
RESEARCH STATEMENT

ANDREA MEDINI

My research is in Set-Theoretic/General Topology. More specifically, I have been
working on h-homogeneity, CLP-compactness and their behaviour under products.
A general fact that contributes to making those topics interesting is that clopen
subsets of products need not be the union of clopen rectangles (see [2]).

A topological space X is h-homogeneous if all non-empty clopen subsets of X
are homeomorphic (to X). The Cantor set, the rationals, the irrationals or any
connected space are examples of h-homogeneous spaces. In [7], building on work
of Terada (see [12]) and using Glicksberg’s classical theorem on the Stone-Čech
compactification of products, I obtained the following result.

Theorem 1. Assume that Xi is zero-dimensional and h-homogeneous for every
i ∈ I. Then X =

∏
i∈I Xi is h-homogeneous.

Furthermore, if X is pseudocompact, then the zero-dimensionality requirement can
be dropped. (I don’t know whether the zero-dimensionality requirement can be
dropped in general.) Along the way, I showed that clopen subsets of pseudocompact
products depend only on finitely many coordinates, thus generalizing a result of
Broverman (see [1]). Also, I gave some partial answers to the following question
from [12], which remains open.

Question 2 (Terada). Is Xω h-homogeneous whenever X is zero-dimensional and
first-countable?

If one drops the ‘h’, then the answer is ‘yes’ by a remarkable theorem of Dow and
Pearl (see [4]). Since h-homogeneity implies homogeneity for zero-dimensional first-
countable spaces, a positive answer would give a strenghtening of their result. For
other interesting papers on h-homogeneity, see [3], [5], [8], [9] or [13].

A topological space X is CLP-compact if every cover of X consisting of clopen
sets has a finite subcover. For zero-dimensional spaces, CLP-compactness is the
same as compactness. In [6], I obtained the following result, which answers a
question of Steprāns and Šostak from [11]. The proof involves the construction of
a special family of finite subsets of ω∗.

Theorem 3. For every infinite cardinal κ, there exists a family {Xξ : ξ ∈ κ} such
that

∏
ξ∈F Xξ is CLP-compact for every F ∈ [κ]<ω while

∏
ξ∈κ Xξ is not.

For a positive result on (finite) products of CLP-compact spaces, see [10].
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[10] J. Steprāns. Products of sequential CLP-compact spaces are CLP-compact. Ann. Pure Appl.

Logic 143:1-3 (2006), 155–157.
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