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Recall that the compactness principle for infinitary logics was in-
troduced in the paper by Erdös and Tarski in 1943 [1] motivated of
course by Gödel’s compactness theorem for first-order logic. We would
like to concentrate on a rather weak form of this compactness principle
through a combinatorial principle called Rado’s Conjecture, RC, first
considered by Richard Rado (see, for example [4]). It is a compactness
principle for the chromatic number of intersection graphs on families
of intervals of linearly ordered sets. It states that if such a graph is not
countably chromatic then it contains a subgraph of cardinality ℵ1 which
is also not countably chromatic. The consistency of Rado’s Conjecture
has been established by Todorcevic in 1983 [5] using the consistency of
the existence of a supercompact cardinal. In 1991, Todorcevic showed
that RC −→ (∀θ = cf(θ) ≥ ℵ2) θℵ0 = θ (see [6]). So, in particular RC
implies the Singular Cardinals Hypothesis. It is possible to show that
combining the arguments of Todorcevic [5] and of Foreman-Magidor-
Shelah [3] one obtains that RC is also relatively consistent with the
assertion that the ideal NSω1 of non-stationary subsets of ω1 is satu-
rated. On the other hand, Feng proved that Rado’s Conjecture implies
the presaturation of the ideal NSω1 [2]. Thus, it is natural to examine
whether RC supplemented by the saturation of NSω1 would also give us
stronger consequences for cardinal arithmetic. In short, we would like
to show that RC + sat(NSω1) = ℵ2 −→ (∀θ = cf(θ) ≥ ℵ2) θℵ1 = θ. In
fact, we would like show that this assumption will give us a bit stronger
result, RC + sat(NSω1) = ℵ2 −→ (∀θ = cf(θ) ≥ ℵ2) ♦[θ]ω1 .
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