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SET THEORETICAL TWINS OF ARITHMETICAL
THEORIES: THE GLOBAL VIEW

(1) [Koepke-Koerwien] SO ≈ ZFC.

SO = Second Order Theory of Ordinals.

T−∞ := T\{Infinity} ∪ {¬Infinity}.

(2) [Mostowski] Z2 + Π1
∞-AC =

(Second Order Arithmetic + Choice Scheme) ≈

ZFC\{Power}+ V = H(ℵ1) ≈

KMC−.
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SET THEORETICAL TWINS OF ARITHMETICAL
THEORIES: THE GLOBAL VIEW (CONT’D)

(3) [Ackermann, Mycielski, Kaye-Wong]

ACA0 ≈ GBC−∞ + TC.

PA ≈ ZF−∞ + TC.

(4) [Gaifman-Dimitracopoulos]

EFA (Elementary Function Arithmetic)≈ Mac−∞.

(5) [Szmielew-Tarski]

Robinson’s Q ≈ AST (Adjunctive Set Theory).
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FAMILIAR INTERPRETATIONS

Example A: Poincare’s interpretation of hyperbolic geometry
in euclidean geometry.

Example B: Hamilton’s interpretation of ACF0 in RCF.

Example C: von Neumann’s interpretation of PA in ZF.
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INTERPRETATIONS, THE OFFICIAL DEFINITION

An interpretation of a theory S in a theory T, written,
I : S → T consists of a translation of each formula ϕ of S
into a formula ϕI in the language of T such that

(S ` ϕ) =⇒ T ` ϕI .

The translation ϕ 7−→ ϕI is induced by the following:
(a) A universe of discourse designated by a first order formula
U of T ;
(b) A distinguished definable equivalence relation E on to
interpret equality on U;
(c) A T -formula ϕR(x0, · · ·, xn−1) for each n-ary relation
symbol of S .

We write S ≤I T if S can be interpreted in T .
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INTERPRETATIONS AND MODELS

In model theoretic terms: if S ≤I T , then one can uniformly
interpret a model BA of S in every model A of T .

S and T are said to be bi-interpretable if

(1) T can verify that A ∼= ABA , and

(2) S can verify that B ∼= BAB .
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INTERPRETATIONS AND RELATIVE CONSISTENCY

Theorem. Suppose S and T are axiomatizable theories. Then
S ≤I T ⇒ Con(T )→ Con(S).

But the converse of the above can be false, e.g., for S = GB,
and T = ZF.

Therefore “interpretability strength”is a refinement of
“consistency strength”.

Theorem. [Mostowski-Robinson-Tarski] If T is axiomatizable
and Q ≤I T , then T is essentially undecidable.
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INTERPRETATIONS AND SET THEORETIC
INDEPENDENCE RESULTS

Theorem. EFA ` Con(ZF)→ Con(ZF + V = L).

Proof: Syntactically unwind the usual proof!

The above works since Gödel’s L has a uniform definition
across all model of ZF, and ZF ` (ZF + V = L)L.

Theorem. EFA ` Con(ZF)→ Con(ZF + ¬CH).

Proof: Move within L and build LB, where B =c.b.a for
adding ℵ2 Cohen reals; then mod out LB by the L-least
ultrafilter on B.
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The above works since Gödel’s L has a uniform definition
across all model of ZF, and ZF ` (ZF + V = L)L.

Theorem. EFA ` Con(ZF)→ Con(ZF + ¬CH).

Proof: Move within L and build LB, where B =c.b.a for
adding ℵ2 Cohen reals; then mod out LB by the L-least
ultrafilter on B.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS



SET THEORETICAL COUNTERPART OF SECOND
ORDER ARITHMETIC-PART II

Second order arithmetic (Z2) is a two-sorted theory; one
sort for numbers, and the other sort for reals. Models of Z2

are of the form (M,A), where A ⊆ P(M), such that

(1) For each X ∈ A, (M,X ) |= PA(X), and

(2) If X ⊆ M is parametrically definable in (M,A), then
X ∈ A.

The Choice Scheme Π1
∞-AC consists of the universal closure

of formulae of the form

∀n ∃X ϕ(n,X )→ ∃Y ∀n ϕ(n, (Y )n)
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SET THEORETICAL COUNTERPART OF SECOND
ORDER ARITHMETIC-PART II

Tanalysis := Z2 + Π1
∞-AC, and

Tset := ZFC\{Power}+ V = H(ℵ1) are bi-interpretable.

In particular, there is a canonical one-to-one correspondence
between models of Tanalysis and Tset; ω-models of Tanalysis

correspond to ω-models of Tset.

To interpret an model A � Tset within a model
(N∗,A) � Tanalysis, one defines the notion of “suitable trees”,
and an equivalence relation =∗ among suitable trees, and a
binary relation ∈∗ among the equivalence classes of =∗ This
yields a model A = (A,E ) of Tset; where A is the set of
equivalence classes of =∗ and E = ∈∗ .
Conversely, if A is a model of Tset, then the “standard model
of second order arithmetic” in the sense of A is a model of
Tanalysis.
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ACKERMANN’S EPSILON RELATION

Theorem. [Ackermann, 1940] Let E be defined by aEb iff the
a-th component of the base-2 expansion of b is 1. Then

(ω,E) ∼= (Vω,∈).

Theorem. PA is bi-interpretable with ZFfin.

Models of ZFfin all “believe” that V = H(ℵ0).

Theorem. ACA0 is bi-interpretable with GBC−∞.

Models of ACA0 are of the form (M,A), where A ⊆ P(M),
such that
(1) For each X ∈ A, (M,X ) |= PA(X), and
(2) Given A1, · · ·,An in A, if X ⊆ M is parametrically first
order definable in (M,A1, · · ·,An), then X ∈ A.
Theorem. Z2 + Π1

∞-AC is bi-interpretable with KMC−∞.
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MODELS OF SET THEORY-PART I

Models of set theory are of the form M = (M,E ), where E =
∈M .

M is standard if E is well-founded.

M is ω-standard if (ω,<)M ∼= (ω,<).

Proposition. Suppose M |= ZF±∞ + TC. M is nonstandard
iff (Ord,∈)M is not well-founded.

Proposition. Every M has a elementary extension that is
not ω-standard.

Theorem [Keisler-Morely]. Every ω-standard countable
M |= ZF has a nonstandard elementary extension that is
ω-standard.
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MODELS OF SET THEORY-PART II

For M = (M,E ), and m ∈ M,

mE := {x ∈ M : xEm}.

X⊆ M is coded in M if X = mE for some m ∈ M.

Suppose M⊆ N = (N,F ) with m ∈ M. N is said to fix m if
mE = mF , else N enlarges m.

M⊆end N , if mE = mF for every m ∈ M.

M⊆rank N for every x ∈ N\M, and every y ∈ M,
N � ρ(x) > ρ(y).

M⊆cons N if the intersection of any parametrically definable
subset of N with M is also parametrically definable in M.
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MODEL THEORETIC PRELIMINARIES -PART III

Proposition.
(a) Rank extensions are end extensions, but not vice versa.

(b) If M�end N |= ZFC , then M⊆rank N .

(c) If M |= ZFfin and M�cons N , then M⊆end N .

Theorem [Splitting Theorem]. Suppose M ≺ N where M
is a model of ZF±∞ . There exist a model N ∗ such that

M�cofinal N ∗ �end N .

Theorem [E]. If M�cons N |= ZFC and N fixes ωM, then
M is cofinal in N .
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KAPPA ELEMENTARY END EXTENSIONS

Theorem [Keisler-Tarski; Scott] κ is a measurable cardinal iff
V ≺κ-end N for some N (note: κ = ω allowed!).

Suppose κ is a cardinal in M |= ZFC.

(a) M≺κ-end N if M≺ N and κ is end extended in the
passage from M to N , i.e., N enlarges κ but N fixes every
element of κE (where E =∈M).

(b) M≺κ-cons-end N if M≺κ-end N , and the intersection of
any parametrically definable (or equivalently: coded) subset of
N with the ”old” elements of κ is coded in M.

(c) An ultrafilter U over the Boolean algebra PM(κ) is said
to be M-complete if for each f : κ→ λ < κ in M, f is
constant on some member of U .

(d) An M-complete ultrafilter U is M-normal if for each
regressive f : κ→ κ in M ∃α < κ f −1{α} ∈ U .

(e) An M-complete ultrafilter U is M-iterable if for each
f : κ→ κ in M {α < κ : f −1{α} ∈ U} ∈ M.
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KAPPA ELEMENTARY END EXTENSIONS:
KEISLER-MORLEY, KUNEN

Theorem Suppose M is a model of ZFC, κ is a cardinal of
M, and U is a nonprincipal ultrafilter over PM(κ), and
MU :=Mκ/U .

(1) U is M-complete iff M≺κ-endMU .

(2) U is M-normal iff M≺κ-endMU and [id]U is the least
new ordinal.

(3) U is M-iterable iff M≺κ-cons-end MU .
Theorem. Suppose M is a countable model of ZFC and κ is
a cardinal in M.

(1) κ is a regular cardinal in M iff there is an M-complete
ultrafilter U over PM(κ).

(2) κ is weakly compact in M iff there is an M-iterable
ultrafilter U over PM(κ).
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KAPPA ELEMENTARY END EXTENSIONS, CONT’D

Theorem. Suppose M is a model of ZFC, κ is a regular
cardinal of M, and

∣∣PM(κ)
∣∣ = ℵ0.Then M has a proper

κ-e.e.e.

Moreover, if κ is weakly compact in M, then the extension
can be arranged to be κ-conservative.

Theorem [Kleinberg] Suppose Mis a countable
well-founded model of ZFC. κ is completely ineffable in M
iff there is an ultrafilter U on PM(κ) such that U is both M-
iterable and M-normal.

Theorem [E] There is no set Φ of first order sentences in the
language {∈, κ} such that for all countable models M of
ZFC, M |= Φ iff there is an ultrafilter U on PM(κ) such that
U is both M-iterable and M-normal.
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ELEMENTARY END EXTENSIONS: ”GOOD” NEWS

Theorem [MacDowell-Specker, Gaifman, Phillips]

(a) Every model M of ZF−∞ + TC has an e.e.e N .

(b) Moreover, N can be required to be a minimal and
conservative extension of M.

Theorem [Keisler-Morley] Every model of ZF of countable
cofinality has an e.e.e of any prescribed cardinality.

Theorem [Knight, Schmerl-Kossak, E] Every countable
model of ZF−∞ + TC has continuum-many superminimal
e.e.e.’s.
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ELEMENTARY END EXTENSIONS: ”BAD” NEWS

Theorem [Keisler-Silver] If κ is the first inaccessible cardinal,
then (Vκ,∈) has no e.e.e.

Theorem [Kaufmann-E] No model of ZFC has a conservative
e.e.e.

Theorem [Kaufmann-E] Every consistent extension of ZFC
has a model M of power ℵ1 such that M has no e.e.e.
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ELEMENTARY END EXTENSIONS: ”GOOD” NEWS
REGAINED

Theorem [Kaufmann-E] The following are equivalent for a
consistent complete extension T of ZF C :
(a) T can be expanded to a consistent theory T ∗ in an
extended countable language L such that ZFC(L) ⊆ T ∗ and
every model of T ∗has an e.e.e.
(b) For each natural number n,
T ` ∃κ(κ is n-Mahlo and Vκ ≺Σn V).

Lévy Scheme:
Λ := {(∃κ(κ is n−Mahlo and Vκ ≺Σn V) :n < ω}
SLOGAN: ZFC + Λ is the weakest extension of ZFC that
allows infinite set theory to model-theoretically catch-up with
finite set theory!
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