consistent theory T* in an extended countable language L such that ZFC(L) ⊆ T* and every model of T*has an e.e.e.
(b) For each natural number n, T ⊢ ∃κ(κ is n-Mahlo and V_κ ≺_{Σn} V).

- Theorem [Kaufmann-E] The following are equivalent for a consistent complete extension T of ZFC:
 (a) T can be expanded to a consistent theory T* in an extended countable language L such that ZFC(L) ⊆ T* and every model of T*has an e.e.e.
 (b) For each natural number n,
 - $T \vdash \exists \kappa (\kappa \text{ is } n \text{-Mahlo and } V_{\kappa} \prec_{\Sigma_n} \mathbf{V}).$
- Lévy Scheme:
 - $\Lambda := \{ (\exists \kappa (\kappa \text{ is } n-\text{Mahlo and } V_{\kappa} \prec_{\Sigma_n} \mathbf{V}) : n < \omega \}$

- Theorem [Kaufmann-E] The following are equivalent for a consistent complete extension T of ZFC:
 (a) T can be expanded to a consistent theory T* in an extended countable language L such that ZFC(L) ⊆ T* and every model of T*has an e.e.e.
 (b) For each natural number n
 - (b) For each natural number n,
 - $T \vdash \exists \kappa (\kappa \text{ is } n \text{-Mahlo and } V_{\kappa} \prec_{\Sigma_n} \mathbf{V}).$
- Lévy Scheme:
 - $\Lambda := \{ (\exists \kappa (\kappa \text{ is } n-\text{Mahlo and } V_{\kappa} \prec_{\Sigma_n} \mathbf{V}) : n < \omega \}$
- **SLOGAN:** ZFC + Λ is the weakest extension of ZFC that allows infinite set theory to model-theoretically catch-up with finite set theory!