RESEARCH STATEMENT FOR YOUNG SET THEORY, 2011

DILIP RAGHAVAN

Most of my research has focused on the following areas: Tukey theory of ultrafilters on ω , maximal almost disjoint families of sets and functions, preservation theorems for iterated forcing, and consistency with CH.

0.1. Cofinal types of ultrafilters. Given ultrafilters \mathcal{U} and \mathcal{V} on ω , we say that \mathcal{V} is *Tukey reducible to* \mathcal{U} , and write $\mathcal{V} \leq_T \mathcal{U}$ if there is a map $\phi : \mathcal{U} \to \mathcal{V}$ such that $\forall a, b \in \mathcal{U} [a \subset b \implies \phi(a) \subset \phi(b)]$ and $\forall e \in \mathcal{V} \exists a \in \mathcal{U} [\phi(a) \subset e]$. We say \mathcal{U} and \mathcal{V} are *Tukey equivalent*, and write $\mathcal{U} \equiv_T \mathcal{V}$, if $\mathcal{V} \leq_T \mathcal{U}$ and $\mathcal{U} \leq_T \mathcal{V}$. There is a general notion of Tukey reducibility for arbitrary directed posets, of which this is a special case. Several general structure and nonstructure theorems are known regarding Tukey types of uncountable directed sets. In the case of ultrafilters, Tukey reducibility is a coarser notion of reducibility than the well studied Rudin-Keisler (RK) reducibility. In joint work with Todorčević, we consider the question of when Tukey reducibility is equivalent to RK reducibility. This is similar in spirit to asking when a automorphism of $\mathcal{P}(\omega)/FIN$ is induced by a permutation of ω , which was a famous problem in the history of set theory. The most outstanding question regarding cofinal types of ultrafilters is the following long standing problem of Isbell.

Question 1. Is it consistent that for every ultrafilter \mathcal{U} on ω , there exists $\{x_{\alpha} : \alpha < \mathfrak{c}\} \subset \mathcal{U}$ such that for every $A \in [\mathfrak{c}]^{\omega} [\bigcap_{\alpha \in A} x_{\alpha} \notin \mathcal{U}]$?

0.2. Almost disjoint families. We say that two infinite subsets *a* and *b* of ω are *almost disjoint or a.d.* if $a \cap b$ is finite. We say that a family \mathscr{A} of infinite subsets of ω is *almost disjoint or a.d. in* $[\omega]^{\omega}$ if its members are pairwise almost disjoint. A *Maximal Almost Disjoint family, or MAD family in* $[\omega]^{\omega}$ is an infinite a.d. family in $[\omega]^{\omega}$ that is not properly contained in a larger a.d. family. Two functions *f* and *g* in ω^{ω} are said to be *almost disjoint or a.d.* if they agree in only finitely many places. We say that a family $\mathscr{A} \subset \omega^{\omega}$ is *a.d. in* ω^{ω} if its members are pairwise a.d., and we say that an a.d. family $\mathscr{A} \subset \omega^{\omega}$ is *MAD in* ω^{ω} if $\forall f \in \omega^{\omega} \exists h \in \mathscr{A} [|f \cap h| = \omega]$. We say that $p \subset \omega \times \omega$ is an *infinite partial function* if it is a function from some infinite subset $a \subset \omega$ to ω . An a.d. family $\mathscr{A} \subset \omega^{\omega}$ is said to be *Van Douwen* if for any infinite partial function *p* there is $h \in \mathscr{A}$ such that $|h \cap p| = \omega$. We answered an old question of Van Douwen by proving that Van Douwen families exist.

We have also answered a question of Shelah and Steprāns about almost disjoint families in $[\omega]^{\omega}$ that is closely related to the metrization problem for countable Fréchet groups. Let FIN denote the non-empty finite subsets of ω . Given an ideal I on ω , we say that $P \subset FIN$ is I-positive if $\forall a \in I \exists s \in P [a \cap s = 0]$. Given an a.d. family $\mathscr{A} \subset [\omega]^{\omega}$, let $I(\mathscr{A})$ denote the ideal on ω generated by \mathscr{A} . We say that an a.d. family $\mathscr{A} \subset [\omega]^{\omega}$ is *strongly separable* if for each $I(\mathscr{A})$ -positive $P \subset FIN$, there is $a \in \mathscr{A}$ and $Q \in [P]^{\omega}$ such that $\bigcup Q \subset a$. Thus this notion is gotten from the well known notion of a completely separable a.d. family by replacing integers with finite sets in the definition. Shelah has recently proved that completely separable a.d. families exist if $\mathfrak{c} < \aleph_{\omega}$. But we show that strong separability behaves differently by proving that it is consistent that there are no strongly separable a.d. families and $\mathfrak{c} = \aleph_2$.

The following are some interesting open problems regarding almost disjoint families.

Question 2. Is there a completely separable a.d. family?

Question 3. Is there an uncountable a.d. family $\mathscr{A} \subset [\omega]^{\omega}$ such that for every $\mathcal{I}(\mathscr{A})$ -positive $P \subset FIN$, there is a $Q \in [P]^{\omega}$ consisting of pairwise disjoint sets so that $\forall a \in \mathcal{I}(\mathscr{A}) [|a \cap (\bigcup Q)| < \omega]$?

Question 4. Is there an Sacks indestructible MAD family?

0.3. **Preservation theorems.** We have answered a question of Kellner and Shelah by proving the following: Let γ be a limit ordinal and let $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} : \alpha \leq \gamma \rangle$ be a countable support (CS) iteration. Suppose that for each $\alpha < \gamma$, $\Vdash_{\alpha} "\mathbb{Q}_{\alpha}$ is proper" and that \mathbb{P}_{α} does not turn $\mathbf{V} \cap \omega^{\omega}$ into a meager set. Then \mathbb{P}_{γ} does not do so either.

Question 5. Let γ be a limit ordinal and let $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} : \alpha \leq \gamma \rangle$ be a CS iteration. Suppose that for each $\alpha < \gamma$, $\Vdash_{\alpha} ``\mathbb{Q}_{\alpha}$ is proper'' and \mathbb{P}_{α} does not add a Cohen real. Is it true that \mathbb{P}_{γ} also does not add a Cohen real?

Date: March 10, 2011.