
Tactics in Lean

Floris van Doorn

University of Pittsburgh

February 2, 2020

L N

AE

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 1 / 16



Mathlib contents

Subdirectory LOC Decls Subdirectory LOC Decls

data 41849 10695 linear algebra 4511 805

topology 17382 2709 computability 4205 575

tactic 12184 1679 group theory 4191 1094

algebra 9830 2794 category 1770 389

analysis 7962 1237 number theory 1394 228

order 6526 1542 logic 1195 403

category theory 6299 1560 field theory 1002 121

set theory 6163 1394 geometry 848 70

measure theory 6113 926 meta 784 135

ring theory 5683 1080 algebraic geometry 194 29

Total: 140k LOC (excluding whitespace/comments) and 34k declarations
(as of December).

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 2 / 16



norm num

Kevin Buzzard (27 Sep 2017) I want to make these sorts of calculations
trivial:

example : (((3 : R)/4)-12)<6 := sorry

example : (6 : R) + 9 = 15 := sorry

example : (2 : R) ∗ 2 + 3 = 7 := sorry

example : (5 : R) ≠ 8 := sorry

example : (6 : R) < 10 := sorry

example : (7 : R)/2 > 3 := sorry

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 3 / 16



norm num

Mario Carneiro (2 Nov 2017) norm_num now solves all these goals.

example : ¬ (7-2)/(2∗3) ≥ (1:R) + 2/(3^2) := by norm_num

example : (6 : R) + 9 = 15 := by norm_num

example : (2 : R)/4 + 4 = 3∗3/2 := by norm_num

example : (((3 : R)/4)-12)<6 := by norm_num

example : (5 : R) ≠ 8 := by norm_num

example : (10 : R) > 7 := by norm_num

example : (2 : R) ∗ 2 + 3 = 7 := by norm_num

example : (6 : R) < 10 := by norm_num

example : (7 : R)/2 > 3 := by norm_num

example : (1103 : Z) ≤ (2102 : Z) := by norm_num

example : (110474 : Z) ≤ (210485 : Z) := by norm_num

example : (11047462383473829263 : Z) ≤ (21048574677772382462 : Z) :=

by norm_num

example : (210485742382937847263 : Z) ≤ (1104857462382937847262 : Z) :=

by norm_num

example : (210485987642382937847263 : N) ≤ (11048512347462382937847262 : N)
:= by norm_num

example : (210485987642382937847263 : Q) ≤ (11048512347462382937847262 : Q)
:= by norm_num

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 4 / 16



norm num

Kevin Buzzard (11 Nov 2017) I love norm_num, I even use it to prove
0 < 1 nowadays. I use it to prove everything. It’s perfect. Many thanks
for norm_num.

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 5 / 16



norm cast

Johan Commelin (13 Mar 2019) It’s quite humiliating, but how do I kill:

example (p : N) [p.prime] : (p : R) > 1 := sorry

Paul-Nicolas Madelaine (9 Apr 2019) Here is the first version of the cast
tactic I’ve been working on.

example (a : N) (b : Z) : (a : Q) < b ↔ (a : R) < b := by norm_cast

example (a b : Z) : a = b ↔ (a : Q) = b := by norm_cast

example (a b : N) : (a : Z) + b = (a + b : N) := by norm_cast

example (a : N) (b : Q) : (a : C) ∗ b = ((a ∗ b) : Q) := by norm_cast

example (a b : N) : (((a : Z) : Q) : R) + b = (a + (b : Z)) :=

by norm_cast

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 6 / 16



lift

Johan Commelin (9 Aug 2019) Suppose that n : Z and h : n ≥ 0.
Then every mathematician (and especially if they are new to Lean) wants
to say n : N. But that is not possible.

Floris van Doorn (10 Apr 2019) PR’d the lift tactic.

example {P : Z → Prop} (n : Z) (hn : n ≥ 0) : P n :=

begin

lift n to N using hn,

/- New goal:

P : Z → Prop,

n : N
⊢ P ↑n -/

sorry

end

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 7 / 16



Other examples

Other useful tactics that have been implemented:

library_search searches the library to close the current goal.

suggest searches the library for a lemma that is applicable.

simpa using h closes the goal by simplifying both the goal and h to
the same expression.

abel, ring, linarith, omega: domain-specific automation.

tidy, finish, solve_by_elim: general purpose automation .

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 8 / 16



rcases and rintro

cases destructs hypotheses, for example if p : A × B then
cases p with a b gives two new hypothesis a : A and b : B.

rcases and rintro perform these operations recursively.
Before:

cases h with y y2, cases y2 with yS hy, cases yS with y0 yx,

After:

rcases h with ⟨y, ⟨y0, yx⟩, hy⟩,

Before:

intro p, cases p with p1 p2, cases p1 with l hl, cases p2 with u hu,

After:

rintro ⟨⟨l, hl⟩, ⟨u, hu⟩⟩,

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 9 / 16



simps

Before:

def yoneda C ⇒ (Cop ⇒ Type v1) :=

{ obj := λ X,

{ obj := λ Y, unop Y Ð→ X,

map := λ Y Y′ f g, f.unop ≫ g,

/- (two fields omitted for readability) -/ },

map := λ X X′ f, { app := λ Y g, g ≫ f } }

@[simp] lemma obj_obj (X : C) (Y : Cop) :

(yoneda.obj X).obj Y = (unop Y Ð→ X) := rfl

@[simp] lemma obj_map (X : C) {Y Y′ : Cop} (f : Y Ð→ Y′) :

(yoneda.obj X).map f = λ g, f.unop ≫ g := rfl

@[simp] lemma map_app {X X′ : C} (f : X Ð→ X′) (Y : Cop) :

(yoneda.map f).app Y = λ g, g ≫ f := rfl

After:

@[simps] def yoneda : C ⇒ (Cop ⇒ Type v1) :=

/- (definition is unchanged) -/

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 10 / 16



#lint

#lint is a semantic linter: it looks through the current file and looks for
common mistakes in the declarations. Some mistakes that it catches:

Have a hypothesis in a lemma that is never used;

A declaration is incorrectly marked as a lemma or definition;

A definition without documentation string.

⋯

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 11 / 16



localized notation

In Lean 3 notation is either local (to the current file or section) or global.
You often want to use notation repeatedly, without it being global

localized "notation ‵ω‵ := ordinal.omega" in ordinal

You can get all notation in the ordinal locale by writing
open_locale ordinal.

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 12 / 16



Writing Tactics: expr

We have reflection of expressions into Lean:

meta inductive expr (elaborated : bool := tt)

| var {} : nat → expr

| sort {} : level → expr

| const {} : name → list level → expr

| mvar : name → name → expr → expr

| local_const : name → name → binder_info → expr → expr

| app : expr → expr → expr

| lam : name → binder_info → expr → expr → expr

| pi : name → binder_info → expr → expr → expr

| elet : name → expr → expr → expr → expr

| macro : macro_def → list expr → expr

For example,

λ (x : N), nat.add x x

is reflected as

(lam x default (const nat []) (app (app (const nat.add []) (var 0)) (var 0)))

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 13 / 16



Writing Tactics: tactic

The tactic monad allows us to define custom tactics:

meta def tactic := interaction_monad tactic_state

A tactic (t : tactic α) takes the current tactic state and runs a
program to either

succeed, and return the new tactic state and an element of α;

fail with an error message.

There are hooks for tactics implemented in C++:

meta constant infer_type : expr → tactic expr

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 14 / 16



assumption

This allows us to write our own tactics.

/-- ‵find_same_type t es‵ tries to find in ‵es‵ an expression with type

definitionally equal to ‵t‵ -/

meta def find_same_type : expr → list expr → tactic expr

| e [] := failed

| e (H :: Hs) :=

do t ← infer_type H,

(unify e t >> return H) <|> find_same_type e Hs

/-- ‵assumption‵ closes the goal if there is a hypothesis with the same type as

the goal. -/

meta def assumption : tactic unit :=

do { ctx ← local_context,

t ← target,

H ← find_same_type t ctx,

exact H }

<|> fail "assumption tactic failed"

example {p q : Prop} (h1 : p ∨ q) (h2 : q) : q := by assumption

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 15 / 16



Demo

Demo

Floris van Doorn (University of Pittsburgh) Tactics in Lean February 2, 2020 16 / 16


