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• Logic ≈ about Logos, the science of Logos
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• If stones are cooked soft and tasty then I will eat them.

• If A then B.

• A→B

• Each of the statements A, B, and A→B can be false or true.

• The truth value |A| of A can take the values F (false) or T
(true).

• Can we determine |A→B| only from |A| and |B|?

• Abstract Boolean logic (George Boole, 1815-1864)
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Dr. Buchholz (right)
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• size(ℝ)=?

• Georg Cantor's cardinal numbers

ℵ0,ℵ1,…,ℵω,ℵω+1,…

• size(ℕ)=size({0,1,2,…}) =ℵ0

• The property size(ℝ)=ℵ1 is Cantor's continuum hypothesis.
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• Kurt Gödel (1937), Paul Cohen (1963): The size ofℝ cannot
be determined.

• Gödel proved: one cannot prove size(ℝ) ≠ℵ1 .

• Cohen proved: one cannot prove size(ℝ)=ℵ1 .

• The property “size(ℝ) =ℵ1” is independent of the usual
assumptions of mathematics.

• How can one prove that one cannot prove something?
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• Euclid's Proof of the infinity of primes

• For any finite set {p1,…,pr} of primes, consider the number
n=p1 p2…pr +1 . This n has a prime divisor p . But p is not
one of the pi ; otherwise p would be a divisor of n and of
the product p1 p2…pr , and thus also of the difference n−
p1 p2…pr =1, which is impossible. So a finite set {p1,…,pr}
cannot be the collection of all prime numbers.

• The proof uses natural and symbolic language.

• The proof uses natural argumentation based on properties
of division and prime numbers.
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to define what a proof is.

• Gödel's Completeness Theorem: Every valid mathematical
statement can be generated from the underlying assump-
tions by using the following proof rules:



A complete proof calculus:

Γ φ
Γ7 {ψ} φ Γ φ , if φB−−− Γ

Γ7 {φ} ψ
Γ φ→ψ

Γ φ
Γ φ→ψ
Γ ψ

Γ φ
Γ ¬φ
Γ ⊥

Γ7 {¬φ} ⊥
Γ φ

Γ φy
x

Γ ~xφ
, if yB−−−/ free(Γ7 {~xφ});

Γ ~xφ
Γ φ t

x

Γφ means that the formula φ holds under the assumptions in
the set of formulas Γ.
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Consequences of the completeness theorem:

• An ultimate criterion for validity of a statement φ under
the assumptions Γ is: provide a “calculation” in the calculus
which ends with Γφ .

• It is in principle possible to generate all valid statements by
enumerating all such calculations.

• This mechanical task can be carried out by computer.

• Automatic Theorem Proving (ATP) is in principle possible.



What can one take as general mathematical assumptions?



A sphere is built from 3D-points:



A 3D-point P is built from 3 real numbers x,y,z

x y z

P



A real number x is built from infinitely many decimals

33,46109683637459306250056892...

x



The decimal / number 5 is built from five objects

33,46109683637459306250056892...

x
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The universe of sets:

ℝℵ1

ℵ2

ℵ0

1
0
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−

z~u(uB−−−z←→u=x'u=y))
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A formalistic view of Mathematics:
Valid mathematical statements are exactly those that can be
generated by the following (15) proof rules:
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x 5 AB−−−V F[x]B−−−V ℕB−−−V

Γ φ
Γ7 {ψ} φ Γ φ , if φB−−−Γ Γ7 {φ} ψ

Γ φ →ψ

Γ φ
Γ φ →ψ
Γ ψ

Γ φ
Γ ¬φ
Γ ⊥

Γ7 {¬φ} ⊥
Γ φ

Γ φ y
x

Γ ~xφ
, if yB−−−/ free(Γ7 {~xφ})

Γ ~xφ
Γ φ t

x



Gödel's constructible universe:
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Cohen's forcing model:

ℝℵ1

ℵ2

ℵ0

1
0
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• Constructible models are “minimal” submodels of given
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• Forcing models are “minimal” extensions of given models.

• There are many models of set theory.

• Research in axiomatic set theory can be viewed as the
exploration of a “multiverse” of models of set theory.



A multiverse of set theoretic universes



Keith Devlin Ronald Jensen Robert Solovay

In my Diploma / Master / PhD / Habilitation-Theses I have studied the
constructible models L#/ Lμ/ Kshort/ the core model for one strong cardinal.
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The multiverse
Anne Fernengel
(2020)

An Easton-like
Theorem for all
Cardinals in ZF



Werner Müller

Can one really carry out mathematics completely formal?

xB−−−y(yB−−−x→x=y {x,y}B−−− V 7 xB−−− V 𝒫(x)B−−− V
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• Complexity

• Finite numbers can be very large.

• A microprocessor in a modern laptop combines >
100000000 basic Boolean functions.

• An adult human consists of ~1029 atoms.

• A common representation of the natural number n in set
theory requires > 2n symbols.



• Formal mathematics



• Formal mathematics

• Carry out mathematics completely within systems of formal
proof rules



• Formal mathematics

• Carry out mathematics completely within systems of formal
proof rules

• Requires compact representations of mathematical objects
and statements



• Formal mathematics

• Carry out mathematics completely within systems of formal
proof rules

• Requires compact representations of mathematical objects
and statements

• (Decimal notation is an efficient representation for numbers)



• Formal mathematics

• Carry out mathematics completely within systems of formal
proof rules

• Requires compact representations of mathematical objects
and statements

• (Decimal notation is an efficient representation for numbers)

• Can only done efficiently with computers



• Formal mathematics

• Carry out mathematics completely within systems of formal
proof rules

• Requires compact representations of mathematical objects
and statements

• (Decimal notation is an efficient representation for numbers)

• Can only done efficiently with computers

• Mizar, Isabelle, Coq, ... , Lean



• Formal mathematics

• Carry out mathematics completely within systems of formal
proof rules

• Requires compact representations of mathematical objects
and statements

• (Decimal notation is an efficient representation for numbers)

• Can only done efficiently with computers

• Mizar, Isabelle, Coq, ... , Lean

• 4-colour theorem, Kepler conjecture, .. .
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• Mizar-system

• Checking statements in a Pascal-like input language

• Large library of ~ 60000 theorems

• with Patrick Braselmann and Julian Schlöder: Formalization
of the Gödel completeness theorem



theorem :: GOEDELCP:38

for Al being QC-alphabet
for X being Subset of (CQC-WFF Al)
for p being Element of CQC-WFF Al
st Al is countable & still_not-bound_in X is finite & X |= p

holds X |- p

proof end;
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• Technical, difficult to read proof texts

• Can one use a more natural input language?
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• together with Bernhard Schröder

• Linguistic study of mathematical texts

• Grammatical parsing of texts

• Controlled natural language (CNL) for mathematics
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• PhD thesis of Marcos Cramer

• Prototypical “mathematical proof assistant” based on a CNL
and formal logic

• Formalization of the first chapter of Edmund Landau's
Grundzüge der Analysis

• Problems with longer proofs and proof organization
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• SAD (System for Automated Deduction)

• Started in Kiev in the 1960's

• Alexander Lyaletski, Andrei Paskevich, Konstantin Ver-
chinine

• PhD thesis of Paskevich: working prototype

• Naproche-SAD



Proofs from THE BOOK versus Naproche-SAD

For any finite set {p1,…,pr} of primes,

consider the number n = p1 p2…pr + 1 .
This n has a prime divisor p .
But p is not one of the pi ;

otherwise

p would be a divisor of n and of the
product p1p2…pr , and thus also of the dif-
ference n−p1 p2…pr = 1, which is impos-
sible.

So a finite set {p1, …, pr} cannot be the
collection of all prime numbers.

Let A be a finite set of prime numbers.
Take a sequence P and a natural number
r such that A = {P1,…,Pr}.
Take n= P1…Pr + 1.
Take a prime divisor p of n.
Let us show that p is not an element of A.
Assume the contrary. Take i such that
1⩽ i ⩽ r and p= Pi.
{1, …, r} B−−−Dom P and Ran P B−−−ℕ . Pi
divides P1…Pr (by MultProd). Then p
divides 1 (by DivMin). Contradiction.
qed.

Hence A is not the set of prime numbers.
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undefinirte Begriffe (wie Zahl, Punkt, Ding, Menge) an die Spitze zu stellen, um
deren actuelle oder psychologische oder anschauliche Bedeutung wir uns nicht
kümmern, und ebenso unbewiesene Sätze (Axiome), deren actuelle Richtigkeit uns
nichts angeht. Aus diesen primitiven Begriffen und Urtheilen gewinnen wir durch
Definition und Deduction andere, und nur diese Ableitung ist unser Werk und Ziel.

• With present technology, there seems to be a strong con-
vergence of natural and formal approaches.

• This holds huge promisses and grave dangers.
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