The Isar Proof Language
after Two Decades

Makarius Wenzel, Augsburg
https:/ /sketis.net

February 2020

https://sketis.net

Introduction

Isar language: Philosophy

Isar: Intelligible semi-automated reasoning

human-readable and machine-checkable proofs
by simple interpretation process

extensible automation via proof methods (not “tactics”)
language to write proof texts (not “scripts”, not “code”)

source text close to presented document via Isabelle symbols
(not “Unicode")

syntax stylistically inspired by SML'90, Haskell'98, Perl 4
many add-on tools: notably Sledgehammer
advanced document editor: Prover IDE (PIDE)

Isar is the primary language of Isabelle, all others are
embedded sublanguages (e.g. ML, type, term, document)

Introduction

History of Structured Proof Languages

e Mizar (Trybulec ~ 1973, published 1993)
e Mizar-MSE (Trybulec / Rudnicki 1982, published 1993)

e experimental “Mizar modes”, e.g. for HOL-Light
(Harrison 1996) (Wiedijk 2001)

e experimental “declarative modes”, e.g. for Coq, Matita
e DECLARE language and system (Syme 1997/1998)

e Isabelle/Isar (Wenzel 1999-2001, 2015/2016)

e SSReflect proof language for Coq (Gonthier = 2005)

e Lean (De Moura 2013, published 2015)

Introduction

History of the Isar Proof Language (1)

1999: first usable version

e primary notion of proof document (not “proof script™)
e secondary notion of proof method (not “tactic”)

e subproofs with refinement: proof m; ... ged ms

e nested proof refinement: fix r assume A x show B z
e local facts: note, have

e chaining of facts: then, with, from, using

2000-2001: various refinements

e generalized elimination: obtain
e support for induction: case and induct method
e calculations: also, finally, moreover, ultimately

Introduction

History of the Isar Proof Language (2)

2006: minor reforms
e unfolding, obtains
e literal facts: (prop)
e advanced induct method

2015/2016: major renovations

e structured statements: have B z if A x for z

e elimination statements: consider z where A z | Bz | C x
e refined cases method

e structured goal refinement: subgoal premises prems for x ...

e explicit facts for proof methods: (use * in m)

Introduction

History of keywords (1)

® have

— origin: DECLARE
— re-used in Isar, but independent goal statement
— later re-used in SSReflect and Lean

e hence / thus
— origin: Mizar (slightly odd English)
— re-interpreted in HOL-Light Mizar mode and DECLARE
— re-used in Isar (1999), but legacy since 2000

e fix / assume / show

— origin: Isar (central concept)
— note: assume in Mizar and others has different meaning

Introduction

History of keywords (2)

e obtain

— origin: Isar (2000)

— re-used in Lean (phased out?)
e sorry

— origin: Mizar-MSE (as output message)
— re-interpreted in Isar
— re-used in Lean

Introduction

Examples

Elementary proofs in Isar (1)

lemma iff_contradiction:
assumes *: = 4 «—— A
shows Fulse
proof —
have *x: = A
proof
assume A
with x have — A4 ..
from this and (A) show Fulse ..
ged
with x have A ..
with xx show Fulse ..
ged

Examples

Elementary proofs in Isar (2)

theorem — Cantor: Af :: 'a = ‘a = bool. VA. 3z. A = fx
proof
assume 3f :: 'a = ‘a = bool. VA. Jx. A= fx

then obtain f :: ‘a = 'a = bool where *: VA. 32. A = fux ..

let D = \z. = fzx

from x have dz. ?D = fuz ..

then obtain a where ?D = fa ..

then have ?D o <— f a a by (rule arg_cong)

then have = faa <— faa.

then show Fulse by (rule iff_contradiction)
ged

Examples

10

Automated proof tools in Isar (3)

theorem — Cantor: Af :: 'a = 'a set. VA. 3z. A = fz
proof
assume 3f :: 'a = ‘aset. VA. 3z. A= fzx
then obtain f :: ‘a = 'a set where x: VA. 32. A = fz ..
let D ={z. 2 & fz}
from x obtain ¢ where 7D = f a by blast
moreover have a € 7D <— a & f a by blast
ultimately show Fulse by blast
ged

Notes:

e adequate tools: weaker automation is usually faster, more stable,
more informative

e adequate facts: indicate upper bound of local facts for each step

Examples 11

Proof context without goal statement

notepad
begin
fix A B C :: bool
assume A A B
then obtain B and A4 ..
then have B A A ..
end

Notes:

e implicit “thesis reduction” does not exist in Isar

e explicit goal refinement works via show
usually in the context of fix / assume

Examples

12

Implicit context for local statements

notepad
begin
have P n for n :: nat
proof (induct n)
show P O (proof)
show P (Suc n) if P n for n (proof)
ged
end

Examples

13

Proof via cases rule

notepad
begin
fix x y :: nat
considert =0 |z =1|xz > 2and evenz | z > 3 and odd z
by (fastforce dest: antisym iff : not_less_eq_eq)
then have C
proof cases
case 1 show ?thesis using (x = 0) (proof)
next
case 2 show ?thesis using (x = 1) (proof)
next
case 3 show ?thesis using (x > 2) and (even x) (proof)
next
case 4 show ?thesis using (z > 3) and (odd z) (proof)
ged
end

Examples

14

Structured statements

Structured assumptions

Postfix notation for Horn-clauses:

e assume B if A; and A, for a; a-

— corresponds to assume Aa; as. Ay = Ay =— B
— vacuous quantifiers are omitted

e similar for inductive, definition, function etc.

Structured statements

16

Example: structured specifications

inductive_set star (_x [100] 100) for R :: (‘a x 'a) set
where

base: (z,) € Rx for x
| step: (xz, z) € R if (z, y) € Rand (y, z) € R* for x y 2

function gcd :: nat = nat = nat

where
gecdr 0 =2
| ged 0y =y

| ged (Suc x) (Suc y) = ged (Sucz) (y — x) if z < y
| ged (Suc z) (Suc y) = ged (x — y) (Sucy) if —mz < y

Structured statements

17

Structured conclusions (goals)

Notation for Isar “eigen-context”:

e premises: have B if A, A,
e parameters: have B for a; as

e corresponds to { fix a; as assume that: A; As have B }
e analogous to lemma fixes a; as assumes that: A; A> shows B

Structured statements 18

Example: Natural Deduction
with structured conclusions

e conjunction introduction:
have A N B if A and B

e existential introduction:
have dx. Bz if B a for a

e disjunction elimination:
from (AV B)have C if A— (C'and B — (C for C

e existential elimination:
from Jz. B x) have C if Ax. Bz — C for C

Structured statements 19

Elimination statements

consider * where A T | 7 where B7y |
have thesis
if AT. A T = thesis
and \y. B y = thesis
for thesis

Examples:

e existential elimination:
from dz. B) consider z where B z

e conjunction elimination:
from (A A B) consider A and B

e disjunction elimination:
from (A vV B) consider A | B

Structured statements

20

Elimination and cases

e method “cases” detects its rule from chained facts
e command “case’ allows name and attribute specification

Example:

consider x where A z | y where B y (proof)
then have something
proof cases
case prems: 1
show ?thesis using prems (proof)
next
case prems: 2
show ?thesis using prems (proof)
ged

Structured statements

21

Obtain

obtain = where A T (proof) =
consider = where A T (proof)
fix T assume* A T

e old meaning is unchanged, but foundation simplified
e is patterns now supported (with A-lifting over the parameters)
e if / for notation available as well

Structured statements

Isar Proof Documents

Common syntax for embedded languages

Outer theory syntax:

e keywords: user-defined commands (e.g. definition, inductive)
e identifiers, numerals etc.

e quoted strings "source": nesting requires backslash-escapes

e cartouches (source): arbitrary nesting without no escapes

Example:

ML (val t = term {\x. x < y + z— comment in term) — comment in ML)

Isar Proof Documents 24

Isabelle symbols

e plain-text representation of infinitely many named symbols:
\<NAME> or \<"NAME>, e.g. \<alpha> or \<"bold>
e default rendering of finitely many symbols in KTEX, HTML, GUI

e bundled Isabelle fonts for quality and reliability of display

Notes:
e |sabelle symbols are conceptually closer to KTEX than to Unicode

e Unicode cannot be “trusted”: complexity, confusion, drop-outs

Isar Proof Documents 25

Document text structure

Markup
e section headings (6 levels like in HTML):
chapter, section, subsection, . . . , subparagraph

o text blocks: text, txt, text_raw
e raw IATEX macros (rare)

Markdown
e implicit paragraphs and lists: itemize, enumerate, description

Formal comments
e marginal comments: — (text)

e canceled text: cancel (text) e.g. bd
o raw KTEX: latex (text) e.g. limy, o0 Y i o ¢

Isar Proof Documents

26

Document antiquotations

full form: @{name |options| arguments ...}
e.g. Q{term [show_types| (Suc n)} for Suc (n::nat)

short form:

1. cartouche argument: \<"“name>(arqument)
e.g. term (Suc n) for Suc n

2. implicit standard name: (argument)
e.g. (Suc n) for Suc n (unchecked)
e.g. (Suc Suc) for Suc Suc (unchecked)

3. no argument: \<“name>

Notable antiquotations:

e bold, emph, verbatim, footnote: text styles (with proper nesting)
e cite: formal BibTEX items
e path, file, dir, url, doc: system resources

Isar Proof Documents 27

Discussion

Good versus Bad ldeas

Good:

e named Isabelle symbols: closer to IKTEX than Unicode
e control symbols and text cartouches
e proof methods as parameter to the language

Bad:

e hybrid attributes: joint syntax for

— declaration attributes, e.g. [simp]
— rule attributes, e.g. [rule_format]

e instantiation as rule attributes, e.g. |where], |of]

e alternative ASCII syntax, e.g. A —> Bor A — B
better: ASCII as input method only

Discussion 29

