Corpus-Based Meta-Mathematics: Flexiformal Mathematics across various Systems and Languages

Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung Informatik, FAU Erlangen-Nürnberg http://kwarc.info

February 4. 2020, Hausdorff-Center, Bonn

1 Intro: What Peter Asked me to talk about "formal mathematics across various systems and languages"

▶ The math flexiformalization process: corpus \sim applications

See Tom's talk on the first day.

 \blacktriangleright The math flexiformalization process: corpus \rightsquigarrow applications

Project	Corpus	Surface	Formal Language	Appl./Systems
Naproche	MNL	CNL(FOL)	DFG@EProver	Verification
SAD	MNL	ForThel	FOL@SAD	Verification
Naproche-SAD	MNL	ForThel	Isabelle	Verification
Diproche	textbook	DiThel?	(Anti-)ATP	Learning Feedback
FAbstracts2	NL-Def/Thm	CNL(T)	ĊIC	Domain Documenta-
				tion/Stadardization

See the talks of Peter/Tom/Naproche Team

► The math flexiformalization process: corpus ~> applications

Work of the KWARC group in the OAF/OpenDreamKit projects

 \blacktriangleright The math flexiformalization process: corpus \rightsquigarrow applications

Project	Corpus	Surface	Formal Language	Appl./Systems
STEX	NL-Courses	STEX	OMDoc	Smart Courseware &
				cf. FAbstracts
SMGloM	NL-Defs	STEX	OMDoc	Glossary/Lexicon/Dictionary

Long-term KWARC infrastructure projects

 \blacktriangleright The math flexiformalization process: corpus \rightsquigarrow applications inference Corpus magic parse → FormLang ·······> Applications Surface extract Fragment Project Fragment Surface Formal Language Appl./Systems HOTT HOTT-Book GF-AST **GF-AST** Translation

See Aarne's Talk

► The math flexiformalization process: corpus ~> applications

A M.Sc. project at FAU: convert 3m/s to "meters per second", but not $E = mc^2$

▶ The math flexiformalization process: corpus \rightsquigarrow applications

• A declarative formalization pipeline using GF, MMT, and λ -ProLog (see below)

► The math flexiformalization process: corpus ~> applications

A declarative Formalization Pipeline (cf. Aarne)

To change the target logic+calculus, just write another one in LF+X.

Mathematics: as a test tube for STEM

- the knowledge and document structures are quite explicit and overt
- the content of mathematics is well-understood.

Consider anything that has the same properties as "mathematics" as well.

Mathematics: as a test tube for STEM

- the knowledge and document structures are quite explicit and overt
- the content of mathematics is well-understood.

Consider anything that has the same properties as "mathematics" as well.

- Meta: we develop meta-artefacts, i.e. we
 - design representation languages (logics) that allow to talk about mathematical objects, their properties, and relations,
 - ▶ invent algorithms that analyze and transform these representations, and
 - implement them in end-user systems that utilize both.

- Mathematics: as a test tube for STEM
 - the knowledge and document structures are quite explicit and overt
 - the content of mathematics is well-understood.

Consider anything that has the same properties as "mathematics" as well.

- Meta: we develop meta-artefacts, i.e. we
 - design representation languages (logics) that allow to talk about mathematical objects, their properties, and relations,
 - ▶ invent algorithms that analyze and transform these representations, and
 - implement them in end-user systems that utilize both.

Corpus-based: we do this as a natural science by looking at data (i.e. corpora of documents and formalizations).

Mathematics: as a test tube for STEM

- the knowledge and document structures are quite explicit and overt
- the content of mathematics is well-understood.

Consider anything that has the same properties as "mathematics" as well.

- Meta: we develop meta-artefacts, i.e. we
 - design representation languages (logics) that allow to talk about mathematical objects, their properties, and relations,
 - ▶ invent algorithms that analyze and transform these representations, and
 - implement them in end-user systems that utilize both.
- Corpus-based: we do this as a natural science by looking at data (i.e. corpora of documents and formalizations).
- Process: approach corpus-based meta-mathematics (iteratively) in three steps:
 - Analysis: we analyze the corpora for patterns and structures.
 - Synthesis: we design and build meta-artefacts (languages, algorithms, and systems) and derive data sets from the corpora.
 - **Experimentation**: we evaluate the representation languages and algorithms on the corpora and the systems on end users (mathematicians).

2 Flexiformality

Formalization in Mathematical Practice

- To formalize maths in a formal system S, we need to choose a foundation, i.e. a foundational S-theory, e.g. a set theory like ZFC.
- Formality is an all-or-nothing property (a single "obviously" can ruin it.)
 - Almost all mathematical documents are informal in 4 ways:
 - the foundation is unspecified
 - the language is informal
 - even formulae are informal
 - context references are underspecified
 - mathematical objects and concepts are often identified by name
 - statements (citations of definitions, theorems, and proofs) underspecified
 - theories and theory reuse not marked up at all
 - The gold standard of mathematical communication is "rigor" (cf. [BC01])

(they are essentially equivalent) (essentially opaque to MKM algos.) (presentation markup)

Formalization in Mathematical Practice

- To formalize maths in a formal system S, we need to choose a foundation, i.e. a foundational S-theory, e.g. a set theory like ZFC.
- Formality is an all-or-nothing property (a single "obviously" can ruin it.)
- Almost all mathematical documents are informal in 4 ways:
- The gold standard of mathematical communication is "rigor" (cf. [BC01])
 - Definition 2.1. We call a mathematical document rigorous, if it could be formalized in a formal system given enough resources.
 - This possibility is almost always unconsummated
 - Why?: There are four factors that disincentivize formalization for Maths propaganda: Maths is done with pen and paper tedium: de Bruijn factors ~ 4 for current systems (details in [Wie12]) inflexibility: formalization requires commitment to formal system and foundation proof verification useless: peer reviewing works just fine for Math
 - Definition 2.2. The de Bruijn factor is the quotient of the lengths of the formalization and the original text.

Formalization in Mathematical Practice

- To formalize maths in a formal system S, we need to choose a foundation, i.e. a foundational S-theory, e.g. a set theory like ZFC.
- Formality is an all-or-nothing property (a single "obviously" can ruin it.)
- Almost all mathematical documents are informal in 4 ways:
- The gold standard of mathematical communication is "rigor" (cf. [BC01])
 - Definition 2.1. We call a mathematical document rigorous, if it could be formalized in a formal system given enough resources.
 - This possibility is almost always unconsummated
 - Why?: There are four factors that disincentivize formalization for Maths propaganda: Maths is done with pen and paper tedium: de Bruijn factors ~ 4 for current systems (details in [Wie12]) inflexibility: formalization requires commitment to formal system and foundation proof verification useless: peer reviewing works just fine for Math
 - Definition 2.2. The de Bruijn factor is the quotient of the lengths of the formalization and the original text.
 - In Effect: Hilbert's program has been comforting but useless
- Question: What can we do to change this?

What is Informal Mathematical Knowledge

- Idea: informal knowledge could be formalized (but isn't vet!)
- Definition 2.3. The meaning of a knowledge item is the set of all its formalizations
- Problem: What is the space of formalizations?
- **Definition 2.4.** The formal space is the set $\mathcal{F} := \{ \langle S, e \rangle \mid S \in \mathfrak{F}, e \in \mathcal{L}(S) \}, \text{ where } \mathfrak{F} \text{ is the }$ class of formal systems and $\mathcal{L}(S)$ is the language of (i.e. every formal expression is a point in \mathcal{F}) S.
- Different Logics correspond to different bands
- The meaning of \mathcal{D} is a set $\mathcal{I}(\mathcal{D}) \subseteq \mathcal{F}$.
- D can be formalized in multiple logics $\mathcal{I}(\mathcal{D})$ forms a cross-section of logic-bands.

A Formality Ordering on ${\cal F}$

Definition 2.5. D is more formal than D' (write D≪CD'), iff I(D)⊂I(D').
This partial ordering relation answers the question of "graded formality" or the nature of "stepwise formalization" raised above.

Stepwise Formalization in Multiple Dimensions

- Empirically: Formalization is a stepwise process of
 - spotting semantic objects
 - chunking: grouping them for re-use
 - relating: making their relationships explicit
- In multi-dimensional situations:

- any formalization step on \mathcal{D} trims $\mathcal{I}(\mathcal{D})$.
- ▶ not all "steps" are comparable in ≪
- but per-dimension formalization is confluent

(order of steps may vary)

(from the surrounding text) (e.g. assigning to home theories) (this is used by semantic services)

- Observation: This is the normal situation, we coin a new concept to describe it.
- Definition 2.6. We call a representation flexiform, iff it is of flexible formality in any of the adequate dimensions of formality.

Migration by Stepwise Formalization

Migration by Stepwise Formalization

Full Formalization is hard

(we have to commit, make explicit)

- Let's look at documents and document collections.
- Partial formalization allows us to
 - formalize stepwise, and
 - be flexible about the depth of formalization.

Functionality of Flexiformal Services

- ► Generally: Flexiformal services deliver according to formality level Garbage in ~> Garbage out!)
- But: Services have differing functionality profiles.

- Change management only needs dependency information
- Proof search needs theorem formalized in logic
- Proof checking needs formal proof too

(GIGO:

The Flexiformalist Program (Details in [Koh13])

- The development of a regime of partially formalizing
 - mathematical knowledge into a modular ontology of mathematical theories (content commons), and
 - mathematical documents by semantic annotations and links into the content commons (semantic documents),
- The establishment of a software infrastructure with
 - a distributed network of archives that manage the content commons and collections of semantic documents,
 - semantic web services that perform tasks to support current and future mathematic practices
 - active document players that present semantic documents to readers and give access to respective
- the re-development of comprehensive part of mathematical knowledge and the mathematical documents that carries it into a flexiformal digital library of mathematics.

Stephen Watt's understanding of Flexiformality

A person who is flexiformal:

- flexible (contortionist)
- formal

(tuxedo)

References I

Serge Autexier and Claudio Sacerdoti Coen. "A Formal Correspondence Between OMDoc with Alternative Proofs and the $\overline{\lambda}\mu\tilde{\mu}$ -calculus". In: *Mathematical Knowledge Management (MKM)*. Ed. by Jon Borwein and William M. Farmer. LNAI 4108. Springer Verlag, 2006, pp. 67–81. DOI: 10.1007/11812289_7.

- Henk Barendregt and Arjeh M. Cohen. "Electronic communication of mathematics and the interaction of computer algebra systems and proof assistants". In: *Journal of Symbolic Computation* 32 (2001), pp. 3–22.
- Michael Kohlhase. "The Flexiformalist Manifesto". In: 14th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2012). Ed. by Andrei Voronkov et al. Timisoara, Romania: IEEE Press, 2013, pp. 30–36. ISBN: 978-1-4673-5026-6. URL: http://kwarc.info/kohlhase/papers/synasc13.pdf.

Christoph Lange and Michael Kohlhase. "A Mathematical Approach to Ontology Authoring and Documentation". In: *MKM/Calculemus Proceedings*. Ed. by Jacques Carette et al. LNAI 5625. Springer Verlag, July 2009, pp. 389-404. ISBN: 978-3-642-02613-3. URL: http://kwarc.info/kohlhase/papers/mkm09-omdoc4onto.pdf.

Freek Wiedijk. The "de Bruijn factor". web page at http://www.cs.ru.nl/~freek/factor/. Mar. 1, 2012. URL: http://www.cs.ru.nl/~freek/factor/.

