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Introduction

Ordinal computability theory is based on ordinal numbers, just as standard com-
putability theory is based on natural numbers: we clock the steps of a computation
by ordinal numbers instead of natural numbers (infinite or ordinal “time”), index
the cells of a Turing tape by ordinal numbers (infinite or ordinal “space”), read
and write ordinals as register values (ordinal “space”) and so on. After sporadic
early experiments, a comprehensive and active theory of ordinal computability has
begun to emerge since the late 1990’s: Infinite time Turing machines (ITTMs)
generate a host of results and problems in analogy and contradistinction to clas-
sical computability theory; by iterating the trivial Turing operations along the
ordinals, we are able to define and analyze complicated and attractive sets of reals
numbers. The success of ITTMs has motivated other ordinal generalizations of
classical models of computations which may be classified according to the following
schema:

standard space & time standard space, ordinal time ordinal space, ordinal time

Turing machine ITTM Ordinal Turing machine
∆1

1 ( computable ( ∆1
2 OTM,

computable ↔ constructible

register machine Infinite time register machine Ordinal register machine
ITRM, ORM,
computable ↔ hyperarithmetic computable ↔ constructible

Various classes of sets become computable under the different models of computabil-
ity. Thus ordinal computability theory takes the paradigm of computability to
descriptive set theory, constructibility theory and other fields in innovative and
fruitful ways.

The aim of the Bonn International Workshop on Ordinal Computability (BIWOC)
was to bring together a majority of researchers in ordinal computability as well as in-
terested graduate students and outstanding representatives from neighboring fields.
The program consisted of morning talks, which represented the current spectrum
of ordinal machine models and identified relevant research questions and projects.
Afternoons gave space for informal discussions and collaborations and were con-
cluded by one-hour “informal slots”. These consisted of presentations decided at
the workshop, a discussion session about the future of ordinal computability, and a
problem session. Progress on problems posed was already made during the work-
shop or shortly afterwards.

This workshop report contains extended abstracts of most of the talks at the work-
shop, a list of problems, some of them solved in the meantime, and further material
inspired by questions from the workshop. Information about the workshop can also
be found electronically at www.math.uni-bonn.de/people/logic/biwoc.

The workshop was made possible through generous financial support by the new
Hausdorff Center for Mathematics. The workshop was administrated professionally
and efficiently by Dagmar Böttcher, Luiza Jakuszek and Anke Thiedemann at the
office of the Hausdorff Research Institute and by Dorothee Reuther at the office
of the Bonn Logic Group. Several student helpers from the Hausdorff Institute
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provided friendly and unobtrusive catering and technical assistence. Bernhard Ir-
rgang, besides participating in the scientific program, perfectly ran and coordinated
all technical aspects at the conference site. The conference location was kindly pro-
vided by the Mathematical Institute. Holger Hammes, the unfailing Hausmeister
of the Institute, helped in several respects. Ioanna Dimitriou edited the workshop
booklet and this report competently and swiftly.

We have to thank the Hausdorff Center for Mathematics, the Mathematical Insti-
tute and all the helpers mentioned for their magnificent work and support, which
led to a very positive and productive workshop atmosphere. We also thank the
participants for their contributions and interactions, which made the workshop a
scientific success and proved that ordinal computability will continue to thrive, and
that it is challenging, interdisciplinary, interactive, and fun.

Joel D. Hamkins and Peter Koepke
March 2007
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Extended abstracts

Infinite Time Decidable Equivalence Relations
Sam Coskey

Rutgers University
Tuesday, 10:45 – 11:15

Introduction. There is a theory of Borel equivalence relations revolving around
the following complexity notion. Let E,F be equivalence relations on R. Write
that E ≤B F if there exists a Borel map f : R→ R such that for x, y ∈ R

xEy ↔ f(x)Ff(y)

The function f is said to reduce E to F .
We instead consider several weaker notions made possible by the Hamkins-Kidder
ITTM model [2]. We say that a function f is (boldface) computable if there is
an ITTM program p and a real paramater z such that f = φz

p. Now write that
E ≤C F if there is a computable reduction from E to F .
Additionally, we say that a function f is eventually computable if there is a program
which on input x eventually writes f(x) on the tape (it need not halt). We say that
f is semicomputable if its graph is decidable. The corresponding reduction notions
are written E ≤EC F and E ≤SC F , respectively.
These are weakenings of the Borel notion; every Borel function is computable (from
a real parameter) and every computable function is semicomputable. On the other
hand, each of these functions has a ∆1

2 graph and so these notions are not too far
from Borel.
Our first observation, and a strong motivation for this investigation, is the following.
The ≤C notion offers a very similar picture to the ≤B theory, while the ≤SC

notion collapses nearly every computable equivalence relation to a point under
V = L. Thus we are right on a boundary; we may be considering the most powerful
reductions that can still distinguish important complexity classes under ZFC.
We are presently motivated by the following goals. The first is to discover the exact
extent of the analogy between ≤B and ≤C on the Borel equivalence relations. The
second is to use the notion of computable complexity to distinguish some interesting
relations of high complexity (where Borel reducibility is not appropriate).

Borel equivalence relations. We have the following dichotomy.

Meta-theorem. A large fragment of the Borel complexity picture carries over to
the computable case.

Theorem 1. If V = L then any computable equivalence relation E semicomputably
reduces to =.

The Theorem above appears in [3], but let us discuss the Meta-theorem. For ex-
ample, consider the countable Borel equivalence relations, for which there is a nice
(and hard-won) Borel complexity picture. The least complex countable Borel equiv-
alence relation is =. Its immediate successor is called E0 and the most complex is
called E∞. The remaining ones lie in the interval (E0, E∞). It has been shown by
Adams-Kechris [1] that every Borel partial ordering embeds into this interval.
We wish to show that the ≤C picture is similar. Of course every Borel reduction is
also a computable reduction, so we need only concern ourselves with showing that
the non-reductions are preserved.
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But it is the case that many of the non-reduction proofs in the Borel case overshoot
and show there is no measurable reduction. And moreover, all computable functions
are measurable. So for instance there is no computable reduction from E∞ to E0

or from E0 to =. We also obtain for free the analog of the Adams-Kechris theorem.
It remains of fundamental importance to answer the following question. Are there
Borel equivalence relations E,F such that E ≤C F but E 6≤B F?

Relations of high complexity. We now move on to our second aim, that of iden-
tifying and classifying interesting equivalence relations of possibly high complexity.
First, let us introduce a pair of equivalence relations which are naturally occurring
and have a different relationships with respect to the Borel and computable com-
plexity notions. We define that x ≡WO y if x, y code the same ordinal (by some
fixed means). Next define x ≡CK y if x, y have the same finite-time computable
ordinals. Then we have the following:

Theorem 2. The equivalence relations ≡WO and ≡CK are computably bireducible
but Borel incomparable.

Here are a couple more interesting relations. Write that x ≡SET y if x and y,
thought of as countable sequences of reals, have the same range. This relation lies
above every countable Borel equivalence relation. Write that x ≡HC y if x and y
code the same hereditarily countable set. Then each of ≡SET and ≡WO computably
reduce to ≡HC . We hope to show that these reductions are strict.
Another important relation is the Turing degree relation ≡ω1 , defined by x ≡ω1 y
if x is computable from y by an ITTM and vice versa. It is semidecidable but not
decidable. So it does not computably reduce to any computable relation, but it is
unknown if even = reduces to it.
On the other hand, ≡ω1 does eventually reduce to ≡SET . Given x just run all
programs and at each stage put the results into a set. This program will eventually
converge on the ≡ω1 class of x but it will not halt. So ≤EC provides a slightly more
stable picture of more complex relations.

References

[1] Adams, Scot and Alexander Kechris. Linear Algebraic Groups and Countable Borel Equiva-

lence Relations. J. AMS 13.4, 2000.

[2] Hamkins, Joel, and Andy Lewis. Infinite time Turing machines. Journal of Symbolic Logic
65.2, 2000.

[3] Hamkins, Joel, et. al. Infinite time computable model theory.

Computability and Constructibility.
Barnaby L Dawson
University of Bristol

Thursday, 9:30 – 10:00

Ordinal time Turing machines have recently become the subject of some study.
This paper will look at plausible extensions of ordinal time Turing machines from
the perspective of what sets and class functions may become computable with their
usage.

Ordinal time Turing machines run for ordinal periods of time and have ordinal
amount of memory. Each memory cell may contain a 0 or a 1. At limit stages the
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state of the machine is fixed using lim-inf operations.

These machines don’t allow us to compute the class function giving us beth num-
bers. In addition other class functions are also non-computable despite having
simple definitions. If we want to investigate the model theory and syntax of in-
finite languages calculating beth numbers come in handy. Finally the notion of
constructibility ties in well with ordinal time Turing computers. Is this just an
artifact of the precise way they are defined? This is the main question we shall
address in the talk.

1. Examples of possible extensions

Here are some examples of possible extensions of our computers:
• In the presence of sharps we could allow an operation which writes to the

input tape A] where A is currently on the output tape.
• We could introduce an operation that moves a read/write head to the next

limit ordinal.
• We could introduce an operation that moves a read/write head to the next

cardinal as seen from V (or relativize to L)
• We could introduce an operation that writes onto the input tape a bijection

B from the current set A on the output tape to its cardinality. Again we
could relativize to L.
• We could introduce a clock that resets the current instruction at certain

times (perhaps at each cardinal).

2. Ordinal computers with oracles

If we imagine another computer with an extra input tape on which we can have an
ordinal sized sequence of 0’s and 1’s this computer will have extended abilities. All
of the above extensions can be simulated by a computer with an oracle input tape
added.

However, these computers may have very different complexity theories attached to
their operation. In this talk we shall concentrate on what may be computed not
how long that might take.

In the talk we shall show that any first order definable notion of computation (re-
specting AC) can be simulated by an ordinal time Turing computer with an oracle.

We shall show that this notion is highly arbitrary allowing for any set to be con-
sidered as computational and any class function to be computational too.

We discuss the problems with this definition and come up with two ways of over-
coming them.

3. Definitions of weakly and strongly computational

• Our weak ordering ≤ is this: F ≤ G if range(F ) ⊇ range(G) and G is
unbounded.

• Our strong ordering ≺ is this: F � G if G majorises F (and F 6= G).
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• A set S is weakly computational if ∃F : ∀G ≥ F : S can be computed on a
computer with G as an oracle.

• A set S is strongly computational if ∃F : ∀G � F : S can be computed on
a computer with G as an oracle.

4. The importance of fast growing functions

We shall show how the growth rate of an oracle (defined in the talk) can be the
important feature determining what may be computed with that oracle. We will
show how the arbitrary nature of extensions is overcome by the above definitions.

In addition we will show that any oracle that grows faster than the cardinals allows
us to compute the cardinals (as seen from L).

5. Some interesting questions

What can we say about the weakly/strongly computational sets? Ideally we want
to know how these fit in with the constructible universe and with large cardinal
hypotheses.

Is every set that is constructible also strongly computational? We remark that this
is trivially the case. Is it consistent for a set to be strongly/weakly computational
but not constructible? A simple proof is given that it is consistent (assuming the
consistency of 0]) that there is a non computational but weakly computational set.
A similar proof is given to show the same is true for strong computationality

Can a set be strongly/weakly computable in an inner model M but not in the
universe V itself? It is shown that 0] is strongly computational in any model con-
taining it.

Further directions of research are considered.

Recursion theory on an admissible ordinal.
Sy-David Friedman

KGRC, University of Vienna
Monday, 9:30 – 10:30

An interesting generalisation of classical recursion theory grew out of the Metare-
cursion Theory of Kreisel-Sacks, which drew the analogies

RE ≈ Π1
1

Finite ≈ Hyperarithmetic
In α-recursion theory, the natural numbers are replaced by ordinals less than α,
computations take place using such ordinals and have length less than α. One way
to make this precise is via Kripke’s generalisation of Kleene’s equation calculus,
which I now describe. For the moment, let α be any infinite ordinal.

The α-Equation Calculus
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Symbols
A name for β (each β < α)
Variables x, y, z, ...
Function symbols f, g, h, ...
∃, <

Terms
f(t0, ..., tn)
(∃x < t0)t1

Equations
t = u where t, u are terms

Rules (where e denotes an equation)
From e(x) infer e(β)
From e(f(β1, ..., βn)) and f(β1, ..., βn) = β infer e(β)
(For γ < β < α) From t(γ) = 0 infer (∃x < β)t(x) = 0
(For β < α) From t(γ) = 1 for all γ < β infer (∃x < β)t(x) = 1

A partial function F from α to α is partial α-recursive iff there is a finite set E of
equations and a function symbol f such that:

F (β) = γ iff f(β) = γ is derivable from E.

A desirable property, called recursive regularity or admissibility, is:

If F is total α-recursive and β is less than α then the Range of F on β is bounded
in α.

Regular infinite cardinals are clearly admissible. In fact all infinite cardinals are
admissible. But there are many admissible ordinals which are not cardinals; indeed
any uncountable cardinal is a limit of admissible ordinals.

The set-theoretic viewpoint

So far we have worked with just ordinals less than α and functions from α to α.
However we must broaden our perspective if we are to properly understand α-RE
sets.

A subset of α is α-RE iff it is the domain of a partial α-recursive function. A is
α-recursive iff both A and α \A are α-RE.

In classical recursion theory, an RE set A has an increasing recursive enumeration,
i.e., A is the union of a sequence 〈As | s ∈ ω〉 where:

i. Each As is finite.
ii. s < t→ As is a subset of At.
iii. The function s 7→ As is recursive.

To lift this property to α-recursion theory, we must develop a notion of α-finite set of
ordinals and α-recursive function from α to α-finite sets. This is best accomplished
using Gödel’s L-hierarchy. For any ordinal β, Lβ denotes the β-th level of this
hierarchy.

Theorem 1. i. α is admissible iff Lα satisfies Σ1 replacement.
ii. For admissible α, the partial α-recursive functions are precisely those partial
functions from α to α which are Σ1 definable over Lα.
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Suppose now that α is admissible.

Definitions. A partial function F from Lα to Lα is partial α-recursive iff its graph
is Σ1 over Lα. A subset A of Lα is α-RE iff it is Σ1 over Lα and is α-recursive iff
it is ∆1 over Lα. A set is α-finite iff it is an element of Lα.

Theorem 2. i. A set is α-finite iff it is both α-recursive and bounded, i.e., a subset
of some Lβ, β < α.
ii. If A is α-RE then A is the union of 〈Aσ | σ < α〉, where each Aσ is α-finite,
σ < τ → Aσ ⊆ Aτ and the function σ 7→ Aσ is α-recursive.

All of the basic results of classical recursion theory hold for an admissible ordinal
α, with RE, recursive, finite replaced by α-RE, α-recursive, α-finite. In particular
there is a universal α-RE set W (e, x), i.e., W is α-RE and every α-RE set A equals
We = {x |W (e, x)} for some e.

Turing α-degrees

For A ⊆ Lα, the set N(A) of neighbourhood conditions on A is defined by

N(A) = {(c, d) | c ⊆ A and d ⊆ Lα \A}.

Suppose A,B are subsets of Lα. Then A is α-RE in B iff for some α-RE set We

A = WB
e = {x | There exists (c, d) ∈ N(B) such that (x, c, d) ∈We}.

A is weakly α-recursive in B iff both A and Lα \ A are α-RE in B. (This relation
is not transitive in general.) A is α-recursive in B, written A ≤α B, iff both
{c | c ⊆ A} and {c | c ⊆ Lα \ A} are α-RE in B. The α-jump A′ of A is the set
{e | e ∈WA

e }. A′ has the largest α-degree of a set α-RE in A.

Positive results

The ordinal recursion theory school of Sacks succeeded in lifting many results from
classical recursion theory to α-recursion theory. If α is very admissible, e.g., if Lα

satisfies Σn replacement for n = 3, then the proofs from the classical case readily
generalise. With more work and sometimes very subtle arguments, the following
positive results were obtained.

Theorem 3. (Sacks-Simpson) For any admissible α, there are α-RE sets of in-
comparable α-degree.

Theorem 4. (Shore) For any admissible α, the α-degrees of α-RE sets are dense.

Theorem 5. (Shore) Any α-RE set which is not α-recursive is the union of two
α-RE sets with smaller α-degree.

Unexpected negative results

It was at first thought that with enough work, all results from classical recursion
theory would lift to α-recursion theory. This turned out to be dramatically false.
An α-RE set M is maximal iff for each α-RE set A, either A \M is α-finite or
Lα \ (M ∪A) is α-finite. If α equals ω then there is a maximal set.

Theorem 6. (Lerman) If there is a maximal α-RE set then α is countable.

Thus the cardinality of α is relevant for α-recursion theory. A second negative
result reveals the importance of cofinality. For simplicity, assume that V = L.
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Theorem 7. (SDF) If α is ℵω1 then α-degrees above 0′ are well-ordered, with
successor given by the α-jump.

This is certainly a picture which differs radically from the classical case! Thus al-
though recursion theory can be interestingly generalised to many ordinals α greater
than ω, some similarity with ω (i.e., regularity) is required for a reasonable the-
ory. Many open questions remain, such as whether there is a minimal α-degree or
whether there is a minimal pair of α-RE degrees for each admissible α.

A survey of infinite time Turing machines

Joel David Hamkins1

City University of New York
Sunday, 10:10 – 11:10

Infinite time Turing machines extend the operation of ordinary Turing machines
into transfinite ordinal time, thereby providing a natural model of infinitary com-
putability, with robust notions of computability and decidability on the reals, while
remaining close to classical concepts of computability. Here, I survey the theory of
infinite time Turing machines and recent developments. These include the rise of
infinite time complexity theory, the introduction of infinite time computable model
theory and the study of the infinite time analogue of Borel equivalence relation the-
ory, via infinite time computable equivalence relations and reductions. The study
of infinite time Turing machines increasingly relies on the interaction of methods
from set theory, descriptive set theory and computability theory.
Infinite time Turing machines were first considered by Hamkins and Kidder in 1989,
with the principal introductory article provided by Hamkins and Lewis [HL00]. The
theory has now been extended by many others, including Philip Welch, Benedikt
Löwe, Daniel Seabold, Ralf Schindler, Vinay Deolalikar, Russell Miller, Steve Warner,
Giacomo Lenzi, Erich Monteleone, Peter Koepke and others. Numerous precursors
to the theory include Blum-Shub-Smale machines (1980s), Büchi machines (1960s)
and accompanying developments, Barry Burd’s model of Turing machines with
“blurs” at limits (1970s) and the extensive development of α-recursion and E-
recursion theory, a part of higher recursion theory, studied since the 1970s. More
recent are Jack Copeland’s accelerated Turing machines (1990s), Ryan Bissell-
Siders’ ordinal machines (1990s), with further recent developments by Peter Koepke
(2000s), including ordinal tape infinite time Turing machines and ordinal register
machines. The expanding literature involving infinite time Turing machines in-
cludes [HL00], [Wel99], [Wel00a], [Wel00b], [L0̈1], [HS01], [HL02], [Sch03], [HW03],
[Ham02], [Ham04], [LM04], [DHS05], [HMSW07], [Ham05], [Wel], [Wel05], [Koe05]
and others.

1Joel David Hamkin’s research has been supported in part by grants from the Research Foun-
dation of CUNY and by grants from the Netherlands Organization for Scientific Research (NWO).

The author is also grateful to the University of Amsterdam ILLC for the support of a Visiting
Professorship during his 2007 sabbatical from CUNY
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0. A Brief Review of Infinite time Turing machines

Let us quickly review the basic operation of the machines and some key concepts.
An infinite time Turing machine has the same hardware as its classical finite time
counterpart, with a head moving on a semi-infinite paper tape, writing 0s and 1s
in accordance with the rigid instructions of a finite program having finitely many
states. For convenience, we have used a three tape model, with separate tapes for
input, scratch work and output. At successor stages of computation, the machine

input:

scratch:

output:

1

0

0

1

1

0

q

0

1

1

0

1

0

1

1

1

1

1

0

1

0

1

1

0

1

· · ·
· · ·
· · ·

operates in exactly the classical manner, according to the program instructions.
The new part of the computational behavior comes at limit ordinal stages. At
any limit stage ξ, the machine is placed into the special limit state, one of the
distinguished states alongside the start and halt states; the head is reset to the
left-most cell; and the tape is updated by placing in each cell the lim sup of the
values previously displayed in that cell. This completely specifies the configuration
of the machine at stage ξ, and the computation may continue to stage ξ + 1 and
so on. Output is given only when the machine explicitly attains the halt state, and
computation ceases when this occurs.
Since there is plenty of time for the machines to write out and inspect infinite binary
strings, the natural context for input and output to the machines is Cantor space
2ω, which I shall denote by R and refer to as the reals. The machines therefore
provide an infinitary notion of computability on the reals. Program p computes the
partial function ϕp

... R → R, defined by ϕp(x) = y if program p on input x yields
output y. A subset A ⊆ R is infinite time decidable if its characteristic function is
infinite time computable. The set A is infinite time semi-decidable if the constant
function 1 � A is computable. This is equivalent to A being the domain of an infinite
time computable function (but not necessarily equivalent to A being the range of
such a function). Initial results in [HL00] show that the arithmetic sets are exactly
those that are decidable in time uniformly less than ω2 and the hyperarithmetic
sets are those that are decidable in time less than some recursive ordinal. Every
Π1

1 set is decidable, and the class of decidable sets is contained in ∆1
2.

An easy cofinality argument establishes that every computation either halts or
repeats by some countable ordinal stage. An ordinal α is clockable if there is a
computation ϕp(0) halting on exactly the αth step. A real x is writable if it is the
output of a computation ϕp(0), and an ordinal is writable if it is coded by such
a real. There are of course only countably many clockable and writable ordinals,
because there are only countably many programs. Both the clockable and writable
ordinals extend through all the recursive ordinals and far beyond; their supremum
is recursively inaccessible and more. While the writable ordinals form an initial
segment of the ordinals, there are gaps in the clockable ordinals, intervals of non-
clockable ordinals below the supremum of the clockable ordinals. The gap structure
itself becomes quite complicated, with limits of gaps sometimes being gaps and so
on, and ultimately it exhibits the same complexity as the infinite time version
of the halting problem. Nevertheless, [Wel00b] established that the supremum of
the clockable and writable ordinals is the same. A real x is eventually writable if
there is a computation ϕp(0) for which x appears on the output tape from some
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point on (even if the computation does not halt), and x is accidentally writable
if it appears on any of the tapes at any stage during a computation ϕp(0). By
coding ordinals with reals, we obtain the notions of eventually and accidentally
writable ordinals. If λ is the supremum of the clockable or writable ordinals, ζ is
the supremum of the eventually writable ordinals and Σ is the supremum of the
accidentally writable ordinals, then [HL00] establishes λ < ζ < Σ. Welch [Wel00a]
showed that Lλ ≺Σ1 Lζ ≺Σ2 LΣ, and furthermore, these ordinals are characterized
as the least example of this pattern.
Many of the fundamental constructions of classical finite time computability theory
carry over to the infinite time context. For example, one can prove the infinite time
analogues of the smn-theorem, the Recursion theorem and the undecidability of the
infinite time halting problem, by essentially the classical arguments. Some other
classical facts, however, do not directly generalize. For example, it is not true in
the infinite time context that if the graph of a function f is semi-decidable, then
the function is computable. This is a consequence of the following:

Theorem 1 (Lost Melody Theorem). There is a real c such that {c} is infinite
time decidable, but c is not writable.

The real c is like the lost melody that you can recognize yes-or-no when someone
sings it to you, but which you cannot sing on your own; it is a real that exhibits
sufficient internal structure that {c} is decidable, but is too complicated itself to
be writable. If f(x) = c is the function with constant value c, then f is not
computable because c is not writable, but the graph is decidable, because we can
recognize whether a pair has the form (x, c).
The infinite time analogue of the halting problem breaks into lightface and boldface
versions, h = { p | ϕp(p) ↓ } and H = { (p, x) | ϕp(x) ↓ }, respectively. These are
both semi-decidable and not decidable, but in the infintary context, they are not
computably equivalent.
There are two natural sorts of oracles to be used in oracle computations. First,
one can use any real as an oracle in exactly the classical manner, by adjoining an
oracle tape on which the values of that real are written out. Second, one naturally
wants somehow to use a set of reals as oracle; but we cannot expect in general to
write such a set out on the tape (perhaps it is even uncountable). Instead, the
oracle tape is initially empty, and during the computation the machine may freely
write on this tape. Whenever the algorithm calls for it, the machine may make a
membership query about whether the real currently written on the oracle tape is a
member of the oracle or not. Thus, the machine is able to know of any real that it
can produce, whether the real is in the oracle set or not.
The result is a notion of relative computabiliy ϕA

p (x), a notion of reduction A <∞ B
and a notion of equivalence A ≡∞ B, with a rich theory of the infinite time Turing
degrees. For any set A, we have the lightface jump AO and the boldface jump AH,
corresponding to the two halting problems. One can show A <∞ AO <∞ AH, as well
as AOH ≡∞ AH and a great number of other interesting interactions. In [HL02], we
settled the infinite time analogue of Post’s problem, the question of whether there
are intermediate semi-decidable degrees between 0 and the jump 0O. The answer
cuts both ways:

Theorem 2. The infinite time analogue of Post’s problem has both affirmative and
negative solutions.

(1) There are no reals z with 0 <∞ z <∞ 0O.
(2) There are sets of reals A with 0 <∞ A <∞ 0O. Indeed, there are incompa-

rable semi-decidable sets of reals A ⊥∞ B.
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In other work, Welch [Wel99] found minimality in the infinite time Turing degrees.
Hamkins and Seabold [HS01] analyzed one-tape versus multi-tape infinite time
Turing machines, and Benedikt Löwe [L0̈1] observed the connection between infinite
time Turing machines and revision theories of truth.

1. Survey of recent developments

Let me now discuss some of the recent developments in the theory of infinite time
Turing machines, including the rise of infinite time complexity theory, the introduc-
tion of infinite time computable model theory and the beginnings of infinite time
computable equivalence relation theory.

1.1. Infinite time complexity theory. Ralf Schindler [Sch03] initiated the study
of infinite time complexity theory by solving the infinite time Turing machine ana-
logue of the P versus NP question. To define the polynomial class P in the infinite
time context, Schindler observed simply that all reals have length ω and the poly-
nomial functions of ω are bounded by those of the form ωn. Thus, he defined that
a set A ⊆ R is in P if there is a program p and a natural number n such that p
decides A and halts on all inputs in time before ωn. The set A is in NP if there
is a program p and a natural number n such that x ∈ A if and only if there is y
such that p accepts (x, y), and p halts on all inputs in time less than ωn. Schindler
proved P 6= NP for infinite time Turing machines in [Sch03], using methods from
descriptive set theory to analyze the complexity of the classes P and NP. This has
now been generalized in joint work [DHS05] to the following, where the class co-NP
consists of the complements of sets in NP.

Theorem 3. P 6= NP ∩ co-NP for infinite time Turing machines.

Some of the structural reasons behind P 6= NP∩ co-NP are revealed by placing the
classes P and NP within a larger hierarchy of complexity classes Pα and NPα using
computations of size bounded below α. We proved, for example, that the classes
NPα are identical for ω + 2 ≤ α ≤ ωCK

1 , but nevertheless, Pα+1 ( Pα+2 for any
clockable limit ordinal α. It follows, since the Pα are steadily increasing while the
classes NPα ∩ co-NPα remain the same, that Pα ( NPα ∩ co-NPα for any ordinal
α with ω + 2 ≤ α < ωCK

1 . Thus, P 6= NP ∩ co-NP. Nevertheless, we attain equality
at the supremum ωCK

1 with

PωCK
1

= NPωCK
1
∩ co-NPωCK

1
.

In fact, this is an instance of the equality ∆1
1 = Σ1

1 ∩Π1
1.

This same pattern of inequality Pα ( NPα ∩ co-NPα is mirrored higher in the
hierarchy, whenever α lies strictly within a contiguous block of clockable ordinals,
with the corresponding Pβ = NPβ ∩ co-NPβ for any β that begins a gap in the
clockable ordinals. In addition, the question is settled in [DHS05] for the other
complexity classes P+, P++ and Pf . Benedikt Löwe has introduced analogues of
PSPACE.

1.2. Infinite time computable model theory. Computable model theory is
model theory with a view to the computability of the structures and theories that
arise. Infinite time computable model theory carries out this program with the
notion of infinite time computability provided by infinite time Turing machines.
The classical theory began decades ago with such topics as computable complete-
ness (Does every decidable theory have a decidable model?) and computable cat-
egoricity (Does every isomorphic pair of computable models have a computable
isomorphism?), and the field has now matured into a sophisticated analysis of the
complexity spectrum of countable models and theories.



18

The motivation for a broader context is that, while classical computable model
theory is necessarily limited to countable models and theories, the infinitary com-
putability context allows for uncountable models and theories, built on the reals.
Many of the computational constructions in computable model theory generalize
from structures built on N, using finite time computability, to structures built on
R, using infinite time computability. The uncountable context opens up new ques-
tions, such as the infinitary computable Löwenheim-Skolem Theorem, which have
no finite time analogue. Several of the most natural questions turn out to be inde-
pendent of ZFC.
In joint work [HMSW07], we defined that a model A = 〈A, . . .〉 is infinite time
computable if A ⊆ R is decidable and all functions, relations and constants are
uniformly infinite time computable from their Gödel codes and input. The structure
A is decidable if one can compute whether A |= ϕ[~a] given pϕq and ~a. A theory T is
infinite time decidable if the relation T ` ϕ is computable in pϕq. Because we want
to treat uncountable languages, the natural context for Gödel codes is R rather
than N.
The initial question, of course, is the infinite time computable analogue of the
Completeness Theorem: Does every consistent decidable theory have a decidable
model? The answer turns out to be independent of ZFC.

Theorem 4 ([HMSW07]). The infinite time computable analogue of the Complete-
ness Theorem is independent of ZFC. Specifically:

(1) If V = L, then every consistent infinite time decidable theory has an infinite
time decidable model, in a computable translation of the language.

(2) It is relatively consistent with ZFC that there is an infinite time decid-
able theory, in a computably presented language, having no infinite time
computable or decidable model in any translation of the language.

The proof of (1) uses the concept of a well-presented language L, for which there
is an enumeration of the symbols 〈sα | α < δ〉 such that from any psαq one can
uniformly compute a code for the prior symbols 〈psβq | β ≤ α〉. One can show
that every consistent decidable theory in a well-presented language has a decid-
able model, and if V = L, then every computable language has a well presented
computable translation. For (2), one uses the theory T extending the atomic dia-
gram of 〈WO,≡〉 while asserting that f is a choice function on the ≡ classes. This
is a decidable theory, but for any computable model A = 〈A,≡, f〉 of T , the set
{ f(cu) | u ∈WO } is Σ1

2 and has cardinality ω1. It is known to be consistent with
ZFC that no Σ1

2 set has size ω1.
For the infinite time analogues of the Löwenheim-Skolem Theorem, we proved for
the upward version that every well presented infinite time decidable model has a
proper elementary extension with a decidable presentation, and for the downward
version, every well presented uncountable decidable model has a countable decid-
able elementary substructure. There are strong counterexamples to a full direct
generalization of the Löwenheim-Skolem theorem, however, because [HMSW07]
provides a computable structure 〈R, U〉 on the entire set of reals, which has no
proper computable elementary substructure.
Some of the most interesting work involves computable quotients. A structure has
an infinite time computable presentation if it is isomorphic to a computable struc-
ture, and has a computable quotient presentation if it is isomorphic to the quotient
of a computable structure by a computable equivalence relation (a congruence).
For structures on N, in either the finite or infinite time context, these notions are
equivalent, because one can computably find the least element of any equivalence
class. For structures on R, however, computing such distinguished elements of every
equivalence class is not always possible.
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Question 5. Does every structure with an infinite time computable quotient pre-
sentation have an infinite time computable presentation?

In the finite time theory, or for structures on N, the answer of course is Yes. But
in the full infinite time context for structures on R, the answer depends on the set
theoretic background.

Theorem 6. The answer to Question 5 is independent of ZFC. Specifically,
(1) It is relatively consistent with ZFC that every structure with an infinite

time computable quotient presentation has an infinite time computable pre-
sentation.

(2) It is relatively consistent with ZFC that there is a structure having an infi-
nite time computable quotient presentation, but no infinite time computable
presentation.

Let me briefly sketch some of the ideas appearing in the proof. In order to construct
an infinite time computable presentation of a structure, given a computable quotient
presentation, we’d like somehow to select a representative from each equivalence
class, in a computably effective manner, and build a structure on these represen-
tatives. Under the set theoretic assumption V = L, we can attach to the L-least
member of each equivalence class an escort real that is powerful enough to reveal
that it is the L-least member of its class, and build a computable presentation out
of these escorted pairs of reals. (In particular, the new presentation is not built out
of mere representatives from the original class, since these reals may be too weak;
they need the help of their escorts.) Thus, if V = L, then every structure with a
computable quotient presentation has a computable presentation. On the other side
of the independence, we prove statement 2 by the method of forcing. The structure
〈ω1, <〉 always has a computable quotient presentation built from reals coding well
orders, but there are forcing extensions in which no infinite time computable set
has size ω1, on descriptive set theoretic grounds. In these extensions, therefore,
〈ω1, <〉 has a computable quotient presentation, but no computable presentation.

1.3. Infinite time computable equivalence relation theory. Recently, Sam
Coskey and I have introduced the infinite time analogue of Borel equivalence re-
lation theory and reductions. The idea of the classical Borel theory is to provide
a structural analysis of the relative complexity of canonical equivalence relations
on the reals (or more generally, Polish spaces) by comparing them under many-
one Borel reducibility. Since Borel functions are all infinite time computable from
their real parameters, it is a slight generalization of this theory to consider infi-
nite time computable reductions. Thus, for any two equivalence relations E and
F on R, we say that E computably reduces to F , written E ≤c F , if there is
an infinite time computable function f (freely allowing real parameters) such that
x E y ←→ f(x) F f(y). A slightly more generous notion of reduction is E ≤sc F if
there is a semi-computable function f ... R → R, that is, a function whose graph is
infinite time decidable (in a real parameter), such that x E y ←→ f(x) F f(y). An
intriguing threshold phenomenon suggests that the distinction between computable
reductions and semi-computable reductions is near a critical boundary.
To explain, let me first mention that there are an enormous number of natural
equivalence relations on the reals to which this reduction theory applies, including
all the Borel relations that have been studied in the classical theory. All the positive
Borel reductions, of course, carry over to the infinite time context because all Borel
functions are infinite time computable from their real parameters. Furthermore,
many of the classical non-reductions in the Borel theory actually establish the lack
of an infinite time computable reduction, because they often establish the lack of a
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measurable reduction, and all infinite time computable functions are measurable.
In this way, the infinite time computable reduction theory is tightly interwoven into
the classical Borel theory. Sample theorems include:

Theorem 7.

(1) E0 and ≡SET do not computably reduce to =.
(2) ≡WO and ≡SET computably reduce to ≡HC .
(3) ≡HC and ≡SET do not computably reduce to ≡WO.
(4) ≡ck and ≡WO are computably bi-reducible.

Interestingly, we know that it is consistent that the semi-computable reduction
theory completely collapses.

Theorem 8. If V = L, then every infinite time computable equivalence relation E
on R semi-computably reduces to the equality relation.

In this sense, under V = L every computable relation is semi-computably smooth.
The proof uses the ideas of Theorem 6, and as in that argument, the reduction
functions are not selectors for the relation.
One should not construe this theorem to suggest that the semi-computable reduc-
tion relation is trivial, however, since under other set theoretic hypotheses inconsis-
tent with V = L, such as a mild determinacy assumption, every semi-computable
function is measurable. In this case the semi-computable degrees are definitely not
collapsed in this way.
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Barry S. Cooper and Benedikt Löwe, editors, New Computational Paradigms, volume

3526 of LNCS, Amsterdam, June 8-12 2005. CiE, Springer-Verlag.

[HL00] Joel David Hamkins and Andy Lewis. Infinite time Turing machines. J. Symbolic
Logic, 65(2):567–604, 2000.

[HL02] Joel David Hamkins and Andy Lewis. Post’s problem for supertasks has both positive

and negative solutions. Archive for Mathematical Logic, 41(6):507–523, 2002.
[HMSW07] J. D. Hamkins, R. Miller, D. Seabold, and S. Warner. Infinite time computable model

theory. In S.B. Cooper, Benedikt Lfwe, and Andrea Sorbi, editors, New Computational

Paradigms: Changing Conceptions of What is Computable. Springer, 2007.
[HS01] Joel David Hamkins and Daniel Seabold. Infinite time Turing machines with only one

tape. Mathematical Logic Quarterly, 47(2):271–287, 2001.
[HW03] Joel David Hamkins and Philip Welch. P f 6= NP f for almost all f . Mathematical

Logic Quarterly, 49(5):536–540, 2003.

[Koe05] Peter Koepke. Turing computations on ordinals. Bulletin of Symbolic Logic,
11(3):377–397, September 2005.
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Ordinalize!
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0. Introduction

Cantor’s ordinals extend the standard natural numbers N into the transfinite:
0, 1, 2, 3, . . . , n, n+ 1, . . .
is continued by
ω, ω + 1, . . . , ω + n, . . . , ω + ω = ω · 2, ω + ω + 1 = ω · 2 + 1, . . .
ω · ω = ω2, . . . , ω3, . . . , ωω, . . . , ωω2

, . . . , . . .

ωωωω
...

, . . . , α, α+ 1, . . . . . .
ℵ1,ℵ1 + 1, . . . ,ℵ2, . . . ,ℵ3, . . . ,ℵω, . . . . . . . . .
Whereas natural numbers are either 0 or successors, by the axiom of infinity there
are limit ordinals like ω, ω + ω, . . . , ω · ω, . . .. The induction and recursion laws for
ordinals extend the corresponding laws for natural numbers by limit laws, where
the letter λ is used to denote limit ordinals.

A(0)
A(n)→ A(n+ 1)
∀nA(n)

is extended to

A(0)
A(α)→ A(α+ 1)
∀α < λA(α)→ A(λ)
∀αA(α)

The recursion law

F (0) = a0

F (n+ 1) = G(F (n), n) is extended to
F (0) = a0

F (α+ 1) = G(F (α), α)
F (λ) = G(F � α)

One can now go through various mathematical theories based on natural numbers
and try to extend them to ordinals (Ordinalize! ). This contribution to BIWOC
indicates how computability on the natural numbers may be ordinalized.

1. Ordinal recursive functions

Arithmetic becomes ordinal arithmetic with the operations

α+ 0 = α
α+ (β + 1) = (α+ β) + 1
α+ λ =

⋃
β<λ

(α+ β)
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and
α · 0 = 0
α · (β + 1) = (α · β) + α

α · λ =
⋃

β<λ

(α · β)

Problem 1. What can be defined in the structure (Ord, <,+, ·, . . . , 0, 1)?

Ordinal arithmetic suggests the following family of ordinal functions:

Definition 2. The ordinal recursive functions form the smallest collection R of
functions F : Ordi → Ord such that

− the constant functions are in R
− the projection functions are in R
− the successor function α 7→ α+ 1 is in R
− the indicator function I< : Ord2 → {0, 1}, I(α, β) = 1 iff α < β
− R is closed under functional composition
− R is closed under the following recursion schema, defining
F from G0, Gsucc, Glim:

F (0, ~p) = G0(~p)
F (α+ 1, ~p) = Gsucc(F (α), α, ~p)
F (λ, ~p) =

⋃
α<λGlim(F (α), α, λ)

Example 3. The following functions are ordinal recursive:
− ordinal arithmetic
− propositional logic (true∼ 1, false∼ 0):

(A ∧B)(~x) = A(~x) ·B(~x),¬A(~x) = I<(A(~x), 1)

− bounded quantification:

∃ν < αA(ν, ~x) =
⋃

ν<α

A(ν, ~x)

− max(α, β) = α · I<(β, α) + β · ¬I<(β, α)
− the indicator function for equality I=(α, β) = (¬I<(α, β)) ∧ (¬I<(β, α))
− if F : Ord → Ord is ordinal recursive and strictly monotone and other

conditions hold then F−1 is ordinal recursive.
− the sum S(α) (“= 2 + 4 + . . .+ ν · 2 + . . . for ν < α”) of even ordinals by

the recursion

S(0) = 0, S(α+ 1) = S(α) + α · 2, S(λ) =
⋃

α<λ

S(α)

− define the Gödel pairing 〈., .〉 : Ord2 ↔ Ord by

〈α, β〉 = S(max(α, β)) + I<(α, β) · α+ ¬I<(α, β) · (α+ β)

− the projections 〈α, β〉 7→ α and 〈α, β〉 7→ β are ordinal recursive
− via Gödel pairing and unpairing, ordinals may be seen as finite sequences

of ordinals, or as sequences of symbols

2. An ordinal language

Let the language LT be appropriate for first-order structures of the type

(α,<,G,R)

where the Gödel pairing function G is viewed as a ternary relation on α and R is
a unary relation on α. So the language consists of

− terms vn and constants cξ for ξ ∈ Ord; cξ will be interpreted as ξ;
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− atomic formulas t1 ≡ t2, t1 < t2, Ġ(t1, t2, t3) and Ṙ(t1);
− formulas ¬ϕ, (ϕ ∨ ψ), ∃vn < tϕ.

Note that all formulas of LT are bounded. We assume an ordinal computable
Gödelization such that for ζ < ξ:

ϕ
cζ
vn

< (∃vn < cξϕ).

Define the satisfaction relation (Ord, <,G,R) |= ϕ for sentences ϕ as usual. Since
ϕ is bounded,

(Ord, <,G,R) |= ϕ iff (ϕ,<,G,R) |= ϕ.

Definition 4. Define the bounded truth predicate T ⊆ Ord by

T (α) iff α is a bounded LT -sentence and (α,<,G, T ∩ α) � α.

In short
T (α) iff (α, T ∩ α) � α.

Theorem 5. The truth predicate T is ordinal recursive.

Proof. The characteristic function χT can be defined by

χT (α) =
{

1 iff ∃ν < αH(α, ν, χT (ν)) = 1
0 else

with

H(α, ν, χ) = 1 iff α is an LT -sentence and
∃ξ, ζ < α(α = cξ ≡ cζ ∧ ξ = ζ)

or ∃ξ, ζ < α(α = cξ < cζ ∧ ξ < ζ)

or ∃ξ, ζ, η < α(α = Ġ(cξ, cζ , cη) ∧ η = G(ξ, ζ))

or ∃ξ < α(α = Ṙ(cξ) ∧ ν = ξ ∧ χ = 1)
or ∃ϕ < α(α = ¬ϕ ∧ ν = ϕ ∧ χ = 0)
or ∃ϕ,ψ < α(α = (ϕ ∨ ψ) ∧ (ν = ϕ ∨ ν = ψ) ∧ χ = 1)

or ∃n < ω∃ξ < α∃ϕ < α(α = ∃vn < cξϕ ∧ ∃ζ < ξν = ϕ
cζ
vn
∧ χ = 1).

χT (α) =
{

1 iff ∃ν < αH(α, ν, χT (ν)) = 1
0 else

is equivalent to
χT (α) =

⋃
ν<α

H(α, ν, χT (ν))

and thus χT is ordinal recursive. �

3. Constructibility

Definition 6. The constructible model L was defined by Gödel:

L0 = ∅
Lα+1 = Def(Lα) = the set of first-order definable subsets of (Lα,∈)

Lλ =
⋃

α<λ

Lα

L =
⋃

α∈Ord

Lα

L is the ⊆-minimal inner model of the Zermelo-Fraenkel axioms ZFC. The
bounded truth predicate T is just as strong as the constructible model:
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Theorem 7. For ordinals µ and α define “sections” of the truth predicate by

X(µ, α) = {β < µ|T (G(α, β))}.

Set S = {X(µ, α)|µ, α ∈ Ord}. Then S = {x ⊆ Ord |x ∈ L}.

Proof. (Sketch for ⊇) Show that (Ord,S, <,=,∈, G) satisfies a natural theory of
sets of ordinals; mathematics can be done in (Ord,S, <,=,∈, G); define a version
of Gödel’s L inside (Ord,S, <,=,∈, G); thus every constructible set of ordinals is
an element of S. �

Thus ordinal recursive functions lead to an ordinal recursion theory where ordinal
recursive sets are the constructible sets.

Problem 8. Is there a reasonable recursion theory for the ordinal recursive classes
with respect to ordinal recursive reducibility? Is that reducibility equivalent to ∆1

1

reducibility over L?

4. Ordinal programming languages

The essential recursion

χT (α) =
{

1 iff ∃ν < αH(α, ν, χT (ν)) = 1
0 else

can be described in a recursive pseudo language like
define T(alpha) by

input alpha
let nu=0
while nu<alpha

if H(alpha,nu,T(nu))=1 return 1
nu=nu+1

return 0

Problem 9. Can one generalize other programming languages or language con-
structs to the ordinals?

5. Ordinal machines

5.1. Ordinal stack machines. Recursive programs on ordinals as above can be
interpreted on machines with finite descending ordinal stacks

α0(t) > α1(t) > . . . > αl(t)−1(t).

The machines works in ordinal time t with the following behaviour at limit ordinals
λ:

− if (α0(t), . . . , αl−1(t)) is eventually konstant before time λ then set

(α0(λ), . . . , αl−1(λ)) = (α0(t), . . . , αl−1(t))

for sufficiently high t < λ. Also let l be maximal with that property.
− if lim inft→λ αl(t) is defined, set l(λ) = l + 1 and αl(λ) = lim inft→λ αl(t)
− if lim inft→λ αl(t) is undefined, set l(λ) = l

5.2. Ordinal Turing machines.
− use standard Turing programs
− employ lim inf-rules as limit rules for tape contents and state
− The truth predicate T can be calculated by an ordinal Turing machine,

writing T successively on one of the tapes.
− Thus: a set of ordinals is ordinal Turing computable iff it is constructible.
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5.3. Ordinal register machines.
− use standard register programs, i.e., goto programs
− employ lim inf-rules for register contents and state
− An ordinal stack can be simulated by an ordinal register machine.
− Thus: a set of ordinals is ordinal register computable iff it is constructible.

5.4. Nondeterministic computations. A class C of sets of ordinals is nonde-
terministically ordinal computable if there is an ordinal Turing machine M with
ordinal parameters such that for x ⊆ Ord

x ∈ C iff ∃yM accepts (x, y)

Problem 10. What is the class

N = {x ⊆ Ord |{x} is non-deterministically ordinal computable}?

6. An application: fine structure for the constructible model

Apart from leading to satisfying models of infinitary computation, ordinal com-
putability also starts to have applications in other fields. We indicate how the
Jensen fine structure of the constructible hierarchy may be reconstructed within
ordinal computability. We base our approach on Silver machines.

Definition 11. Consider M = (Ord, <,M), M : Ord<ω ⇀ Ord. For α ∈ Ord let

Mα = (α,<,M ∩ α<ω);

for a set X ⊆ α let Mα[X] be the substructure of Mα generated by X. M is a
Silver machine iff it satisfies

− Condensation: for α ∈ Ord and X ⊆ α there is a unique β such that
Mβ ∼= Mα[X];

− Finiteness property: for α ∈ Ord there is a finite set z ⊆ α such that for
all X ⊆ α+ 1

Mα+1[X] ⊆Mα[(X ∩ α) ∪ z] ∪ {α};
− Collapsing property: if the limit ordinal β is singular in L then there is
α < β and a finite set p ⊆ Ord such that M [α ∪ p] ∩ β is cofinal in β.

Jack Silver defined Silver machines within the constructible model L and used
them to give simple proofs of the combinatorial principles 2 and Morass. We can
naturally define a Silver machine from the bounded truth predicate T .

Definition 12. Consider the structure (Ord, <, T ). Define a Skolem function by

h(α) =
{
β, if α = ∃vn < cξϕ and β is minimal s. th. (α,<,G, T ) |= ϕ

cβ

vn

0, else

Let G1, G2 be the inverses of the Gödel pairing function. Code h,G1, G2 into a
machine function M by

M(0, α) = h(α),M(1, α) = G1(α),M(2, α) = G2(α).

Theorem 13. M = (Ord, <,M) as defined in the previous definition is a Silver
machine.

Proof. (Sketch)
Condensation: For α ∈ Ord and X ⊆ α there is a unique β such that Mβ ∼= Mα[X].
Proof by induction on α: Let Y = Mα+1[X]. By inductive assumption: π : Y ∩α ∼=
Mβ . If α 6∈ Y , then Y = Y ∩ α ∼= Mβ . If α ∈ Y , then Y ∼= Mβ+1; for this one
mainly has to show that

π(h(α)) = h(β).
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Finiteness: Observe that Mα+1[X] ⊆ Mα[(X ∩ α) ∪ {h(α), G1(α), G2(α)}] ∪ {α}
and so z = {h(α), G1(α), G2(α)} may be taken as the desired finite set.
Collapsing : If the limit ordinal β is singular in L then there is α < β and a finite
set p ⊆ Ord such that M [α ∪ p] ∩ β is cofinal in β.
This holds because every constructible set of ordinals including a singularizing
cofinal set for β can be decoded from T with the help of h. �

Problem 14. Can one construe fine structural constructions like the definition of
2-sequences as computations of ordinal machines?

The Complexity of Quickly ORM-Decidable Sets
David Linetsky

City University of New York Graduate Center
Tuesday, 12:00 – 12:30

The speaker will discuss some recent results, proved in collaboration with Joel
Hamkins and Russell Miller, addressing the time required by Ordinal Register Ma-
chines (ORM’s) to decide sets of natural numbers. The main theorem to be pre-
sented states that the sets of natural numbers that can be decided by an ORM in
time uniformly less than ωω are exactly the arithmetic sets.

Theorem 1. The subsets of ω that are ORM-decidable (with ordinal parameters!)
in time uniformly less than ωω are exactly the arithmetic sets.

We contrast this with the analogous result, due to Hamkins and Lewis ([2]) con-
cerning Infinite Time Turing Machines (ITTM’s), which states that the truth of
any arithmetic statement is ITTM-decidable in time less than ω2. This result high-
lights an interesting difference between ORM’s and Infinite Time Turing Machines
(ITTM’s), namely, that ITTM’s can decide any arithmetic set in time less than
ω2, while ORM’s require times arbitrarily large below ωω. This is due to the fact
that ITTM’s are able to make use of infinite tapes on which they can write out an
entire truth predicate for sentences of lower complexity that can in turn be used
to quickly decide sentences of higher complexity. ORM’s, on the other hand, are
unable to take advantage of this strategy as their memory is limited to a finite
number of ordinals.
A refinement of the main theorem will also be presented which gives a level-by-level
characterization of the arithmetic sets. In particular, it will be shown that:

Theorem 2. A ⊆ ω is ORM-decidable in time less than ωn+1 iff A ∈ ∆0
3n+1.

This is accomplished by representing ordinals below ωω · 2 as finite sequences of
natural numbers (viz. the coefficients found in their Cantor normal form) and
analyzing the complexity of the relation Rn(C, C′, P ), which holds iff the ORM
configuration coded by C ∈ ω leads to the configuration coded by C′ ∈ ω, under
the operation of program P , in exactly ωn steps. The coding of ordinals as finite
sequences of natural numbers allows these relations to be expressed using only
quantifiers ranging over natural numbers. Indeed, this is expressed precisely in the
following lemma.

Lemma 3. Given C, C′, P, n ∈ ω and relation Rn as above, the sentence Rn(C, C′, P )
is Π0

3n.
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Furthermore, it will be shown that all of the above results concerning ORM’s hold
even when allowing arbitrary ordinal parameters. This is accomplished by by the
following lemma, which shows that in ORM computations which halt in time less
than ωωand output a result less than ωω, any parameters greater than ωωcan be
replaced with ωωitself without in anyway affecting the computation.

Lemma 4. For any ORM program P , any finite sequence ~β = β0, β1, . . . , βn ∈ ωω,
and any β > ωω, if P (~β, β) ↓< ωω in time γ < ωω, then P (~β, ωω) ↓= P (~β, β) in
time γ.

Moreover, we show that the uniformity in time found in the main theorem is in fact
necessary, i.e., that there are non-arithmetic sets that are ORM-decidable in time
less that ωω, but not uniformly so. In particular:

Theorem 5. The set ∅(ω) is ORM-decidable in time less than ωω, but not uniformly
so.

Finally we end with conjecture about what can expected beyond ωω.

Conjecture/Theorem 6. The sets that are ORM-decidable in time less that ωCK
1

are exactly the hyperarithmetic sets.
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Post’s Problem for Ordinal Register Machines
Russell Miller2

(joint work with Joel D. Hamkins)
City University of New York

Thursday, 11:00 – 12:00

The original version of Post’s Problem applied to finite-time Turing machines. It
asked whether there exists a computably enumerable set A which is neither com-
putable nor complete. That is, it required ∅ <T A <T ∅′, where ∅′ is the jump of
the empty set, or equivalently the Halting Problem for finite-time Turing machines.
Post’s Program for solving this problem was to discover a nonvacuous property of
c.e. sets, expressible using only the containment relation ⊆, which would guarantee
that A was incomplete and noncomputable.
Post’s Program led to a substantial amount of useful research, which yielded the
notions of simple, hypersimple, and hyperhypersimple sets, all of which were prop-
erties which Post originally hoped would fulfill his program. In fact, none of these
properties implies incompleteness, and Post did not live to see the solution of the
problem that bears his name. Post’s Program was completed by Harrington and
Soare [3] in 1991, but his Problem was solved much earlier, in 1956 and 1957, with
the invention of the finite injury priority method (independently) by Friedberg [1]
and Muchnik [4]. A good description of this method appears in section VII.2 of [5].

2The research of Russell Miller and Joel D. Hamkins has been supported in part by grants
from the Research Foundation of CUNY.
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In this talk we will ask the analogous question for sets of ordinals under computation
by ordinal register machines, or ORM’s. Of course, some of the concepts must be
adapted to the new setting. For instance, while ORM programs are finite and thus
can still be coded by natural numbers, the inputs to these machines are arbitrary
ordinals. So, as in the case of infinite-time Turing machines (which were studied
by Hamkins and Lewis; see [2]), we have both a jump:

∅O = {p : φp(0) ↓} ⊂ ω

in which we diagonalize to build a noncomputable set; and also a halting problem:

∅H = {〈p, α〉 : φp(α) ↓} ⊂ ω ×ON

asking the general question of whether a given program halts on a given input.
Clearly ∅O is computable from ∅H, and in finite-time computability the jump ∅′
and the halting problem are computably isomorphic, but in this context they are
very much distinct.
We consider semidecidable sets, or equivalently, ORM-enumerable sets: sets of
ordinals which form the domain (equivalently, the range) of the function computed
by some ordinal register machine. (In general, neither the function computed by
an ORM, nor the class of ordinals on which it halts, nor the class of ordinals which
it outputs need be a set, of course.)
Our version of Post’s Problem then asks whether there exist noncomputable incom-
plete semidecidable sets of ordinals (where incomplete means that these sets should
not be able to compute ∅O). As was the case in [2] for infinite-time Turing machines,
these specifications allow both a positive and a negative solution. If we consider
only subsets of ω, then there is no noncomputable incomplete semidecidable set.
However, if we consider sets of ordinals (which we may interpret to include subsets
of ω ×ON), then there is such a set.

Theorem 1. There exist incomparable semidecidable sets A and B of ordinals. It
follows that ∅ <ORM A <ORM ∅O(<ORM ∅H), and similarly for B. However, no
semidecidable subset C ⊆ ω satisfies ∅ <ORM C <ORM ∅O.

The proof of the negative solution, for subsets of ω, runs along the same lines as
that in [2]. The proof of the positive solution is more involved, and also dissimilar
from the corresponding proof for infinite-time Turing machines by Hamkins and
Lewis. Therefore, the bulk of the talk will be devoted to this proof.
For the positive solution, we use the Friedberg-Muchnik approach, fixing a witness
element x for each e such that x ∈ B iff φA

e (x) halts and equals 0, thereby guar-
anteeing that φA

e does not compute B. Doing so for all e (and also with A and
B interchanged) will make A and B Turing-incomparable, yet semidecidable, since
our procedure will be computable by an ORM and will only add elements to A and
B, without ever removing them. A standard finite-injury priority construction is
used to make sure that once φA

e (x) has converged to 0, we do not make any changes
to the portion of A used by this oracle computation, so that the disagreement be-
tween φA

e and B is preserved thereafter, unless a higher-priority requirement acts
to change it.
The difficulty is that, with only finitely many ordinal registers, it is not clear how
we should remember the values of the witness elements for all the different require-
ments, or keep track of which have entered A or B already, or which requirements
have been satisfied or injured at various stages of the computation. Our approach
is that, whenever we need to know the answers to such a question (of the specific
form: “did the ordinal x enter A, or B, at stage σ + 1?”), we go back and simu-
late the entire computation up to that stage, and thus determine the answer. Of
course, in the computation up to that stage, we had often asked similar questions
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about earlier stages. Therefore, our process for answering such a question is in the
form of a routine that is allowed to call itself. For this purpose, stack machines,
a special form of ORM developed by Koepke and Siders, will be essential. In a
stack machine, a register can hold not just a single ordinal, but a decreasing (hence
finite) sequence of ordinals, always allowing us to pop the smallest ordinal off the
top of the stack, or to push a new smaller ordinal onto the stack. Since our routine
always asks about smaller and smaller stages of the computation, a stack machine
adapts precisely to our purposes. Our proof of the Friedberg-Muchnik result for
ORM’s therefore consists simply of a routine answering the question “did x enter
A at stage σ + 1?” for arbitrary x and σ, and a similar routine for B, which are
allowed to call themselves or each other, but always asking about smaller stages
than before. (This will require a secondary routine, to which the same analysis
applies, which checks whether x was chosen as a witness element at stage σ + 1.)
Now A is semidecidable, being the domain of the ORM-computable function which
asks this question about its input x for ever-increasing ordinals σ and halts whenever
it receives a positive answer. (All these results hold symmetrically for B as well,
of course.) This much would make A computable from ∅H. We will go further,
however, and answer Post’s Problem for ∅O as well. For this, the key is to ensure
that every ordinal x which ever acts as a witness element will be a writable ordinal,
i.e. x = φp(0) for some p. Hence, using a ∅O-oracle, we can compute whether x ∈ A
for arbitrary x, as follows. First we run the program for x stages and see whether
x is chosen as a witness element by stage x. If not, then it never will be so chosen,
so it never entered A. If so, then x must be writable, so we find a program which
writes it on input 0: just ask the oracle (for each p < ω) whether φp(0) halts, and
if so, check whether it outputs x. Then we find a program q which, on input 0,
runs program p to write x and then halts iff that x ever enters A. The ∅O-oracle
will tell us whether φq ever halts on input 0, and that answers the question.
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The P vs. NP problem for infinite time Turing machines
Ralf Schindler

Universität Münster
Tuesday, 9:30 – 10:30

Abstract. We state different versions of the P vs. NP–problem
for infinite time Turing–machines.

The running time of a classical Turing–machine T is a function f : N→ N such that
for all n ∈ N, for all inputs w of length ≤ n, T stops after at most f(n) steps. In
the case of infinite time Turing–machines, all typical inputs have the same length,
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namely ω. We may therefore construct the running time of such a machine as a
constant ordinal number. We arrive at:

Definition 1. Let A ⊂ ω2. We say that A is decidable in polynomial time, or
A ∈ P , if there are a Turing–machine T and some m < ω such that

(a) T decides A (i.e., x ∈ A iff T accepts x), and
(b) T halts on all inputs in fewer then ωm many steps.

Definition 2. Let A ⊂ ω2, and let α ≤ ω1 + 1. We say that A is in Pα if there is
a Turing–machine T and some β < α such that

(a) T decides A (i.e., x ∈ A iff T accepts x), and
(b) T halts on all inputs in fewer than β many steps.

Of course P = Pωω . Moreover, Pω1+1 is just the class of all A ⊂ ω2 which are
decided by some Turing–machine.

Lemma 3. Let A ⊂ ω2. Then A ∈ Pω2 if and only if A is an arithmetic set.

Lemma 4. Let A ⊂ ω2. Then A ∈ Pω+2 if and only if A is a lightface Gδ–set.

Lemma 5. Let A ⊂ ω2. Then A ∈ PωCK
1

if and only if A is a hyperarithmetic set.
If A ∈ Pω1 then A is a Borel–set.

Classically a problem A is in NP iff there is a Turing–machine T such that for all
w, w ∈ A iff there is some v such that T accepts w ⊕ v, and the running time of T
on an input of the form w ⊕ v is polynomial in the length of w.

Definition 6. Let A ⊂ ω2. We say that A is verifiable in polynomial time, or
A ∈ NP , if there is a Turing–machine T and some m < ω such that

(a) x ∈ A if and only if (∃yT accepts x⊕ y), and
(b) T halts on all inputs in fewer than ωm many steps.

Definition 7. Let A ⊂ ω2, and let α ≤ ω1 + 1. We say that A is in NPα, if there
are a Turing–machine T and some β < α such that

(a) x ∈ A if and only if (∃yT accepts x⊕ y), and
(b) T halts on all inputs in fewer than β many steps.

Again, NP = NPωω . NPα is the class of all projections of sets in Pα.
It is not hard to show the following.

Theorem 8. NPω+2 \ Pω1 6= ∅. In particular, P 6= NP .

A second version of the P vs. NP–problem counts an input w as having length ωw
1 .

(This had been a suggestion of Philip Welch.)

Definition 9. Let A ⊂ ω2. We say that A ∈ P+ if there is a Turing–machine T
such that

(a) x ∈ A if and only if T accepts x, and
(b) T halts on all inputs x in fewer than ωx

1 many steps.

Definition 10. Let A ⊂ ω2. We say that A ∈ NP+ if there is a Turing–machine
T such that

(a) x ∈ A if and only if (∃yT accepts x⊕ y), and
(b) T halts on all inputs x⊕ y in fewer than ωx

1 many steps.

Again we’ll have that P 6= NP .

Theorem 11. P+ = PωCK
1

= ∆1
1.

Corollary 12. NP+ \ P+ 6= ∅.
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The results so far appeared in [2]. There is yet another interesting version.

Definition 13. Let A ⊂ ω2. We say that A ∈ P++ if there is a Turing–machine
T such that

(a) x ∈ A if and only if T accepts x, and
(b) T halts on all inputs x in fewer than ωx

1 + ω + 1 many steps.

Theorem 14. (Hamkins, Welch) P++ 6= NP++.

The paper [1] studies the pointclass NP ∩ co − NP and its relation to P and to
NP .
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An Introduction to Infinite time computable model theory
Daniel Seabold and Steve Warner
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and 11:45 – 12:30 part II

0. Introduction

We report on joint work with Joel Hamkins and Russell Miller [HMSW07]. Infi-
nite time Turing machines provide a natural context for studying the computability
of functions that have real numbers as inputs and outputs. By carrying out the
program of computable model theory using these machines, we are therefore able
to consider uncountable structures and theories built from reals. Moving com-
putability theory from the finite-time to the infinite-time context vastly increases
the computation power but complicates the domain of discourse. Our results there-
fore include both strengthenings of the classical (finite-time) theory and striking
departures from it. Several natural statements are independent of ZFC.
Our first concern is to ensure that the machine can recognize and parse any code
for a formula in the language. We therefore restrict our attention to computably
presented languages: each function, relation, and constant symbol s must be as-
signed a real code psq in such a way that the set of codes is decidable and we can
uniformly determine from any code psq what sort of symbol s is and what its arity
is. All other symbols, including variable symbols, are coded by integers. A model
A = (A, . . .) in a computably presented language is computable if the underlying
set A ⊆ R is decidable and each function, relation, and constant is uniformly com-
putable from its input and the code for its symbol. If a model is computable then its
atomic diagram is decidable. The model is decidable if its full elementary diagram
is decidable. A structure is computably presentable if it isomorphic to a computable
model. Both the structure (ωL

1 , <) and the real line with its standard operations
are computable presentable.
Before considering the theory in detail indeed we pause to present a few key ideas
which drive many of the results.
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(1) The full power of the machines is on display when the elements of the struc-
ture and language are coded in a “searchable” set such as N. For example,
a computable model whose underlying set is N is also decidable since an
infinite time Turing machine can inductively carry out the Tarskian defini-
tion of truth by searching for witnesses to existential statements. Similarly,
a theory coded in N with a decidable set of axioms will itself be decidable.

(2) Even when the structure or language is not coded in a searchable set, pos-
itive results may be obtained for the constructible universe by relying on a
decidable set of unique codes for elements of Lω1 . We use these L-codes,
which generalize the “lost melody reals” of [HL00], to nicely enumerate
languages when proving the computable completeness theorem in L.

(3) Several negative results follow from the existence of a function on R with
a decidable graph that is not computable. It implies, for example, that a
decidable model need not be computable.

(4) Other negative results—such as the consistent failure of the computable
completeness theorem—rely on the fact from descriptive set theory that no
decidable set can have cardinality strictly between ωL

1 and the continuum.
(5) When we say a model is decidable, we mean that a question about the model

can be answered given codes for the formula and parameters. Through these
codes, we can effectively smuggle in oracles to consult during the decision
process. Decidability questions are thus highly sensitive to the presentation
of the model and its language.

1. Examples from L-codes

The construction of unique codes for elements of Lω1 generalizes a technique devel-
oped by Hamkins and Lewis to prove the so-called Lost Melody Theorem. Suppose
that a is an element of Lω1 . Let β be least such that a ∈ Lβ and β is countable
in Lβ+1. It follows that Lβ is countable in Lβ+1, so there is some L-least real c
coding a relation E such that 〈N,E〉 ∼= 〈Lβ ,∈〉. The set a is represented by some
natural number n with respect to E. The L-code of a is the pair 〈n, c〉. It follows
that the set of L-codes is decidable. We can also computably decide the relation
∈∗ induced on the codes by ∈. As an immediate application, we obtain computable
presentations for the structures 〈ωL

1 ,∈〉 and 〈Lω1L ,∈〉 by identifying each element
of the structure with its L-code.
Recall that a real is writable if it is the output of an infinite time Turing machine
on input zero. Hamkins and Lewis prove that if c is the L-code of an ordinal that
exceeds the lengths of all computations on zero input, then c is not writable but {c}
is decidable.3 The existence of such a real produces several basic counterexamples
for infinite time computability theory.

• The constant function f(x) = c has a decidable graph but is not com-
putable.
• The structures 〈R, c〉 and 〈R, f〉 are decidable models which are not com-

putable.
• The function with domain {c} mapping c to 0 is computable but its inverse

is not.

2. Computable Quotient Presentations

Although a particular decidable presentation of a model need not be computable,
we may still ask whether every decidable model has some computable presentation.

3Such a real is called a “lost melody real”, since it is like a melody which you cannot hum
yourself, but which you can recognize when hummed by someone else.



33

This is true if we relax our notion of a presentation to include quotients. Suppose
that A is an infinite time decidable structure. Augment the language by adding
a constant symbol for every element of A, and let A∗ be the structure whose
underlying set is the terms of this expanded language, with all function and relation
symbols having their obvious interpretations. The functions are computable and
the relations are decidable. Define t1 ≡ t2 if A |= t1 = t2. This equivalence relation
is computable because A is decidable. Since A∗/≡ is isomorphic to A, we have
constructed an infinite time computable quotient presentation for A.

Theorem 1. Every decidable model has a computable quotient presentation.

We are thus naturally led to ask:

Question 2. Does every structure with an infinite time computable quotient pre-
sentation have an infinite time computable presentation?

As a test case we consider the structure 〈ω1, <〉. Although this structure has a com-
putable quotient presentation, namely 〈wo, <,≡〉, the existence of a computable
presentation hinges on set-theoretic assumptions. If ω1 = ωL

1 , then the structure
can be computably presented using L-codes. If ω1 > ωL

1 and CH fails, then there
are no decidable sets of size ω1, and hence no computable presentation for this
structure exists. The latter result is a consequence of the Mansfield-Solovay Theo-
rem, which states that every Σ1

2 set of reals not contained in L contains a perfect
subset. Since every decidable set of reals is Σ1

2, each such set has size at most ωL
1

or else size continuum. Thus if ω1 > ωL
1 and CH fails, there are no decidable sets

of cardinality ω1.
This independence result can be generalized.

Theorem 3. The statement “every structure with a computable quotient presenta-
tion has a computable presentation” is independent of ZFC.

The consistent failure of the statement has been given. We prove the consistency
of the statement by proving it in L. Given a computable quotient structure A =
〈A, . . . ,≡〉, the idea is to build a model by taking the L-least representative of each
equivalence class. To recognize that a given real x is the L-least representative of its
equivalence class, we attach to each such x an escort y coding an ordinal sufficiently
large to allow us to computably verify that x is the L-least representative of its class.
We then build the computable presentation from these escorted pairs 〈x, y〉.
Specifically, let B be the set of pairs 〈x, y〉 such that y is an L-code for the least
ordinal α such that x is an element of Lα, and Lα satisfies:

• that x ∈ A,
• that x is the L-least real that is equivalent to x, and
• that “ω1 exists”.

The key point is that since Lα has all Turing programs and thinks “ω1 exists”,
all the computations using reals in Lα either halt or repeat before stage α. So
Lα has access to the full, correct computations from reals in Lα. The set B is
decidable: given a pair 〈x, y〉 we can compute from y a code for Lα, so questions of
satisfaction in this structure will be decidable, and all facts which must be checked
can be expressed in Lα using, when necessary, the programs that compute A and
≡.
Finally, we put a structure on B. For a relation symbol R, let

RB(〈x0, y0〉, . . . , 〈xn, yn〉)
hold if and only if RA(x0, . . . , xn). For a function f , define

fB(〈x0, y0〉, . . . , 〈xn, yn〉) = 〈x, y〉,
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where x is the L-least member of fA(x0, . . . , xn) and y is the L-code for which
〈x, y〉 ∈ B. The structure B is computable. Hence the statement “every structure
with a computable quotient presentation has a computable presentation” is con-
sistent. The statement “every decidable model has a computable presentation” is
consistent, but open. It is true for any sufficiently simple language such as one
having only relations and a single unary function.

3. Completeness Theorem

Our central question is the infinite time computable analogue to the Completeness
Theorem: does every consistent decidable theory have a decidable model? The
answer is independent of ZFC.

Theorem 4. The infinite time computable Completeness Theorem is independent
of ZFC.

(1) If V = L, then every consistent infinite time decidable theory has an infinite
time decidable model, in a computable translation of the language.

(2) It is relatively consistent with ZFC that there is an infinite time decid-
able theory, in a computably presented language, having no infinite time
computable or decidable model in any translation of the language.

We first consider the positive result. When the language is presented simply enough,
the classical Henkin construction is effective.

Theorem 5. If T is a consistent theory in a computable language coded in N and
T is decidable, then T has a decidable and computable model.

Corollary 6. There are infinite time decidable computable models of pa, ZFC,
etc., provided that these theories are consistent.

The key to obtaining (1) above is that every computably presented language in L
can be enumerated nicely enough to carry out the Henkin construction. A language
is well presented if there is an enumeration 〈sα | α < δ〉 of the function, relation
and constant symbols of the language, such that from any psαq, we can compute a
code for the sequence of prior symbols. Given a well-presented language, we can
similarly compute the sequence of prior formulas from the code for any formula.
We can extend any decidable theory T in a well-presented language to a complete
Henkin theory T by the usual argument. The theory T is decidable because, given
a Gödel code for a formula φα, we can construct the codes for all prior formulas
and computably reconstruct T up to α to see whether φα is added to the theory.
We then construct a decidable model from the constants. Thus every consistent
decidable theory in a computably well-presented language has a decidable model.
Now assume V = L and let L be a computably presented language. Let S = 〈sα |
α < δ〉 be the sequence of Gödel codes for symbols of the language under the L-
ordering. Since this enumeration may not be computable, we mimic the argument
used to obtain a computable presentation from a computable quotient presentation
by attaching to each α an escort. Specifically, we represent the symbol coded by
sα by the L-code tα for the pair 〈α, γα〉 where γα is the least ordinal above α such
that Lγα

thinks that sβ exists for all β < α and that ω1 exists. The language L
is well-presented by the enumeration 〈tα | α < δ〉. Result (1) above follows. Note
however that this enumeration is a translation of the original presentation.
Part (2) of the theorem relies again on the fact that no Σ1

2 set can have cardinality
strictly between ωL

1 and the continuum. Let the theory T be the atomic diagram of
the structure 〈wo,≡〉 where ≡ is the relation of coding the same ordinal, together
with an axiom asserting that f is a choice function on the equivalence classes. This
theory is decidable. Suppose that a modelM of T is decidable, or even computable.
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Then the graph of fM and the relation z = cMx are decidable, and hence ∆1
2. It

follows that the range of fM restricted to {cMx |x ∈ wo} is a Σ1
2 set of size ω1:

y ∈ {fM(cMx ) | x ∈ wo} iff ∃z, x(x ∈ wo ∧ z = cMx ∧ 〈z, y〉 ∈ fM)

Since it is consistent that no Σ1
2 set has size ω1, (2) follows.

4. Other results

There are many infinite time analogues to the Löwenheim-Skolem Theorem, and
many open questions. We obtain positive results when the language of the elemen-
tary diagram of a decidable model is well-presented. For example the infinite time
computable upward Löwenheim-Skolem theorem holds in L. Our analysis leaves
open, however, the question of whether it is consistent with ZFC that there could
be a decidable countable model having no size continuum decidable elementary ex-
tension. If so, the infinite time computable upward Löwenheim-Skolem theorem is
independent of ZFC.
We produce a strong violation of the downward Löwenheim-Skolem Theorem by
coding the infinite-time halting problem into a model.

Theorem 7. There is an infinite time computable structure with underlying set
R having no infinite time computable proper elementary substructure.

In the classical computability theory, the inverse of a computable injection is also
computable since once can effectively search the domain for the inverse image of
any given point in the range. In the infinite time theory, where we cannot in general
search the domain, some computable injective functions lack computable inverses.
As an application of these ideas, we consider the infinite-time Cantor-Schröeder-
Bernstein Theorem. The most natural statement would be:

Let A and B be sets with computable injections f : A −→ B and
g : B −→ A. Then there is a computable bijection h : A −→ B
with computable inverse.

In fact, two additional assumptions are provably necessary: the inverses of f and g
must be computable and the ranges of f and g must be decidable. Note that A and
B are semi-decidable (which is sufficient) since each is the domain of a computable
function.
We conclude by stating an odd fact regarding decidable presentations of transitive
models of ZFC. The smallest transitive model of ZFC, if it exists, has a decid-
able, computable presentation. But building this model (provably) requires a trick:
smuggling in an L-code for the model either as part of the model’s underlying set
or as part of the language.

5. Future Directions

There are several natural questions left unanswered by our inquiry, and new areas
have opened to which little or no thought has yet been given. The most fundamental
open question within the existing scope of our inquiry is whether every decidable
model can be computably presented. This is true in L. There are also many open
questions relating to the Löwenheim-Skolem Theorem.
Since formulas from the infinitary language Lω1,ω can be coded by reals, infinite
time Turing machines may be robust enough to develop a corresponding computable
model theory. In addition, it may be possible to extend the program of computable
model theory to infinite time Turing machines with an alternate architecture.
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There has been recent progress on infinite time computable equivalence relations
under computable reductions viewed as an analogue to the theory of Borel equiv-
alence relations under Borel reducibility. Some of these ideas are implicit in the
analysis of the computable quotient presentation in [HMSW07].
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I Prologue: Kleene Recursion, a thumbnail sketch

II Infinite Time Turing Machines

I Prologue: Kleene Recursion
• An equational calculus for developing the notion of recursion on a higher type.

x ∈ A ' {e}(x, y,B,2E) ↓ 1 A,B ⊆ R(= 2N)

Intention: to parallel the equational calculus developed for recursion on the inte-
gers.
It can be characterised by a model of computation in which a computational device
had a
(i) countably infinite memory, and
(ii) an ability to manipulate (search through, write to) that memory in finite time;
optionally
(iii) an ability to quiz an oracle (for B) about its entire memory contents.
We may think of this as a TM with one (or more) infinite tapes on which reals
(= infinite sequences of 0’s,1’s are written) and the ability to ask the oracle at any
stage of the computation as to whether the current real under consideration is in
some “oracle set” B ⊆ R.
• This is not to be conceived as a computation that runs in transfinite segments of
discrete time, but rather as one that makes calls for values from subcomputations;
a computation thus has a wellfounded finite path tree structure.
• The course of computation may evolve its own tree structure as it progresses
according to its instruction set; we may also view a “machine” as having a previously
determined tree structure as part of its “instructions” or program. In short the
machine may be viewed as determined by a (finite) program together with a (code
for) an infinite finite path-tree.
What is this mathematically?
Kleene degrees: Let A,B ⊆ R; we say that
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A ≤K B iff there is some comp’l arrangement P such as above so that
for any x ∈ R ( x∈/∈ ⇐⇒ PB(x) ↓ 1

0 )
iff there are Σ1-formulae in L∈,Ẋ ϕ1, ϕ2, there is y ∈ R so that

for any x ∈ R(x ∈ A⇐⇒ LωB,y,x
1

[B, y, x] |= ϕ1[B, y, x]
⇐⇒ LωB,y,x

1
[B, y, x] |= ¬ϕ2[B, y, x] )

(here ωB,y,x
1 is the least (B, y, x)-admissible ordinal).

0K contains ∅,R, and in fact consists of the Borel sets.

0′K (the K-degree of a complete Kleene semi-recursive set of reals) contains WO the
set of reals coding wellorders, and so a complete Π1

1 set of reals. In fact it consists
of the co-analytic, so Π1

1sets.

• (Solovay)[7] AD ⇒ K-degrees are wellordered. Indeed a K-degree forms a
boldface pointclasses being closed under continuous preimages.
•(Harrington-Steel) [8], [4] Det(Bool(Π1

1))⇐⇒ ¬∃A(0 <K A <K WO)
(Simpson) [5] V = L =⇒the opposite.

II Infinite Time Turing Machine Computations.

We turn to the Infinite Time Turing Machine construction of [3].

Definition 1. λ =df sup{α|α = ‖x‖∃e ∈ ωPe(0) ↓ x};

γ =df sup{α|∃e ∈ ωPe(0)α ↓ x}.
ζ =df sup{α|α = ‖x‖∃e ∈ ωx is the eventual contents of the output tape (OT) of
Pe(0) from point on}.
Σ =df sup{α|α = ‖x‖∃e ∈ ωx appears on some tape of Pe(0) at some time ν}.
Theorem 2. If ( [10] Thm.1.1) γ = λ. By relativisation: γx = λx for x ∈ 2N.

Proof: To show: γ ≤ λ. Suppose Pe(0) ↓η . So we wish to show that η < λ. It
suffices to show:
(1) η < ζ
(As η < ζ there is f so that Pf (0) eventually has a code y for an ordinal µ with
η < µ < ζ on its OT. Consider the algorithm that simulates “Pf” now & then
pausing and performing a run of Pe along the ordinal µ′ coded by the current y′

on the “Pf” OT. Eventually µ′ will be long enough to see that “Pe” halts. So we
halt the overall simulation putting y′ on the overall OT. But ‖y′‖ > η. )
Let Ci(ν) ∈ {0, 1} be the value of the i’th cell at time ν in the course of computation
of Pe. Let, for Lim(ν), δi(ν) =df sup{ν′ < ν|ν = 0 ∨ Ci(ν + 1) 6= Ci(ν)}. So
δi(ν) ≤ ν.
It suffices to show:
(2) ∀iδi(Σ) < Σ −→ δi(Σ) < ζ.
(If true, then a) the “snapshot” of the cell values of the computation of Pe(0) at
time ζ is exactly that at Σ and b) any Ci stabilized at time ζ does not change its
value, eg 0 → 1 → 0, in (ζ,Σ). Hence η /∈ (ζ,Σ). Hence if Pe has not halted by
time ζ it enters a permanent loop. So η 6 ≥Σ. Hence (1) holds.)
Proof of (2). Fix i. Let U be the universal machine. Let τ(ν)= grand sum of all
‖y‖ where y ∈WO∧y appears somewhere on one of U ’s “tapes” at time ν.
By definition of Σ:
(3) τ(ν)becomes unbounded in Σ.
We simulate “ U”, at fixed times pausing and: (i) calculating the current “τ(ν)” ;
(ii) simulate a run of “Pe” along “τ(ν)” and calculate δi(τ(ν)). We check & compare
that to our current “best estimate” of δi(Σ), δi(τ(ν′)), which we obtained at some
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earlier stage ν′, an d have stored. If, and only if, it is longer, do we replace (the
code for) δi(τ(ν′)) by that for δi(τ(ν)). By (3) we eventually have a code for the
true δi(Σ) on our overall OT. But then δi(Σ) < ζ. QED (2) and Thm.

Remark 3. If we replaced Pe in the above by the universal program itself, the
argument at (2) would prove: the snapshot of the universal machine at time ζ is
the same as that at time Σ: hence the universal machine enters its permanent loop
at time ζ. As ζ is the supremum of the eventually writable ordinals it is easy to
argue that it does not enter a permanent loop at any earlier stage.

This enables us to prove:

Theorem 4. (Normal Form Theorem [12]) ∀e∃e′∀x ∈ 2N

Pe(x) ↓−→ [Pe′(x) ↓ y where y ∈ 2N codes a wellordered course-of-computation
sequence for Pe(x) ↓].
Moreover the map e −→ e′ is effective (in the usual Turing sense).

Theorem 5. (The λ, ζ,Σ-Theorem) [9], [10] Any ITTM Type 1 computation
Pe(x) which halts does so by time λx where

ζx =df µζ[ ∃ leastΣ = Σx > ζLζ [x] ≺Σ2 LΣx [x]] and
λx =df µλ[ Lλ[x] ≺Σ1 Lζx ].

Remark: ζx can be characterised as that ordinal at which the universal ITTM U
on input x ∈ 2Nstarts to cycle.
Proof: (Sketch). We take x = ∅, and show simply that (a) Lζ ≺Σ2 LΣ and (b)
(ζ,Σ) is the lexicographically least pair satisfying (a). To do (b) first, simply note
that we may run the universal machine U inside L. Since the limsup rules for cell
values etc. can be expressed essentially in a Σ2 way, we have that for any ζ ′,Σ′

satisfying (a) we should have the snapshots at ζ ′ and Σ′ being identical. But we
have already remarked above that (ζ,Σ) are the first two points on the permanent
looping cycle of U .
For (a) we mimic the argument of Theorem 2. Suppose ϕ ≡ ∃u∀vψ(u, v, ξ) where
ξ < ζ and LΣ |= ϕ. Let u0 ∈ LΣ be such that LΣ |= ∀vψ(u0, v, ξ). Set ρ = ρL(u0) to
be the L-rank of u0. Let δ(Σ, ϕ, ξ) =df inf{δ < Σ|∀δ′ ∈ (δ,Σ] Lδ′ |= ∃u∀vψ(u, v, ξ)}.
Then observe δ(Σ, ϕ, ξ) ≤ ρ.
Claim: δ(Σ, ϕ, ξ) < ζ.
We first note that since ξ < ζ ξ is eventually written by some program Pg(0).
We let Pe(0) be the program that (i) computes grand sum ordinals σ(ν) as in
Theorem 2; (ii) from those ordinals computes a code for Lσ(ν); (iii) by simulating
Pg(0), calculates an approximation ξ(ν) to the latter’s output tape after σ(ν) many
stages; (iv) calculates

δ(σ(ν), ϕ, ξ(ν)) =df inf{δ < σ(ν)|∀δ′ ∈ (δ, σ(ν)Lδ |= ∃u∀vψ(u, v, ξ(ν))}

(v) it then writes this value δ(σ(ν), ϕ, ξ(ν)) to a reserved area of tape, R say, but
only after inspecting the current contents of R, and if that contents codes an
ordinal δ′ say, it checks that δ′ < δ(σ(ν), ϕ, ξ(ν)). (Thus if δ′ is a larger ordinal
than δ(σ(ν), ϕ, ξ(ν)) δ′ is left on R.)
The first point of this is that as ξ is eventually writable, for some µ < ζ as long
as σ(ν) ≥ µ we shall have that ξ = ξ(ν). But this condition is easily met as
σ(ν) will eventually become unbounded in Σ and stay above ζ. (Hence the correct
computation of ξ becomes virtually a side issue.) The second point is that once
σ(ν) > ρ, µ we shall have a code for some ordinal δ′ ≥ δ(σ(ν), ϕ, ξ) written to R,
but there will never be any cause for it to be overwritten at a later time ν′. However
that implies it is eventually writable and hence less than ζ. By definition of ρ this
yields the Claim.
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By the definition of δ(Σ, ϕ, ξ) we see that Lζ |= ϕ(ξ) so we are done. QED

• From the above analysis it transpires that the ordinal assignment x � λx (or ζx)
satisfies a Spector Criterion:

x ≤∞ y −→ (x∇ ≤∞ y ←→ λx < λy).

• Moral: Even on just sets of integers, this is not going to be like Turing degrees.

Corollary 6. (i) 0∇ ≡1 Σ1-Th(Lλ) ≡1 Σ1-Th(Lζ).
(ii) The infinite time decidable sets of integers = Lλ ∩ 2N.

Let F be the class of “quickly computable” reals: x ∈ F ⇐⇒ x ∈ Lλx (Think of
the “quickly constructible reals Q = {x|x ∈ Lωx

1
}.)

Lemma 7. [10] EW ⊆ F .

Proof: Let x ∈ Lζ . Let ρ = ρL(x) < ζ ≤ ζx. We run a computation Pg(x) that
simulates a run of U until it finds a code for an ordinal τ and Lτ that shows x ∈ Lτ .
It then halts with output τ . Hence τ < λx. QED

• The complete AQI-set of integers ≡1 Σ2-Th(Lζ) ≡1 Sζ - the “snapshot” of U at
time ζ. (AQI=“arithmetically quasi-inductive” -Burgess)

Minimality in the ITTM degrees of reals.

We define the notion of minimal degree of d ∈ 2N as

0∞ <∞ d ∧ ∀e[0∞ <∞ e ≤∞ d −→ d ≤∞ e].

Theorem 8. [11] There are continuum many reals of minimal ≤∞-degree.

Proof: An H. Friedman style double fusion argument of ≤∞-pointed and Lδ-
pointed trees. QED

• Moral: This is not going to be like ∆1
1-degrees either. It’s firmly ∆1

2-degree like.
cf:

Theorem 9. (Hamkins-Lewis) [2] There is no real z with 0∞ <∞ z <∞ 0∇.

Proof: 0 <∞ z −→ z /∈ Lλ. As z ∈ F (Lemma 7), z ∈ Lλz ; hence λz > λ. But
then 0∇ ≤∞ z. QED

For higher type ITTM computations it seems appropriate to talk again about bold-
face semi-decidable sets of reals. We thus again talk about programs together with
an “information” real y:

Definition 10. A≤∞B iff for some e ∈ ω,some y ∈ R : ∀x(x∈/∈A⇐⇒ P y,B
e (x) ↓ 1

0 )
iff there are Σ1-formulae in L∈,Ẋ ϕ1, ϕ2, and y ∈ R, so that
∀x ∈ R(x ∈ A⇐⇒ LζB,y,x [B, y, x] |= ϕ1[B, y, x]

⇐⇒ LζB,y,x [B, y, x] |= ¬ϕ2[B, y, x])

The ≤∞-degrees so formed are then boldface pointclasses within the Wadge hier-
archy, with 0 and 0J as the (degrees of the) ∞-recursive, and ∞-semirecursive sets
of reals, respectively.

Definition 11. Let Γ0 be the class of ∞-semi-decidable sets of reals.

Theorem 12. (V=L) 0 <∞ F <∞ 0J

Theorem 13. (Det(Bool(Γ0)) There is no A ⊆ R with 0 <∞ A <∞ 0J.
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Question: How strong is Det(Γ0)?

II.2 Bounding Lemmata for computation times

Definition 14. [1], [6] (i) A ∈ Pα if ∃β < α there is an infinite time Turing
machine deciding each x ∈ A in fewer than β many steps.
(ii) Let f : R −→ On be a Turing invariant function. (i) A ∈ P f if there is an
infinite time Turing machine deciding each x ∈ A in fewer than f(x) many steps.

Theorem 15 (Deolalikar-Hamkins-Schindler). [1] Let f0(x) = ωx
1 ck ; then

P f0 = Pω1 ck .

At first sight this looks surprising: as they say
“...because it means that although the computations deciding x ∈ A
for A ∈ P f0 are allowed to compute up to ωx

1 ck, in fact there is an
algorithm needing uniformly fewer than ω1 ck many steps. So the
difference between ωx

1 ck and ω1, which can be substantial, gives
no advantage at all in computation. An affirmative answer to the
following question would explain this phenomenon completely.

Question 6 Suppose an algorithm halts on each input x in fewer
than ωx

1 ck steps. Then does it halt uniformly before ω1 ck? ”

Theorem 16. (Uniform Bounding Lemma) Let F : R −→ R be ITTM-computable
and total as witnessed by Pe. If ∀xPe(x) ↓<ωx

1 (meaning halts in ¡ωx
1 steps) then

∃γ¡ω1 ck ∀xPe(x) ↓<γ .

Proof: Essentially an application of Σ1
1-Bounding.

Theorem 17 (D-H-S). [1] Pω1 ck+1 = Pω1 ck .

Theorem 18. (Bounding Lemma) Suppose β be admissible. Let F be ITTM-
computable, total so that ∀xPe(x) ↓≤β where Pe computes F . Then ∃γ < β
∀xPe(x) ↓<γ .

Proof: Ditto: Barwise Compactness.

Definition 19. A ∈ NP f if ∃e ∀zPe(z) ↓<f(z) with x ∈ A⇐⇒ ∃y ∈ 2N[Pe(〈x⊕
y〉) ↓ 1<f(x)

Lemma 20. ([13] Lemma 2.5) If α is a clockable ordinal, then every ordinal less
than the next admissible ordinal beyond α is writable in time α+ ω.

Proposition 21. Let β ≤ λ be such that β is an admissible limit of admissibles but
is not interior to any gap in the clockables (i.e., it is a limit of clockables). Then
P β ∩ P(N) = NP β ∩ P(N).

Proof. Let A ∈ NP β ∩ P(N). Let Pe witness this: ∀n, y Pe(n, y) ↓<β and ∀n[n ∈
A⇐⇒ ∃yPe(n, y) ↓ 1]. The Bounding Lemma shows that there is a smaller bound
γ0 < β for the lengths of all these computations. Hence if n ∈ A then there is a y
witnessing this, with Pe(n, y) ↓ 1 and converging in ≤ γ0. steps. Let u ∈ Lβ ∩WO
have rank γ0. Set:

Bn = {z : ∃y(z codes a wellfounded computation witnessing Pe(n, y) ↓‖u‖ 1 )}
Again ∅ 6= Bn ∈ Σ1

1(u). As above, appealing to the Kleene Basis theorem again,
there are witnessing z, y0 ∈ Lγ+

0 +1 if n ∈ A (where γ+
0 is next admissible above γ0.)

In other words to test for membership in A all we have to do is search through
potential NP -witnesses y in Lγ+

0 +1 ∈ Lβ . But this puts A ∈ ∆Lβ

1 ({γ0}). By our
assumption on β, by Lemma 20, γ0 is itself writable by some program Pf in time
< γ+

0 . Putting this together A ∈ ∆Lβ

1 , so A ∈ Pβ . �
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Open questions

(1) For which ordinals α, PHK
α ( PSPACEHK

α ?
Asked by Joost Winter. This is true for all successors and some limits.

(2) How can we show that a set A is not in PSPACEHK
f ?

Asked by Joost Winter.
(3) Can there be incomparable “lost melody” reals? That is, can there be two

reals c, d such that {c}, {d} are each ITTM-decidable but c is not d-writable
and d is not c-writable?

Asked by Joel D. Hamkins, $5 for the answer.
Answered by Philip Welch: no such pairs exist.

(4) What is the lower bound for the number of registers (k) needed by an ORM
to compute L?

Asked by Peter Koepke, e(25−k) for the answer. By ORM it is meant an
Ordinal Register Machine, under the definition in “Register computations
in ordinals” to be found in ArXiv.

(5) What are the provably in KPi clockable ordinals/halting programmes?
Asked by Michael Rathjen.

(6) For ITTMs, is it true that PSPACE 6= P , PSPACE+ 6= P+ and/or
PSPACE++ 6= P++?

Asked by Benedikt Löwe, e1 per answer.
(7) Does every decidable model have a computable presentation?

Asked by Daniel Seabold and Russel Miller.
(8) Is it consistent that every decidable theory has a computable/decidable

model, without computably translating the language?
Asked by the New York team.

(9) Can we characterise the gaps in the clockable ordinals of OTMs, e.g., is
every gap-starting ordinal admissible?

Asked by the New York team. This is true for ITTMs; Philip D.Welch.
Subquestions to this:

a) For example, can every gap-starting ordinal be something even better,
like “strongly admissible”? (Define strongly admissible?)
Asked by Jonas Reitz, e5 for the answer.
Answered by Jonas Reitz and Steve Warner: no admissible ordinal is
OTM clockable.

b) Is ωck
1 , OTM clockable?

Asked by Joel D.Hamkins, $1 for the answer.
Answered by Jonas Reitz and Steve Warner: no admissible ordinal is
OTM clockable.

(10) Does every countable collection of ITTM-degrees have a minimal upper
bound?

Asked by Philip D.Welch, e50 for the answer. It is true for degrees
represented by accidentally writable reals. Harvey Friedman showed it also
for ∆1

2 degrees.
(11) What is the structure of the ITTM-degrees (of reals) represented by a real?

In particular, can you invert the jump, i.e., if 0O ≤∞ c then is there a d
such that dO =∞ c)? Also, to what degree is there minimality, density,
etc.?

Asked by Joel D.Hamkins, $5 for the inversion of the jump.
(12) Work out a theory of ordinal stack machines and their complexity.

Asked by Peter Koepke.
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(13) For ITTMs, for z ∈ R if z ≤∞ 0H, then is z eventually writable?
Asked by Joel D.Hamkins, $5 for the answer.
Answered by Philip Welch: no, because Σ is 0H-writable.

a) A related question, what is λ0H
, i.e., the supremum of 0H-writable or-

dinals? Is it ζ, i.e., the supremum of the eventually writable ordinals?
Again by Joel D.Hamkins, also $5 for the answer.
Answered by Philip Welch: it is larger than Σ and hence ζ.

(14) In analogy with the fact that every countable admissible ordinal is ωx
1,ck,

i.e., the supremum of the x-recursive ordinals, for some real x. Can you
characterise the ordinals of the form λx, i.e., the supremum of the x-writable
ordinals? Also, the same for ζx.

Asked by Joel D.Hamkins, $5 for the answer.
(15) Is there a real z such that ζ = λz?

Asked by Joel D. Hamkins, $5 for the answer.
Answered by Philip Welch: no. In fact for any A, ζ 6= λA.

(16) Find equalities/inequalities/famous open questions from standard complex-
ity theory, define their analogues for ITTM/OTM/ORM and prove/disprove
them!

Asked by Benedikt Löwe.
(17) Suppose f : 2ω → ω is Turing invariant (i.e., x ≤T y implies that f(x) ≤T

f(y)) and that for all x ∈ 2ω, f(x) is an admissible limit of gap-starting
and gap-ending ordinals. Then does P f = NP f?

Asked by Philip D.Welch. Background: Deolalikar, Hamkins and Schindler
show for many g : 2ω → ω that P g ∩ P(N) 6= NP g ∩ P(N), but for f as
above, we have that P f ∩ P(N) = NP f ∩ P(N). The question is whether
equality holds at the higher type.

(18) Investigate the structure of the “eventually decidable” (also called “arith-
metically quasi-inductive”) sets.

Definitions:
A set A is in AQI (is arithmetically quasi-inductive), iff there is a φ ∈ Σ2

such that for all x, x ∈ A ↔ Lζx [x] |= φ(x) (this might be called the
“eventually semi-decidable” sets but the “AQI” is due to Burgess).

We write A ≤ev.∞ B iff there are φ1, φ2 ∈ Σ2 and y ∈ 2ω such that for
every x,

x ∈ A↔ Lζx,y,B [x, y,B] |= φ1[x]↔ Lζx,y,B [x, y,B] |= ¬φ2[x].

C.f. analogous definition from Kleene degrees. The “AQI” class forms a
Spector class and satisfies Prewellordering.

Asked by Philip D.Welch.
(19) Let Γ0 be the pointclass of the ∞-semi-decidable sets, i.e., ITTM semi-

decidable sets. Determine the strength of Det(Γ0).
Asked by Philip D.Welch. Background: Det(Γ0) implies that there is an

inner model of a strong cardinal.
(20) Are there Borel equivalence relations E and F such that E computably

reduces to F , but does not Borel reduce? Definitions: E computably reduces
to F if there is an infinite time computable function f (computable from
a real parameter) such that x E y ⇐⇒ f(x) F f(y); it Borel reduces if
there is a Borel such function.

Asked by Sam Coskey and Joel Hamkins.
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Further material

Two observations regarding infinite time Turing machines

Sy-David Friedman
KGRC, University of Vienna4

and
Philip D. Welch

University of Bristol

Abstract. We observe: (I) There is a “Theory Machine” that can
write down the Σ2-Theories of the levels of the J-hierarchy up to Σ
(the least Σ such that some smaller Lζ is Σ2 elementary in LΣ) in
a uniform way. Moreover, below Σ these theories are all distinct.
This yields information about the halting times of ITTM’s. (II)
The ITTM degrees of the semi-recursive singletons are well-ordered
in order type the least stable, i.e., the least σ such that Lσ is Σ1

elementary in L.

The Theory Machine generates theories of initial segments of the J-hierarchy. This
machine can be used to prove the “ζ-Σ theorem” and analyse the halting times of
ITTM’s.

The idea of the Theory Machine is to write down the theory of (Jα,∈) (appropriately
Gödel-numbered) on the output tape at computation stage ω2 · (α+ 1), for as long
as possible. This will be easy to arrange for successor α, as long as a code for the
structure (Jα,∈) can be read off from its theory. For limit α, the machine performs
a liminf operation, resulting in a theory Tα; we show that the Σ2 theory of (Jα,∈)
is recursive in the Turing jump of Tα, uniformly in α. Provided a code for the
structure (Jα,∈) can be read off from its Σ2 theory, this will enable the machine
to write down the theory of (Jα,∈) at stage ω2 · α+ ω2. A fine-structural analysis
shows that as long as α is less than the least Σ such that Jζ is Σ2 elementary in
JΣ for some ζ < Σ, a code for (Jα,∈) can indeed be read off from its Σ2 theory,
uniformly. Therefore the machine will produce distinct theories of structures (Jα,∈)
for α < Σ, and then at stage Σ repeat what it wrote on the output tape at stage ζ.

A corollary is that, up to a “small” error, the halting times of ITTM’s are exactly
the ordinals α < Σ where sentences become true for the first time in the J-hierarchy,
i.e., such that some sentence ϕ of set theory holds in (Jα,∈) but not in (Jβ ,∈) for
any β < α.

The following two claims are crucial to verifying properties of the theory machine.

Lemma 1. For a limit λ, let T denote the set of Σ2 sentences that are true in
(Jα,∈) for sufficiently large α < λ. Then the Σ2 theory of (Jλ,∈) is RE in T .
Moreover an index for this RE reduction is uniform in λ.

4The first author was supported by FWF Grants P16334-NO5 and P16790-NO4.
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Proof. Let ϕ be a Σ2 sentence and write ϕ as ∃xψ(x) where ψ(x) is Π1. Also
let h1(n, x) denote the canonical Σ1 Skolem function; h1 has a parameter-free Σ1

definition and for any α, h1 interpreted in Jα is a partial function from ω×Jα into
Jα whose range on ω× [A]<ω is the Σ1 Skolem hull of A in (Jα,∈) (i.e., the universe
of the least Σ1 elementary submodel of (Jα,∈) containing A), for any A ⊆ Jα. We
say that an ordinal α is Σ1 stable (in the universe) iff every true Σ1 sentence with
parameters from Jα is true in (Jα,∈).

We have the following equivalence:

(Jλ,∈) satisfies ϕ iff
For some n, the following holds in (Jα,∈) for large enough α < λ: There is a β
which is either 0 or Σ1 stable such that either ϕ holds in (Jβ ,∈) or h1(n, β) is
defined and ψ(h1(n, β)) holds.

This equivalence is verified as follows:

Suppose that (Jλ,∈) satisfies ϕ. If (Jβ ,∈) satisfies ϕ for some β which is Σ1 stable
in λ (i.e., β < λ and (Jβ ,∈) is Σ1 elementary in (Jλ,∈)), then for all α between
β and λ, ϕ will also hold in (Jα,∈), as β is also Σ1 stable in α. So the right half
of the equivalence holds in this case. Otherwise let β be the largest β which is Σ1

stable in λ (or 0 is there is no β which is Σ1 stable in λ). Then every element of Jλ

is of the form h1(n, β) for some n (as the Σ1 Skolem hull of {β} in (Jλ,∈) is all of
Jλ). Choose n so that ψ(h1(n, β)) holds in Jλ. Then for sufficiently large α < λ,
h1(n, β) is defined in (Jα,∈), and ψ(h1(n, β)) holds in (Jα,∈) as ψ is Π1. So the
right half of the equivalence also holds in this case.

Conversely, suppose that the right half of the equivalence holds and choose n to
witness that. First suppose that the Σ1 stables in λ are cofinal in λ. Then apply
the right half of the equivalence to some α which is Σ1 stable in λ. Then either ϕ
holds in (Jβ ,∈) for some β which is Σ1 stable in α or ψ(h1(n, β)) holds in (Jα,∈)
for some β; in the former case ϕ holds in (Jλ,∈) as β is Σ1 stable in λ and in
the latter case this holds as α is Σ1 stable in λ. Now suppose that the Σ1 stables
in λ are bounded in λ and let β be the largest Σ1 stable in λ (or 0 is there is no
β which is Σ1 stable in λ). Choose α to be sufficiently large in the sense of the
right hand side of the equivalence and also such that there are no α-stables greater
than β. (For example, choose n so that h1(n, β) is large enough and let α be least
so that h1(n, β) is defined in (Jα,∈).) Then applying the right hand side of the
equivalence to α, there is a β′ which is either 0 or Σ1 stable in α such that either ϕ
holds in (Jβ′ ,∈) or ψ(h1(n, β′)) holds in (Jα,∈). In the former case, β′ is at most
β and therefore is Σ1 stable in λ; it follows that ϕ holds in (Jλ,∈). In the latter
case, argue as follows: If β′ is less than β, then h1(n, β′) in fact belongs to Jβ and
ψ(h1(n, β′)) holds in (Jβ ,∈), implying that ϕ holds in (Jλ,∈). If β′ equals β then
ψ(h1(n, β)) holds in Jα, and as α can be chosen arbitrarily large, ψ(h1(n, β)) holds
in (Jλ,∈); it follows that ϕ holds in (Jλ,∈), as desired.

The equivalence shows that the Σ2 theory of (Jλ,∈) is RE in T . And this RE
definition is independent of λ. 2

Lemma 2. Let Σ be least so that some ζ < Σ is Σ2 stable in Σ (i.e., (Jζ ,∈) is Σ2

elementary in (JΣ,∈)). Let Tα be the Σ2 theory of the structure (Jα,∈). Then there
is a real code for this structure which is recursive in Tα. Moreover, the reduction
of this code to Tα is uniform in α.
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Proof. It suffices to show that there is a partial function f from ω onto Jα which
is Σ2 definable over (Jα,∈) without parameter (uniformly in α < Σ). For given
this, consider the set of n such that f(n) is defined, modulo the equivalence relation
n ∼ m iff f(n) = f(m), together with the binary relation nEm iff f(n) ∈ f(m).
This yields an isomorphic copy of (Jα,∈).

Let ψn(x) be the n-th Π1 formula with free variable x. Define:

f ′(n) = (m,β) iff the following hold in (Jα,∈):
i. β is 0 or Σ1 stable.
ii. h1(m,β) = x is defined.
iii. ψn(x) holds.
iv. ψn(x′) fails for any x′ of the form h1(m′, β′), β′ < β, m′ < ω.
v. m′ < m→ h1(m′, β) is undefined or ψn(h1(m′, β)) fails.

Clauses i-iii are easily seen to be either Σ1 or Π1. Clause v is equivalent to a
disjunction of a Σ1 formula and a Π1 formula. Clause iv is vacuous if β is 0 and
otherwise holds in (Jα,∈) iff it holds in (Jβ ,∈); it follows that clause iv is Σ1.
And f ′ is single-valued and therefore a partial function from ω into Jα which is Σ2

definable over (Jα,∈) without parameter.

Now define f(n) = h1(f ′(n)) and let A be the Σ1 Skolem hull of the range of f .
Then A is the range of a partial function g from ω into Jα which is Σ2 definable over
(Jα,∈) without parameter. (Define g(n) = h1(n0, 〈f(n1), . . . , f(nk)〉), if n codes
the sequence (n0, . . . , nk).)

We claim that (A,∈) is Σ2 elementary in (Jα,∈): Clearly (A,∈) is Σ1 elementary
in (Jα,∈), as it is the Σ1 Skolem hull of the range of f . Write g(n) = x iff (Jα,∈) �
∃yψ(n, x, y), where ψ is Π1. Now suppose that there exists x in Jα such that (Jα,∈
) � γ(x, g(n1), . . . , g(nk)), where γ is Π1. Then there exists 〈x, x1, y1, . . . , xk, yk〉 in
Jα such that the following Π1 formula holds in (Jα,∈):

γ(x, x1, . . . , xk) ∧ ψ(n1, x1, y1) ∧ . . . ∧ ψ(nk, xk, yk).

By the definition of f , there exists such a sequence 〈x̄, x̄1, ȳ1, . . . , x̄k, ȳk〉 in the range
of f . Also x̄ belongs to A and x̄i equals g(ni) for each i, 1 ≤ i ≤ k, and therefore
γ(x̄, g(n1), . . . , g(nk)) holds in (Jα,∈). As (A,∈) is Σ0 elementary in (Jα,∈), it
follows that γ(x̄, g(n1), . . . , g(nk)) holds in (A,∈) for some x̄, proving that (A,∈)
is Σ2 elementary in (Jα,∈).

Finally, every element of Jα is countable in (Jα,∈), as otherwise there would be a
Σ less than α such that some ζ < Σ is Σ2 stable in Σ. It follows that A is transitive,
as by Σ1 elementarity, A contains an injection of any of its elements into ω. We
have assumed that α is less than Σ, so in fact A equals all of Jα, and therefore there
is a partial function g from ω onto Jα which is Σ2 definable over (Jα,∈) without
parameter, as desired. 2

Now we are ready to describe the Theory Machine. When we say that the machine
writes a theory T on its output tape at stage α, we mean that at stage α, the n-th
cell of the output tape has a 1 written in it iff the n-th sentence (via a fixed Gödel
numbering) belongs to T . Now the Theory Machine runs as follows: On input 0,
the machine uses the first ω2 stages to ensure that the theory of (J0,∈) is written
on the output tape at stage ω2. (In fact the machine could arrange this in fewer
stages, but we prefer for this to occur at stage ω2). Inductively, suppose that the
theory of (Jα,∈) is written on the output tape at stage ω2 × (α + 1). If α is less
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than Σ, then by Lemma 2, the machine can compute a code for (Jα,∈) by stage
ω2 × (α+ 1) + ω. Then the machine uses the theory of (Jα,∈) to compute a code
for (Jα+1,∈) by stage ω2×(α+1)+ω+ω and the next ω2 steps to write the theory
of (Jα+1,∈) on its output tape at stage ω2 × (α+ 1) + ω + ω + ω2 = ω2 × (α+ 2).
The machine must however never write a 0 in the n-th cell of its output tape (at a
stage between ω2 × (α + 1) and ω2 × (α + 2)) if the n-th sentence is true in both
(Jα,∈) and (Jα+1,∈).

The last requirement ensures that at a stage ω2 × λ, λ limit, what is written on
the output tape is the liminf of the theories of the (Jα,∈), α < λ, i.e. the theory
T = {ϕ | ϕ is true in (Jα,∈) for sufficiently large α < λ}. By Lemma 1, the machine
can compute the Σ2 theory of (Jλ,∈) by stage (ω2 × λ) + ω and by Lemma 2 it
can compute a code for (Jλ,∈) by stage (ω2× λ) +ω+ω, if λ is less than Σ. Then
the machine uses the next ω2 stages to write the theory of (Jλ,∈) on its output
tape, again never writing a 0 in the n-th cell of its output tape if the n-th sentence
belongs both to T and to the theory of (Jλ,∈).

This completes the description of the Theory Machine. The machine is capable of
writing the theory of (Jα,∈) on its output tape at stage ω2× (α+ 1) provided α is
less than Σ. The following corollaries easily follow, where λ is the least Σ1 stable
in Σ and ζ is the least Σ2 stable in Σ:

On input 0:

Every ITTM either halts or repeats itself by stage Σ.
There is a machine that first repeats itself at stage Σ.
The supremum of the halting times of ITTM’s is λ.
The reals that appear on the output tape of an ITTM are the reals in JΣ = LΣ.
The reals that appear on the output tape of a halting ITTM are the reals in Jλ = Lλ.
The reals that appear on the output tape of an ITTM from some stage onwards
are the reals in Jζ = Lζ .

Also, if Σx, ζx, λx are the relativisations of Σ, ζ, λ to the real x:

A is an ITTM-semirecursive set of reals iff for some Σ1 formula ϕ, we have: x
belongs to A iff Lλx [x] � ϕ(x).

One can say a bit more about the halting times of ITTM’s. Say that α is an infinite
power of ω iff it is of the form ωβ , where β is infinite. An infinite power of ω interval
is an interval [α, β) where α < β are adjacent infinite powers of ω. For any sentence
ϕ of set theory let α(ϕ) denote the least α, if any, such that (Jα,∈) satisfies ϕ.

Corollary 3. Let I be an infinite power of ω interval. Then the following are
equivalent.
i. I contains the halting time of an ITTM.
ii. I is below Σ and contains α(ϕ) for some sentence ϕ.

Proof. Suppose that α is the halting time of an ITTM. Then this can be expressed
in (Jα+1,∈) and therefore α + 1 = α(ϕ) for some ϕ. Conversely, suppose that
α = α(ϕ) for some ϕ and α is less than Σ. Then there is an ITTM that imitates
the Theory Machine but halts when it sees that ϕ is true in (Jα,∈), at a stage less
than ω2 × (α+ 1) + ω2 = ω2 × (α+ 2). As the latter is less than the least infinite
power of ω greater than α, it follows that α(ϕ) and α belong to the same infinite
power of ω interval. 2
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The previous corollary easily yields results about gaps in the set of halting times
of ITTM’s.

Our second observation concerns Γ-singletons, where Γ is the lightface pointclass
of semirecursive sets of reals.

Theorem 4. Suppose that x is a Γ-singleton, i.e., {x} belongs to Γ. Then x is an
element of Lλx .

Proof. Let x be the unique x such that Lλx [x] � ϕ(x), where ϕ is Σ1. Let c be a
real which is generic over LΣx for the Lévy collapse of λx to ω. By absoluteness,
there is a real y in LΣx [c] such that ϕ(y) holds in Lλx [y] and λx is less than Σy. It
follows that ϕ(y) holds in LΣy [y], therefore in Lλy [y] and therefore y equals x. As
c is an arbitrary generic code for λx, x belongs to LΣx and therefore to Lλx . 2

Corollary 5. The ITTM-degrees of Γ-singletons are wellordered in ordertype δ12,
the supremum of the lengths of ∆1

2 wellorderings of ω, with successor given by
ITTM-jump.

Proof. If λx ≤ λy and x is a Γ-singleton then x belongs to Lλy and therefore is re-
cursive in y. If λx < λy then as the ITTM-jump of x is definable over Lλx [x] = Lλx ,
it follows that the ITTM-jump of x is recursive in y. The Γ-singletons include the
Π1

1-singletons, which are cofinal in Lδ1
2
, and therefore the length of the wellordering

of the ITTM-degrees of Γ-singletons is also δ12 . 2

Remarks. i. In fact the ITTM-degrees of ∆-singletons are cofinal in those of the
Γ-singletons, where ∆ is the lightface pointclass of recursive sets of reals. This is
because each Π1

1-singleton is a ∆-singleton.
ii. There are reals with ITTM-degree incomparable with 0′ = the ITTM-jump of
0; for example, consider a real Cohen generic over LΣ. But this cannot happen for
reals in LΣ, as such a real x belongs to Lλx and therefore is either ITTM-recursive
or ITTM above 0′. By using Sacks forcing one obtain a continuum of minimal
ITTM-degrees over 0.

α-Recursion Theory and Ordinal Computability

Peter Koepke
University of Bonn

Abstract. Motivated by a talk of S.D.Friedman at BIWOC we
show that the α-recursive and α-recursively enumerable sets of G.
Sacks’s α-recursion theory are exactly those sets that are recursive
and recursively enumerable by an ordinal Turing machines with
tapes of length α and time bound α.
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0. Introduction.

α-Recursion theory is a branch of higher recursion theory that was developed by
G. Sacks and his school between 1965 and 1980. Sacks gave the following char-
acterization [4]:

α-recursion theory lifts classical recursion theory from ω to an ar-
bitrary Σ1 admissible ordinal α. Many of the classical results lift
to every α by means of recursive approximations and fine structure
techniques.

The lifting is based on the observation that a set A ⊆ ω is recursively enumerable
iff it is Σ1 definable over (Hω,∈), the set of all hereditarily finite sets. By analogy,
a set A ⊆ α is called α-recursively enumerable iff it is Σ1(Lα), i.e., definable in
parameters over (Lα,∈) where Lα is the α-th level of Gödel’s constructible hier-
archy. Consequently a set A ⊆ α is said to be α-recursive iff it is ∆1(Lα). Sacks
discusses the “computational character” of Σ1(Lα)-definitions [4]:

The definition of f can be thought of as a process. At stage δ it
is assumed that all activity at previous stages is encapsulated in
an α-finite object, s � δ. In general it will be necessary to search
through Lα for some existential witness ... [emphases by P.K.].

In this note we address the question whether it is possible to base α-recursion theory
on some idealized computational model.
Let us fix an admissible ordinal α, ω < α 6∞ for the rest of this paper. A standard
Turing computation may be visualized as a time-like sequence of elementary read-
write-move operations carried out by “heads” on “tapes”. The sequence of actions
is determined by the initial tape contents and by a finite Turing program. We
may assume that the Turing machine acts on a tape whose cells are indexed by
the set ω (= N) of natural numbers 0, 1, . . . and contain 0’s or 1’s. A computation
takes place in ω × ω “spacetime”:

A standard Turing computation. Head positions are indicated by shading.

Let us now generalize Turing computations from ω × ω to an α × α spacetime:
consider Turing tapes whose cells are indexed by α (=the set of all ordinals < α)
and calculations which are sequences of elementary tape operations indexed by ordi-
nals < α. For successor times, calculations will basically be defined as for standard
Turing machines. At limit times tape contents, program states and head positions
are defined by inferior limits.
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A computation of an α-Turing machine.

This leads to an α-computability theory with natural notions of α-computable and α-
computably enumerable subsets of α. We show that α-computability largely agrees
with α-recursion theory:

Theorem 1. Consider a set A ⊆ α. Then
(1) A is α-recursive iff A is α-computable.
(2) A is α-recursively enumerable iff A is α-computably enumerable.

One can also define what it means for A ⊆ α to be α-computable in an oracle B ⊆ α
and develop a theory of α-degrees. The reduction by α-computation is coarser than
the standard reducibility used in α-recursion theory:

Theorem 2. Consider sets A,B ⊆ α such that A is weakly α-recursive in B. Then
A is α-computable in B.

The relationship between ordinal Turing machines and the constructible model L
was studied before [2]. We shall make use of those results by restricting them to
α. It should be noted that we could have worked with ordinal register machines
instead of Turing machines to get the same results [3]. The present work was
inspired by S.D.Friedman’s talk on α-recursion theory at the BIWOC workshop.

1. α -Turing Machines

The intuition of an α-Turing machine can be formalized by restricting the defini-
tions of [2] to α.

Definition 3.
(1) A command is a 5-tuple C=(s, c, c′,m, s′) where s, s′ ∈ ω and c, c′,m ∈
{0, 1}; the natural number s is the state of the command C. The intention
of the command C is that if the machine is in state s and reads the symbol
c under its read-write head, then it writes the symbol c′, moves the head left
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if m = 0 or right if m = 1, and goes into state s′. States correspond to the
“line numbers” of some programming languages.

(2) A program is a finite set P of commands satisfying the following structural
conditions:
(a) If (s, c, c′,m, s′) ∈ P then there is (s, d, d′, n, t′) ∈ P with c 6= d; thus

in state s the machine can react to reading a “0” as well as to reading
a “1”.

(b) If (s, c, c′,m, s′) ∈ P and (s, c, c′′,m′, s′′) ∈ P then c′ = c′′,m =
m′, s′ = s′′; this means that the course of the computation is com-
pletely determined by the sequence of program states and the initial
cell contents.

(3) For a program P let

states(P ) = {s|(s, c, c′,m, s′) ∈ P}

be the set of program states.

Definition 4. Let P be a program. A triple

S : θ → ω,H : θ → α, T : θ → (α2)

is an α-computation by P iff the following hold:

(1) θ is a successor ordinal < α or θ = α; θ is the length of the computation.
(2) S(0) = H(0) = 0; the machine starts in state 0 with head position 0.
(3) If t < θ and S(t) 6∈ state(P ) then θ = t + 1; the machine stops if the

machine state is not a program state of P .
(4) If t < θ and S(t) ∈ state(P ) then t + 1 < θ; choose the unique command

(s, c, c′,m, s′) ∈ P with S(t) = s and T (t)H(t) = c; this command is executed
as follows:

T (t+ 1)ξ =
{
c′, if ξ = H(t);
T (t)ξ , else;

S(t+ 1) = s′;

H(t+ 1) =

 H(t) + 1, if m = 1;
H(t)− 1, if m = 0 and H(t) is a successor ordinal;
0, else.

(5) If t < θ is a limit ordinal, the machine constellation at t is determined by
taking inferior limits:

∀ξ ∈ OrdT (t)ξ = lim inf
r→t

T (r)ξ;

S(t) = lim inf
r→t

S(r);

H(t) = lim inf
s→t,S(s)=S(t)

H(s).

The α-computation is obviously recursively determined by the initial tape contents
T (0) and the program P . We call it the α-computation by P with input T (0). If
the α-computation stops, θ = β + 1 is a successor ordinal and T (β) is the final
tape content. In this case we say that P computes T (β) from T (0) and write
P : T (0) 7→ T (β).

Sets A ⊆ α may be coded by their characteristic functions χA : α → 2, χx(ξ) = 1
iff ξ ∈ A.

Definition 5. A partial function F : α ⇀ α is α-computable iff there is a program
P and a finite set p ⊆ α of parameters such that for all δ < α:
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− if δ ∈ dom(F ) then the α-computation with initial tape contents T (0) =
χp∪{2·δ} stops and P : χp∪{2·δ} 7→ χ{F (δ)}; note that we use “even” ordinals
to code the input δ, the parameter set p would typically consist of “odd”
ordinals;

− if δ 6∈ dom(F ) then the α-computation with initial tape contents T (0) =
χp∪{2·δ} does not stop.

A set A ⊆ α is α-computable iff its characteristic function χA : α → 2 is α-
computable. A set A ⊆ α is α-computably enumerable iff A = dom(F ) for some
α-computable partial function F : α ⇀ 2.

2. α-computations inside Lα

In general, recursion theory subdivides recursions and definitions into minute ele-
mentary computation steps. Thus computations are highly absolute between models
of (weak) set theories and we get:

Lemma 6. Let P be a program and let T (0) : α→ 2 be an initial tape content which
is Σ1-definable in (Lα,∈) from parameters. Let S : θ → ω,H : θ → α, T : θ → (α2)
be the α-computation by P with input T (0). Then:

(1) S,H, T is the α-computation by P with input T (0) as computed in the model
(Lα,∈).

(2) S,H, T are Σ1-definable in (Lα,∈) from parameters.
(3) If A ⊆ α is α-recursively enumerable then it is Σ1(Lα) in parameters.
(4) If A ⊆ α is α-recursive then it is ∆1(Lα) in parameters.

So we have proved one half of the Equivalence Theorem 1.

3. The bounded truth predicate for Lα

For the converse we have to analyse Kurt Gödel’s constructible hierarchy using
ordinal computability. The inner model L of constructible sets is defined as the
union of a hierarchy of levels Lδ:

L =
⋃

δ∈Ord

Lδ

where the hierarchy is defined by: L0 = ∅, Lδ =
⋃

γ<δ Lγ for limit ordinals δ, and
Lγ+1 =the set of all sets which are first-order definable with parameters in the
structure (Lγ ,∈). The standard reference to the theory of the model L is the book
[1] by K. Devlin. We consider in particular the model

Lα =
⋃

γ<α

Lγ

To make Lα accessible to an α-Turing machine we introduce a language with
symbols (, ), {, }, |,∈,=,∧,¬,∀,∃ and variables v0, v1, . . .. Define (bounded) formu-
las and (bounded) terms by a common recursion on the lenghts of words formed
from these symbols:

− the variables v0, v1, . . . are terms;
− if s and t are terms then s = t and s ∈ t are formulas;
− if ϕ and ψ are formulas then ¬ϕ, (ϕ ∧ ψ), ∀vi ∈ vjϕ and ∃vi ∈ vjϕ are

formulas;
− if ϕ is a formula then {vi ∈ vj |ϕ} is a term.

For terms and formulas of this language define free and bound variables:
− free(vi) = {vi},bound(vi) = ∅;
− free(s = t) = free(s ∈ t) = free(s) ∪ free(t);
− bound(s = t) = bound(s ∈ t) = bound(s) ∪ bound(t);
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− free(¬ϕ) = free(ϕ),bound(¬ϕ) = bound(ϕ);
− free((ϕ ∧ ψ)) = free(ϕ) ∪ free(ψ),bound((ϕ ∧ ψ)) = bound(ϕ) ∪ bound(ψ);
− free(∀vi ∈ vjϕ) = free(∃vi ∈ vjϕ) = free({vi ∈ vj |ϕ}) = (free(ϕ) ∪ {vj}) \
{vi};

− bound(∀vi ∈ vjϕ) = bound(∃vi ∈ vjϕ) = bound({vi ∈ vj |ϕ}) =
= bound(ϕ) ∪ {vi}.

For technical reasons we will be interested in terms and formulas in which
− no bound variable occurs free,
− every free variable occurs exactly once.

Such terms and formulas are called tidy ; with tidy formulas one avoids having
to deal with the interpretation of one free variable at different positions within a
formula.
An assignment for a term t or formula ϕ is a finite sequence a : k → V so that for
every free variable vi of t or ϕ we have i < k; a(i) will be the interpretation of vi.
The value of t or the truth value of ϕ is determined by the assignment a. We write
t[a] and ϕ[a] for the values of t and ϕ under the assignment a.
Concerning the constructible hierarchy L, it is shown by an easy induction on
γ that every element of Lγ is the interpretation t[(Lγ0 , Lγ1 , . . . , Lγk−1)] of some
tidy term t with an assignment (Lγ0 , Lγ1 , . . . , Lγk−1) whose values are constructible
levels Lγi

with γ0, . . . , γk−1 < γ. This will allow to reduce bounded quantifications
∀v ∈ Lγ or ∃v ∈ Lγ to the substitution of terms of lesser complexity. Moreover,
the truth of (bounded) formulas in L is captured by tidy bounded formulas of the
form ϕ[(Lγ0 , Lγ1 , . . . , Lγk−1)].
We shall code an assignment of the form (Lγ0 , Lγ1 , . . . , Lγk−1) by its sequence of
ordinal indices, i.e., we write t[(γ0, γ1, . . . , γk−1)] or ϕ[(γ0, γ1, . . . , γk−1)] instead of
t[(Lγ0 , Lγ1 , . . . , Lγk−1)] or ϕ[(Lγ0 , Lγ1 , . . . , Lγk−1)]. The relevant assignments are
thus elements of Ord<ω.
We define a bounded truth function W for the constructible hierarchy on the class

A = {(a, ϕ)|a ∈ Ord<ω, ϕ is a tidy bounded formula, free(ϕ) ⊆ dom(a)}
of all “tidy pairs” of assignments and formulas. Define the bounded constructible
truth function W : A→ 2 by

W (a, ϕ) = 1 iff ϕ[a].

In [2] we showed:

Lemma 7. The bounded truth function W for the constructible universe is ordinal
computable.

Restricting all considerations to α yields

Lemma 8. The bounded truth function W � Lα for Lα is α-computable.

This yields the Equivalence Theorem 1:

Lemma 9. If A ⊆ α is Σ1(Lα) in parameters then A is α-computably enumerable.
If A ⊆ α is ∆1(Lα) in parameters then A is α-computable.

Proof. Consider a Σ1(Lα)-definition of A ⊆ α:

ξ ∈ A↔ ∃y ∈ LαLα |= ϕ[ξ, y,~a]

where ϕ is a bounded formulas. This is equivalent to

ξ ∈ A↔ ∃β < αLβ |= ∃yϕ[ξ, y,~a]

and
ξ ∈ A↔ ∃β < αW ((ξ, β,~a), ϕ∗)
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where ϕ∗ is an appropriate tidy formula.
Now A is α-computably enumerable, due to the following “search procedure”: for
ξ < α search for the smallest β < α such that

W ((ξ, β,~a), ϕ∗);

if the search succeeds, stop, otherwise continue.
For the second part, let A ⊆ α be ∆1(Lα) in parameters. Then A and α \ A are
α-computably enumerable. By standard arguments, A is α-computable. �

4. Reducibilities

The above considerations can all be relativized to a given oracle set B ⊆ α. One
could, e.g., provide B on an extra input tape. This leads to a natural reducibility

A ≺ B iff A is α-computable in B.

Note that so far we have not really used the admissibility of α but only that α is
closed under ordinal multiplication. We obtain:

Proposition 10. A ≺ B iff A is ∆1(Lα(B)) in parameters, where (Lδ(B))δ∈Ord

is the constructible hierarchy relativized to B.

The α-recursion theory of [4] uses the following two reducibilities for subsets of α:

Definition 11.

(1) A is weakly α-recursive in B, A 6wα B, iff there exists an α-recursively
enumerable set R ⊆ Lα such that for all γ < α

γ ∈ A iff ∃H ⊆ B∃J ⊆ α \B(H,J, γ, 1) ∈ R

and

γ 6∈ A iff ∃H ⊆ B∃J ⊆ α \B(H,J, γ, 0) ∈ R.

(2) A is α-recursive in B, A 6α B, iff there exist α-recursively enumerable sets
R0, R1 ⊆ Lα such that for all K ∈ Lα

K ⊆ A iff ∃H ⊆ B∃J ⊆ α \B(H,J,K) ∈ R0

and

K ⊆ α \A iff ∃H ⊆ B∃J ⊆ α \B(H,J,K) ∈ R1.

It is easy to see that A 6α B implies A 6wα B. If A 6wα B then an inspec-
tion of the conditions and part (1) of the definition shows immediately that A is
∆1(Lα(B)), i.e., A ≺ B, which proves Theorem 2.
We conjecture that Post’s problem holds for ≺: there are α-computably enumer-
able sets A,B ⊆ α such that

A ⊀ B and B ⊀ A.

This would immediately yield the Sacks-Simpson theorem [5]

A 
wα B and B 
wα A

which is the positive solution to Post’s problem in α-recursion theory.
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Aspects of Ordinal Computability

Discussion session
Tuesday, 16:30-17:30

This is a list of topics covered in the open discussion session.

1. Machine Models

1.1. Basic Models of Computation

1.1.1. Turing Machines

1.1.2. Register Machines

1.1.3. Stack Machines

1.1.4. Random Access Machines

1.1.5. Determinism / Non-determinism

1.1.6. ...

1.2. Resources provided for Computations

1.2.1. Space ω / space α ∈ Ord / space Ord

1.2.2. Time ω / space α ∈ Ord / space Ord

1.2.3. Resources dependent on the input size (Complexities)

1.2.4. ...

1.3. Specific Issues

1.3.1. Write once / write finitely often
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1.3.2. Monotone headpositions / Register contents / ...

1.3.2. Tapes / Alphabets / Usage of tapes

1.3.3. Limit rules

1.3.3. ...

2. Programs

2.1. Structuring of programs

3. Relations to other theories

3.1. Descriptive Set Theory

3.2. Constructibility Theory

3.2.1. Coding L by ordinal machines

3.2.2. Applications to L

3.2.2.1. Construction of Silver machines by ordinal computability

3.2.2.2. Proof of 2 via Silver machines

3.2.2.3. Reconstructing L-constructions as ordinal computations

3.3. Recursion Theory

3.3.1. α-Recursion Theory

3.3.1.1. Reconstructing results by ordinal computations

3.3.2. E-recursion

3.3.3. Aiming at weak machine models

3.4. Proof Theory

3.4.1. Background theories for ordinal computations

3.4.1.1. Admissible set theory

3.4.1.2. Constructive background theories

3.4.2. Self-creation and -verification of ordinals required for computations

3.5. Model Theory

3.5.1. Infinite Time Computable Model Theory
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3.5.2. Computable Equivalence Relations

3.6. Borel Programming

4. Relations to Physics

4.1. Hypercomputations


