Tactics in Lean

Floris van Doorn (University of Pittsburgh)

Floris van Doorn

University of Pittsburgh

February 2, 2020

Tactics in Lean

February 2, 2020

1/16

Mathlib contents

Subdirectory LOC Decls Subdirectory LOC Decls
data 41849 10695 linear_algebra 4511 805
topology 17382 2709 computability 4205 575
tactic 12184 1679 group_theory 4191 1094
algebra 9830 2794 category 1770 389
analysis 7962 1237 number_theory 1394 228
order 6526 1542 logic 1195 403
category_theory 6299 1560 field_theory 1002 121
set_theory 6163 1394 geometry 848 70
measure_theory 6113 926 meta 784 135
ring_theory 5683 1080 algebraic_geometry 194 29

Total: 140k LOC (excluding whitespace/comments) and 34k declarations

(as of December).

Floris van Doorn (University of Pittsburgh)

Tactics in Lean

February 2, 2020

2/16

norm_num

Kevin Buzzard (27 Sep 2017) | want to make these sorts of calculations

trivial:

example :
example :
example :
example :
example :
example :

(@3 :

(6

(2 :

(5 :

(6

R)/4)-12)<6
R) + 9 =15
R) *2+3=7":
R) =8
: R) < 10
R)/2 > 3

7 :

Floris van Doorn (University of Pittsburgh)

sorry
sorry
sorry
sorry

= sorry
= sorry

Tactics in Lean

February 2, 2020

3/16

norm_num

Mario Carneiro (2 Nov 2017) norm_num now solves all these goals.

example : - (7-2)/(2*3) > (1:R) + 2/(3°2) := by norm_num
example : (6 : R) + 9 = 15 := by norm_num
example : (2 : R)/4 + 4 = 3*3/2 := by norm_num
example : (((3 : R)/4)-12)<6 := by norm_num
example : (6 : R) # 8 := by norm_num
example : (10 : R) > 7 := by norm_num
example : (2 : R) * 2 +3 =7 := by norm_num
example : (6 : R) < 10 := by norm_num
example : (7 : R)/2 > 3 := by norm_num
example : (1103 : Z) < (2102 : Z) := by norm_num

example : (110474 : Z) < (210485 : Z) := by norm_num

example : (11047462383473829263 : 7Z) < (21048574677772382462 : 7Z) :=

by norm_num

example : (210485742382937847263 : 7Z) < (1104857462382937847262 : 7Z) :=

by norm_num

example : (210485987642382937847263 : N) < (11048512347462382937847262 : N)
:= by norm_num

example : (210485987642382937847263 : Q) < (11048512347462382937847262 : Q)
:= by norm_num

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 4/16

norm_num

Kevin Buzzard (11 Nov 2017) | love norm_num, | even use it to prove
0 < 1 nowadays. | use it to prove everything. It's perfect. Many thanks
for norm_num.

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 5/16

norm_cast

Johan Commelin (13 Mar 2019) It's quite humiliating, but how do | kill:

example (p : N) [p.prime] : (p : R) > 1 := sorry

Paul-Nicolas Madelaine (9 Apr 2019) Here is the first version of the cast
tactic I've been working on.

example (a : N) (b : Z) : (a: Q) <b < (a: R) <b := by norm_cast

example (a b : Z) ta=b < (a: Q) =0b := by norm_cast
example (a b : N) : (a:Z)+b=(a+b:N) :=by norm_cast

example (a : N) (b : Q) : (a: C) *b=((a *b) : Q) := by norm_cast
example (ab : N) : (((a:Z) : Q@ :R) +b=1(a+ (b: Z)) :=

by norm_cast

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 6/16

lift

Johan Commelin (9 Aug 2019) Suppose thatn : Zandh : n > 0.
Then every mathematician (and especially if they are new to Lean) wants
tosayn : N. But that is not possible.

Floris van Doorn (10 Apr 2019) PR'd the 1ift tactic.

example {P : Z — Prop} (m» : Z) (hn : n > 0) : Pn :=
begin

lift n to N using hn,

/- New goal:

P : Z — Prop,

n : N

- Ptn -/

sorry
end

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 7/16

Other examples

Other useful tactics that have been implemented:

library_search searches the library to close the current goal.
suggest searches the library for a lemma that is applicable.

simpa using h closes the goal by simplifying both the goal and h to
the same expression.

abel, ring, linarith, omega: domain-specific automation.

tidy, finish, solve_by_elim: general purpose automation .

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 8/16

rcases and rintro

cases destructs hypotheses, for example if p : A x B then
cases p with a b gives two new hypothesisa : Aand b : B.

rcases and rintro perform these operations recursively.
Before:

cases h with y y2, cases y2 with yS hy, cases yS with yO yx,
After:

rcases h with (y, (y0, yx), hy),

Before:

intro p, cases p with p; p2, cases p; with 1 hl, cases p2 with u hu,

After:

rintro ((1, hl), (u, hu)),

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020

9/16

simps

Before:

def yoneda C = (C°° = Type v1) :=
{ obj := X X,
{obj := XY, unop Y — X,
map := A YY f g, f.unop > g,
/- (two fields omitted for readability) -/},
map := A XX f, {app:i=AYg, g>fl}}

@[simp] lemma obj_obj (X : C) (Y : C°P)
(yoneda.obj X).obj Y = (unop Y — X) := rfl

@[simp] lemma obj_map (X : C) {Y Y : C®P} (f : Y — Y/)
(yoneda.obj X).map £ = A\ g, f.unop > g := rfl

@[simp] lemma map_app {X X’ : C} (f : X — X') (Y : C°P)
(yoneda.map f).app Y = A g, g > f := rfl

After:

Q@[simps] def yoneda : C = (C°® = Type vy) :=
/- (definition is unchanged) -/

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 10/16

#lint

#1lint is a semantic linter: it looks through the current file and looks for
common mistakes in the declarations. Some mistakes that it catches:

@ Have a hypothesis in a lemma that is never used;
A declaration is incorrectly marked as a lemma or definition;

°
@ A definition without documentation string.
°

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 11/16

localized notation

In Lean 3 notation is either local (to the current file or section) or global.
You often want to use notation repeatedly, without it being global

localized "notation ‘w' := ordinal.omega" in ordinal

You can get all notation in the ordinal locale by writing
open_locale ordinal.

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 12/16

Writing Tactics: expr

We have reflection of expressions into Lean:

meta inductive expr (elaborated : bool := tt)
nat — expr
level — expr

var {3 :
sort {r
const {3 :
mvar
local_const :
app
lam
pi
elet
macro

For example,

A (x : N), nat.

is reflected as

(lam x default

Floris van Doorn (University of Pittsburgh)

name

: name

name

: expr
: name
: name
: name
: macro_def — list expr — expr

I

—

add x x

list level — expr

name — expr — expr

name — binder_info — expr — expr
expr — expr

binder_info — expr — expr — expr
binder_info — expr — expr — expr
expr — expr — exXpr — expr

(const nat []) (app (app (const nat.add []) (var 0)) (var 0)))

Tactics in Lean

February 2, 2020

13/16

Writing Tactics: tactic

The tactic monad allows us to define custom tactics:

meta def tactic := interaction_monad tactic_state

A tactic (¢t : tactic «) takes the current tactic state and runs a
program to either
@ succeed, and return the new tactic state and an element of «;

o fail with an error message.

There are hooks for tactics implemented in C++:

meta constant infer_type : expr — tactic expr

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020

14 /16

assumption

This allows us to write our own tactics.

/-- ‘find_same_type t es' tries to find in ‘es' an ezpression with type
definitionally equal to ‘t' -/
meta def find_same_type : expr — list expr — tactic expr
el := failed
| e (H:: Hs) :=
do t « infer_type H,
(unify e t >> return H) <|> find_same_type e Hs

/-- ‘assumption' closes the goal if there is a hypothesis with the same type as
the goal. -/
meta def assumption : tactic unit :=
do { ctx <« local_context,
t <« target,
H <« find_same_type t ctx,
exact H }
<|> fail "assumption tactic failed"

example {p q : Prop} (h; : pVv q (h2 : @ : q := by assumption

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 15/16

Demo

