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e (1) [Koepke-Koerwien] SO =~ ZFC.
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e (1) [Koepke-Koerwien] SO =~ ZFC.
SO = Second Order Theory of Ordinals.
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SET THEORETICAL TWINS OF ARITHMETICAL
THEORIES: THE GLOBAL VIEW

e (1) [Koepke-Koerwien] SO =~ ZFC.
SO = Second Order Theory of Ordinals.

o T := T\{Infinity} U {—Infinity}.
o (2) [Mostowski] Z, + ML -AC =
(Second Order Arithmetic + Choice Scheme) =~
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SET THEORETICAL TWINS OF ARITHMETICAL
THEORIES: THE GLOBAL VIEW

e (1) [Koepke-Koerwien] SO =~ ZFC.
SO = Second Order Theory of Ordinals.

o T := T\{Infinity} U {—Infinity}.
o (2) [Mostowski] Zo + NL.-AC =

(Second Order Arithmetic + Choice Scheme) ~
o ZFC\{Power} +V = H(X;) =

o KMC™.
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SET THEORETICAL TWINS OF ARITHMETICAL

THEORIES: THE GLOBAL VIEW (CONT'D)

o (3) [Ackermann, Mycielski, Kaye-Wong]
ACAp = GBC™*° + TC.
PA=ZF~> +TC.
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SET THEORETICAL TWINS OF ARITHMETICAL

THEORIES: THE GLOBAL VIEW (CONT'D)

o (3) [Ackermann, Mycielski, Kaye-Wong]
ACAy ~ GBC~> 4+ TC.
PA=ZF~> +TC.

o (4) [Gaifman-Dimitracopoulos]

EFA (Elementary Function Arithmetic)~ Mac™°.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS



SET THEORETICAL TWINS OF ARITHMETICAL

THEORIES: THE GLOBAL VIEW (CONT'D)

@ (3) [Ackermann, Mycielski, Kaye-Wong]

ACAp = GBC™™> + TC.

PA~ ZF > +TC.
o (4) [Gaifman-Dimitracopoulos]

EFA (Elementary Function Arithmetic)~ Mac™°.
o (5) [Szmielew-Tarski]

Robinson’s Q = AST (Adjunctive Set Theory).
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FAMILIAR INTERPRETATIONS

e Example A: Poincare's interpretation of hyperbolic geometry
in euclidean geometry.
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FAMILIAR INTERPRETATIONS

e Example A: Poincare's interpretation of hyperbolic geometry
in euclidean geometry.

e Example B: Hamilton's interpretation of ACFg in RCF.
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FAMILIAR INTERPRETATIONS

e Example A: Poincare's interpretation of hyperbolic geometry
in euclidean geometry.

e Example B: Hamilton's interpretation of ACFg in RCF.

o Example C: von Neumann's interpretation of PA in ZF.
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INTERPRETATIONS, THE OFFICIAL DEFINITION

@ An interpretation of a theory S in a theory T, written,
Z:S5 — T consists of a translation of each formula ¢ of S
into a formula ¢ in the language of T such that

(S )= Tk ¢l
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INTERPRETATIONS, THE OFFICIAL DEFINITION

@ An interpretation of a theory S in a theory T, written,
Z:S5 — T consists of a translation of each formula ¢ of S
into a formula ¢ in the language of T such that

(S )= Tk ¢l

@ The translation ¢ — ¢ is induced by the following:
(a) A universe of discourse designated by a first order formula
Uof T;
(b) A distinguished definable equivalence relation E on to
interpret equality on U;
(c) A T-formula ¢gr(xo, - - -, xn—1) for each n-ary relation
symbol of S.
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INTERPRETATIONS, THE OFFICIAL DEFINITION

@ An interpretation of a theory S in a theory T, written,
Z:S5 — T consists of a translation of each formula ¢ of S
into a formula ¢ in the language of T such that

(S )= Tk ¢l

@ The translation ¢ — ¢ is induced by the following:
(a) A universe of discourse designated by a first order formula
Uof T;
(b) A distinguished definable equivalence relation E on to
interpret equality on U;
(c) A T-formula ¢gr(xo, - - -, xn—1) for each n-ary relation
symbol of S.

o We write S <; T if § can be interpreted in T.
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INTERPRETATIONS AND MODELS

@ In model theoretic terms: if S <; T, then one can uniformly
interpret a model B4 of S in every model A of T.
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@ In model theoretic terms: if S <; T, then one can uniformly
interpret a model B4 of S in every model A of T.

@ S and T are said to be bi-interpretable if

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS



INTERPRETATIONS AND MODELS

@ In model theoretic terms: if S <; T, then one can uniformly
interpret a model B4 of S in every model A of T.

@ S and T are said to be bi-interpretable if

@ (1) T can verify that A= Ag,, and
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INTERPRETATIONS AND MODELS

@ In model theoretic terms: if S <; T, then one can uniformly
interpret a model B4 of S in every model A of T.

@ S and T are said to be bi-interpretable if
@ (1) T can verify that A= Ag,, and
@ (2) S can verify that B = B 4,.
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INTERPRETATIONS AND RELATIVE CONSISTENCY

@ Theorem. Suppose S and T are axiomatizable theories. Then
S <1 T = Con(T)— Con(S).
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INTERPRETATIONS AND RELATIVE CONSISTENCY

@ Theorem. Suppose S and T are axiomatizable theories. Then
S <1 T = Con(T)— Con(S).

@ But the converse of the above can be false, e.g., for S = GB,
and T = ZF.
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INTERPRETATIONS AND RELATIVE CONSISTENCY

@ Theorem. Suppose S and T are axiomatizable theories. Then
S <1 T = Con(T)— Con(S).

@ But the converse of the above can be false, e.g., for S = GB,
and T = ZF.

@ Therefore “interpretability strength”is a refinement of
“consistency strength”.
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INTERPRETATIONS AND RELATIVE CONSISTENCY

@ Theorem. Suppose S and T are axiomatizable theories. Then
S <1 T = Con(T)— Con(S).

But the converse of the above can be false, e.g., for S = GB,
and T = ZF.

Therefore “interpretability strength”is a refinement of
“consistency strength”.

Theorem. [Mostowski-Robinson-Tarski] If T is axiomatizable
and Q <1 T , then T is essentially undecidable.
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INTERPRETATIONS AND SET THEORETIC
INDEPENDENCE RESULTS

e Theorem. EFA |- Con(ZF) — Con(ZF +V =L).
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INTERPRETATIONS AND SET THEORETIC
INDEPENDENCE RESULTS

e Theorem. EFA |- Con(ZF) — Con(ZF +V =L).

@ Proof: Syntactically unwind the usual proof!
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INTERPRETATIONS AND SET THEORETIC
INDEPENDENCE RESULTS

e Theorem. EFA |- Con(ZF) — Con(ZF +V =L).
@ Proof: Syntactically unwind the usual proof!

@ The above works since Godel's L has a uniform definition
across all model of ZF, and ZF I (ZF +V = L)L
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INTERPRETATIONS AND SET THEORETIC
INDEPENDENCE RESULTS

Theorem. EFA + Con(ZF) — Con(ZF +V =L).

Proof: Syntactically unwind the usual proof!

The above works since Godel's L has a uniform definition
across all model of ZF, and ZF I (ZF +V = L)L

@ Theorem. EFA |- Con(ZF) — Con(ZF + —~CH).
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INTERPRETATIONS AND SET THEORETIC
INDEPENDENCE RESULTS

e Theorem. EFA |- Con(ZF) — Con(ZF +V =L).
@ Proof: Syntactically unwind the usual proof!

@ The above works since Godel's L has a uniform definition
across all model of ZF, and ZF I (ZF +V = L)L

@ Theorem. EFA |- Con(ZF) — Con(ZF + —~CH).

@ Proof: Move within L and build LB, where B =c.b.a for
adding X, Cohen reals; then mod out L® by the L-least
ultrafilter on B.
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SET THEORETICAL COUNTERPART OF SECOND
ORDER ARITHMETIC-PART I

@ Second order arithmetic (Z») is a two-sorted theory; one
sort for numbers, and the other sort for reals. Models of Z;
are of the form (M, A), where A C P(M), such that

(1) For each X € A, (M, X) = PA(X), and

(2) If X € M is parametrically definable in (M, A), then
X e A
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SET THEORETICAL COUNTERPART OF SECOND
ORDER ARITHMETIC-PART I

@ Second order arithmetic (Z») is a two-sorted theory; one
sort for numbers, and the other sort for reals. Models of Z;
are of the form (M, A), where A C P(M), such that

(1) For each X € A, (M, X) = PA(X), and
(2) If X € M is parametrically definable in (M, A), then
X e A

@ The Choice Scheme ML -AC consists of the universal closure
of formulae of the form

Vn 3X ¢o(n, X) — 3Y Vn o(n,(Y)n)
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SET THEORETICAL COUNTERPART OF SECOND
ORDER ARITHMETIC-PART I

° Tanalysis =14r+ néo-AC, and
Teet := ZFC\{Power} +V = H(X;) are bi-interpretable.
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SET THEORETICAL COUNTERPART OF SECOND
ORDER ARITHMETIC-PART I

° Tanalysis =14r+ néo-AC, and
Teet := ZFC\{Power} +V = H(X;) are bi-interpretable.

@ In particular, there is a canonical one-to-one correspondence
between models of Tanalysis and Tser; w-models of Tanaiysis
correspond to w-models of Tget.
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SET THEORETICAL COUNTERPART OF SECOND

ORDER ARITHMETIC-PART I

° Tanalysis =14r+ néo-AC, and
Teet := ZFC\{Power} +V = H(X;) are bi-interpretable.

@ In particular, there is a canonical one-to-one correspondence
between models of Tanalysis and Tser; w-models of Tanaiysis
correspond to w-models of Tget.

@ To interpret an model 2 F T¢et within a model
(N*, A) E Tanalysis, one defines the notion of “suitable trees”,
and an equivalence relation =* among suitable trees, and a
binary relation €* among the equivalence classes of =* This
yields a model 2 = (A, E) of Teet; where A is the set of
equivalence classes of =* and E = €* .
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SET THEORETICAL COUNTERPART OF SECOND

ORDER ARITHMETIC-PART I

° Tanalysis =2+ néo'AC, and
Teet := ZFC\{Power} +V = H(X;) are bi-interpretable.

@ In particular, there is a canonical one-to-one correspondence
between models of Tanalysis and Tser; w-models of Tanaiysis
correspond to w-models of Tget.

@ To interpret an model 2 F T¢et within a model
(N*, A) E Tanalysis, one defines the notion of “suitable trees”,
and an equivalence relation =* among suitable trees, and a
binary relation €* among the equivalence classes of =* This
yields a model 2 = (A, E) of Teet; where A is the set of
equivalence classes of =* and E = €* .

@ Conversely, if 2 is a model of T, then the “standard model
of second order arithmetic” in the sense of % is a model of

Tanalysis-
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ACKERMANN'S EPSILON RELATION

e Theorem. [Ackermann, 1940] Let E be defined by aEb iff the
a-th component of the base-2 expansion of b is 1. Then

(w,E) = (W, €).
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ACKERMANN'S EPSILON RELATION

e Theorem. [Ackermann, 1940] Let E be defined by aEb iff the
a-th component of the base-2 expansion of b is 1. Then

(w,E) = (W, €).

@ Theorem. PA is bi-interpretable with ZFg,.
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ACKERMANN'S EPSILON RELATION

e Theorem. [Ackermann, 1940] Let E be defined by aEb iff the
a-th component of the base-2 expansion of b is 1. Then

(w,E) = (W, €).

@ Theorem. PA is bi-interpretable with ZFg,.
@ Models of ZFg, all "believe” that V = H(Rp).
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ACKERMANN'S EPSILON RELATION

e Theorem. [Ackermann, 1940] Let E be defined by aEb iff the
a-th component of the base-2 expansion of b is 1. Then

(w,E) = (W, €).

@ Theorem. PA is bi-interpretable with ZFg,.
@ Models of ZFg, all "believe” that V = H(Rp).
@ Theorem. ACAq is bi-interpretable with GBC™°.
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ACKERMANN'S EPSILON RELATION

e Theorem. [Ackermann, 1940] Let E be defined by aEb iff the
a-th component of the base-2 expansion of b is 1. Then

(w,E) = (W, €).

Theorem. PA is bi-interpretable with ZF,.

Models of ZFg, all “believe” that V = H(Rp).

Theorem. ACAy is bi-interpretable with GBC™°.

Models of ACA are of the form (M, A), where A C P(M),
such that

(1) For each X € A, (M, X) |= PA(X), and

(2) Given Aq, -, Apin A, if X C M is parametrically first
order definable in (M, Az, - -+, Ap), then X € A.
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ACKERMANN'S EPSILON RELATION

e Theorem. [Ackermann, 1940] Let E be defined by aEb iff the
a-th component of the base-2 expansion of b is 1. Then

(w,E) = (W, €).

Theorem. PA is bi-interpretable with ZF,.
Models of ZFg, all “believe” that V = H(Rp).
Theorem. ACAy is bi-interpretable with GBC™°.

Models of ACA are of the form (M, A), where A C P(M),
such that

(1) For each X € A, (M, X) |= PA(X), and

(2) Given Aq, -, Apin A, if X C M is parametrically first
order definable in (M, Az, - -+, Ap), then X € A.

e Theorem. Z, + M -AC is bi-interpretable with KMC~.
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@ Models of set theory are of the form M = (M, E), where E =
eM.
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MODELS OF SET THEORY-PART |

@ Models of set theory are of the form M = (M, E), where E =
eM.

@ M is standard if E is well-founded.
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MODELS OF SET THEORY-PART |

@ Models of set theory are of the form M = (M, E), where E =
eM.

@ M is standard if E is well-founded.
o M is w-standard if (w, <)M = (w, <).
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MODELS OF SET THEORY-PART |

@ Models of set theory are of the form M = (M, E), where E =
eM.

e M is standard if E is well-founded.

o M is w-standard if (w, <)M = (w, <).

e Proposition. Suppose M = ZF*>® + TC. M is nonstandard
iff (Ord, €)M is not well-founded.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS



MODELS OF SET THEORY-PART |

@ Models of set theory are of the form M = (M, E), where E =
eM.

e M is standard if E is well-founded.

o M is w-standard if (w, <)M = (w, <).

e Proposition. Suppose M = ZF*>® + TC. M is nonstandard
iff (Ord, €)M is not well-founded.

o Proposition. Every M has a elementary extension that is
not w-standard.
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MODELS OF SET THEORY-PART |

@ Models of set theory are of the form M = (M, E), where E =
eM.

e M is standard if E is well-founded.

o M is w-standard if (w, <)M = (w, <).

e Proposition. Suppose M = ZF*>® + TC. M is nonstandard
iff (Ord, €)M is not well-founded.

o Proposition. Every M has a elementary extension that is
not w-standard.

@ Theorem [Keisler-Morely|. Every w-standard countable
M |=ZF has a nonstandard elementary extension that is
w-standard.
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e For M =(M,E), and me M,

me = {x € M : xEm}.
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e For M =(M,E), and me M,
me = {x € M : xEm}.

@ XC M is coded in M if X = mg for some me M.
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MODELS OF SET THEORY-PART Il

e For M =(M,E), and me M,
me = {x € M : xEm}.

@ XC M is coded in M if X = mg for some me M.

@ Suppose M C N = (N, F) with me M. N is said to fix m if
mg = mg, else N enlarges m.
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MODELS OF SET THEORY-PART Il

e For M =(M,E), and me M,
me = {x € M : xEm}.

@ XC M is coded in M if X = mg for some me M.

@ Suppose M C N = (N, F) with me M. N is said to fix m if
mg = mg, else N enlarges m.

@ M Copg N, if mg = mpg for every me M.
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e For M =(M,E), and me M,
me = {x € M : xEm}.

@ XC M is coded in M if X = mg for some me M.

@ Suppose M C N = (N, F) with me M. N is said to fix m if
mg = mg, else N enlarges m.

@ M Cepg N, if mg = mp for every mec M.
@ M Cnk N for every x € N\M, and every y € M,
NE p(x) > p(y)-
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e For M =(M,E), and me M,
me = {x € M : xEm}.

@ XC M is coded in M if X = mg for some me M.

@ Suppose M C N = (N, F) with me M. N is said to fix m if
mg = mg, else N enlarges m.

@ M Cepg N, if mg = mp for every mec M.
@ M Cnk N for every x € N\M, and every y € M,
NE p(x) > p(y)-

@ M Cons N if the intersection of any parametrically definable
subset of A/ with M is also parametrically definable in M.
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o Proposition.
(a) Rank extensions are end extensions, but not vice versa.

(c) If M = ZFg, and M =ops N, then M Cepg N
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MODEL THEORETIC PRELIMINARIES -PART Il

o Proposition.
(a) Rank extensions are end extensions, but not vice versa.

(c) If M = ZFg, and M =ops N, then M Cepg N

e Theorem [Splitting Theorem]. Suppose M < N where M
is a model of ZF*>° . There exist a model N* such that

M = cofinal N* =end N
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MODEL THEORETIC PRELIMINARIES -PART Il

o Proposition.
(a) Rank extensions are end extensions, but not vice versa.

(c) If M = ZFg, and M =ops N, then M Cepg N

e Theorem [Splitting Theorem]. Suppose M < N where M
is a model of ZF*>° . There exist a model N* such that

M = cofinal N* =end N

o Theorem [E]. If M =cons N |= ZFC and N fixes w™, then
M is cofinal in N.
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KAPPA ELEMENTARY END EXTENSIONS

@ Theorem [Keisler-Tarski; Scott| « is a measurable cardinal iff
V <,.end N for some N (note: k = w allowed!).
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KAPPA ELEMENTARY END EXTENSIONS

@ Theorem [Keisler-Tarski; Scott| « is a measurable cardinal iff
V <,.end N for some N (note: k = w allowed!).
@ Suppose « is a cardinal in M = ZFC.
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KAPPA ELEMENTARY END EXTENSIONS

@ Theorem [Keisler-Tarski; Scott| « is a measurable cardinal iff
V <,.end N for some N (note: k = w allowed!).

@ Suppose « is a cardinal in M = ZFC.

o () M <, end N if M < N and « is end extended in the
passage from M to N, i.e., N enlarges x but N fixes every
element of kg (where E =eM).
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KAPPA ELEMENTARY END EXTENSIONS

@ Theorem [Keisler-Tarski; Scott| « is a measurable cardinal iff
V <,.end N for some N (note: k = w allowed!).

@ Suppose « is a cardinal in M = ZFC.

o () M <, end N if M < N and « is end extended in the
passage from M to N, i.e., N enlarges x but N fixes every
element of kg (where E =eM).

o (b) M < consend N if M <y eng N, and the intersection of
any parametrically definable (or equivalently: coded) subset of
N with the "old” elements of x is coded in M.
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KAPPA ELEMENTARY END EXTENSIONS

@ Theorem [Keisler-Tarski; Scott| « is a measurable cardinal iff
V <,.end N for some N (note: k = w allowed!).

@ Suppose « is a cardinal in M = ZFC.

o () M <, end N if M < N and « is end extended in the
passage from M to N, i.e., N enlarges x but N fixes every
element of kg (where E =eM).

o (b) M < consend N if M <y eng N, and the intersection of
any parametrically definable (or equivalently: coded) subset of
N with the "old” elements of x is coded in M.

o (c) An ultrafilter U over the Boolean algebra P (k) is said
to be M-complete if foreach f : k > A< kin M, fis
constant on some member of /.
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KAPPA ELEMENTARY END EXTENSIONS

@ Theorem [Keisler-Tarski; Scott| « is a measurable cardinal iff
V <,.end N for some N (note: k = w allowed!).

@ Suppose « is a cardinal in M = ZFC.

o () M <, end N if M < N and « is end extended in the
passage from M to N, i.e., N enlarges x but N fixes every
element of kg (where E =eM).

o (b) M < consend N if M <y eng N, and the intersection of
any parametrically definable (or equivalently: coded) subset of
N with the "old” elements of x is coded in M.

o (c) An ultrafilter U over the Boolean algebra P (k) is said
to be M-complete if foreach f : k > A< kin M, fis
constant on some member of /.

e (d) An M-complete ultrafilter U is M-normal if for each
regressive f : k — k in M 3a <k fHa} eU.
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@ Theorem [Keisler-Tarski; Scott| « is a measurable cardinal iff
V <,.end N for some N (note: k = w allowed!).

@ Suppose « is a cardinal in M = ZFC.

o () M <, end N if M < N and « is end extended in the
passage from M to N, i.e., N enlarges x but N fixes every
element of kg (where E =eM).

o (b) M < consend N if M <y eng N, and the intersection of
any parametrically definable (or equivalently: coded) subset of
N with the "old” elements of x is coded in M.

o (c) An ultrafilter U over the Boolean algebra P (k) is said
to be M-complete if foreach f : k > A< kin M, fis
constant on some member of /.

e (d) An M-complete ultrafilter U is M-normal if for each
regressive f : k — k in M 3a <k fHa} eU.

o (e) An M-complete ultrafilter U is M-iterable if for each
fin—=rin M{a<k:fHa}ecU} e M.
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KEISLER-MORLEY, KUNEN

@ Theorem Suppose M is a model of ZFC, k is a cardinal of
M, and U is a nonprincipal ultrafilter over PM(k), and
My = M"/U.
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@ Theorem Suppose M is a model of ZFC, k is a cardinal of
M, and U is a nonprincipal ultrafilter over PM(H), and
My = M"/U.
e (1) U is M-complete iff M <y endMu-
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@ Theorem Suppose M is a model of ZFC, k is a cardinal of
M, and U is a nonprincipal ultrafilter over PM(H), and
My = M*/U.

e (1) U is M-complete iff M <y endMu-

e (2) U is M-normal iff M < _engMy and [id]y is the least
new ordinal.
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@ Theorem Suppose M is a model of ZFC, k is a cardinal of
M, and U is a nonprincipal ultrafilter over PM(H), and
My = M*/U.

e (1) U is M-complete iff M <y endMu-

e (2) U is M-normal iff M < _engMy and [id]y is the least
new ordinal.

e (3) U is M-iterable iff M <, cons-end Mus -
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KEISLER-MORLEY, KUNEN

@ Theorem Suppose M is a model of ZFC, k is a cardinal of
M, and U is a nonprincipal ultrafilter over PM(H), and
My = M*/U.

e (1) U is M-complete iff M <y endMu-

e (2) U is M-normal iff M < _engMy and [id]y is the least
new ordinal.

e (3) U is M-iterable iff M <, cons-end Mus -

@ Theorem. Suppose M is a countable model of ZFC and & is
a cardinal in M.
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KEISLER-MORLEY, KUNEN

@ Theorem Suppose M is a model of ZFC, k is a cardinal of
M, and U is a nonprincipal ultrafilter over PM(H), and
My = M*/U.

e (1) U is M-complete iff M <y endMu-

e (2) U is M-normal iff M < _engMy and [id]y is the least
new ordinal.

e (3) U is M-iterable iff M <, cons-end Mus -

@ Theorem. Suppose M is a countable model of ZFC and & is
a cardinal in M.

o (1) x is a regular cardinal in M iff there is an M-complete
ultrafilter U over P (k).
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KAPPA ELEMENTARY END EXTENSIONS:
KEISLER-MORLEY, KUNEN

@ Theorem Suppose M is a model of ZFC, k is a cardinal of
M, and U is a nonprincipal ultrafilter over PM(H), and
My = M*/U.

e (1) U is M-complete iff M <y endMu-

e (2) U is M-normal iff M < _engMy and [id]y is the least
new ordinal.

e (3) U is M-iterable iff M <, cons-end Mus -

@ Theorem. Suppose M is a countable model of ZFC and & is
a cardinal in M.

o (1) x is a regular cardinal in M iff there is an M-complete
ultrafilter U over P (k).

e (2) k is weakly compact in M iff there is an M-iterable
ultrafilter U over PM (k).
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@ Theorem. Suppose M is a model of ZFC, k is a regular
cardinal of M, and |PM(k)| = Ro.Then M has a proper
K-e.e.e.
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@ Theorem. Suppose M is a model of ZFC, k is a regular
cardinal of M, and |PM(k)| = Ro.Then M has a proper
K-e.e.e.

@ Moreover, if k is weakly compact in M, then the extension
can be arranged to be k-conservative.

e Theorem [Kleinberg] Suppose Mis a countable
well-founded model of ZFC. « is completely ineffable in M
iff there is an ultrafilter U on P (k) such that U is both M-
iterable and M-normal.
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@ Theorem. Suppose M is a model of ZFC, k is a regular
cardinal of M, and |PM(k)| = Ro.Then M has a proper
K-e.e.e.

@ Moreover, if k is weakly compact in M, then the extension
can be arranged to be k-conservative.

e Theorem [Kleinberg] Suppose Mis a countable
well-founded model of ZFC. « is completely ineffable in M
iff there is an ultrafilter U on P (k) such that U is both M-
iterable and M-normal.

e Theorem [E] There is no set ® of first order sentences in the
language {€, k} such that for all countable models M of
ZFC, M |= & iff there is an ultrafilter U on P (k) such that
U is both M-iterable and M-normal.
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ELEMENTARY END EXTENSIONS: "GOOD" NEWS

@ Theorem [MacDowell-Specker, Gaifman, Phillips]
(a) Every model M of ZF~>° + TC has an e.e.e N.

(b) Moreover, N can be required to be a minimal and
conservative extension of M.
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@ Theorem [MacDowell-Specker, Gaifman, Phillips]
(a) Every model M of ZF~>° + TC has an e.e.e N.

(b) Moreover, N can be required to be a minimal and
conservative extension of M.

e Theorem [Keisler-Morley] Every model of ZF of countable
cofinality has an e.e.e of any prescribed cardinality.
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@ Theorem [MacDowell-Specker, Gaifman, Phillips]
(a) Every model M of ZF~>° + TC has an e.e.e N.

(b) Moreover, N can be required to be a minimal and
conservative extension of M.

e Theorem [Keisler-Morley] Every model of ZF of countable
cofinality has an e.e.e of any prescribed cardinality.

e Theorem [Knight, Schmerl-Kossak, E| Every countable
model of ZF~°° + TC has continuum-many superminimal
e.e.e.’s.
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e Theorem [Keisler-Silver] If k is the first inaccessible cardinal,
then (V,., €) has no e.e.e.

Ali Enayat ARITHMETIC, SET THEORY, AND THEIR MODELS



ELEMENTARY END EXTENSIONS: "BAD" NEWS

e Theorem [Keisler-Silver] If k is the first inaccessible cardinal,
then (V,., €) has no e.e.e.

e Theorem [Kaufmann-E] No model of ZFC has a conservative
e.ee.
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ELEMENTARY END EXTENSIONS: "BAD" NEWS

e Theorem [Keisler-Silver] If k is the first inaccessible cardinal,
then (V,., €) has no e.e.e.

e Theorem [Kaufmann-E] No model of ZFC has a conservative
e.ee.

e Theorem [Kaufmann-E] Every consistent extension of ZFC
has a model M of power X1 such that M has no e.e.e.
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REGAINED
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ELEMENTARY END EXTENSIONS: "GOOD" NEWS
REGAINED

@ Theorem [Kaufmann-E| The following are equivalent for a
consistent complete extension T of ZFC:
(@) T can be expanded to a consistent theory T* in an
extended countable language L such that ZFC(L) C T* and
every model of T*has an e.e.e.
(b) For each natural number n,
T + 3k(k is n-Mahlo and V,; <x, V).
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@ Theorem [Kaufmann-E| The following are equivalent for a
consistent complete extension T of ZFC:
(@) T can be expanded to a consistent theory T* in an
extended countable language L such that ZFC(L) C T* and
every model of T*has an e.e.e.
(b) For each natural number n,
T + 3k(k is n-Mahlo and V,; <x, V).

@ Lévy Scheme:
A := {(3k(k is n—Mahlo and V,, <5, V) :n < w}
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ELEMENTARY END EXTENSIONS: "GOOD" NEWS
REGAINED

@ Theorem [Kaufmann-E| The following are equivalent for a
consistent complete extension T of ZFC:
(@) T can be expanded to a consistent theory T* in an
extended countable language L such that ZFC(L) C T* and
every model of T*has an e.e.e.
(b) For each natural number n,
T + 3k(k is n-Mahlo and V,; <x, V).

@ Lévy Scheme:
A := {(3k(k is n—Mahlo and V,, <5, V) :n < w}

@ SLOGAN: ZFC + A is the weakest extension of ZFC that
allows infinite set theory to model-theoretically catch-up with
finite set theory!
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