
(towards) Intuitive Language

for Formal Mathematics

Cezary Kaliszyk and Florian Rabe

U. Innsbruck and FAU Nuremberg-Erlangen

February 3, 2020



Background

Both of us

highly interested in languages for mathematics

but unsatisfied with existing languages

extensive experience with multiple languages/systems/libraries

Now ready to design new language

grant proposal under review

some ideas presented here

Cezary Kaliszyk Intuitive Language for Formalization 2 / 14



Current State of Formal Math Languages

Major progress over the last few decades

Strong proof support

Big libraries available

Flagship projects

Growing interest from mathematicians

However
Logic-based systems far from actual mathematical language

very difficult to read, write
mathematicians easily alienated Buzzard: “give me LATEX”
do not understand mathematical common sense

Natural language-based systems less successful

smaller communities
smaller libraries
less proof automation

Cezary Kaliszyk Intuitive Language for Formalization 3 / 14



Why are Formal Logical Languages inappropriate?

Formal Logic Natural Math

types primitive emergent
decidable typing necessary/important irrelevant
subtyping impossible/awkward fundamental, critical

modules primitive emergent
inheritance/sharing difficult implicit

equality undecidable obvious, prove if necessary
identify up to iso open problem implicit, obvious

proofs part of calculus focus on convincing reader
granularity full proof as needed

Partial exception: Mizar (but community & automation issues)

Cezary Kaliszyk Intuitive Language for Formalization 4 / 14



Why do CNLs not have large libraries?

Lack of high-level structuring

modules

types

tactics

No deep formalization

Proofs relative to flexible assumptions

Formal text more efficient to write

CNLs focus more on math than software verification

Software verifications means whole libraries formalized

Learning curve less steep but difference not that big

Cezary Kaliszyk Intuitive Language for Formalization 5 / 14



ForTheL and Mizar: middle of logic-CNL spectrum

ForTheL = a CNL trying to be close to logic

Mizar = a proof assistant trying to be close to CNL

rich type system: intersection types, dependent types
let S be n-dimensional vector space

rich input:

contextual parsing
type guided disambiguation
implicit arguments
100 meanings of “+”

natural logic: close to FOL

(but other severe limitations)

Cezary Kaliszyk Intuitive Language for Formalization 6 / 14



Our Goal

Design ILF:

a rigorous formal logic with its own type system, calculus etc.

that captures structure of natural language mathematics

Hales: “need language that is both human- and machine-readable”

ILF will be very different from

natural languages: rigorous definition in its own right

logical languages: more and different language features

Cezary Kaliszyk Intuitive Language for Formalization 7 / 14



Design of Current CNLs

Components

Fragment of natural language (CNL)

Formal Language (FL) for checking

Naproche-SAD: FOL+set theory
Hales/FAbstracts: Lean

Translation from CNL to FL: parse + interpret

One-step design: translation defines

syntax of CNL: parsing

semantics of CNL: complex logical transformation

Note: CNL can in principle be added to any FL

not necessarily close to natural language

readability may very

Cezary Kaliszyk Intuitive Language for Formalization 8 / 14



Design of Current CNLs

Components

Fragment of natural language (CNL)

Formal Language (FL) for checking

Naproche-SAD: FOL+set theory
Hales/FAbstracts: Lean

Translation from CNL to FL: parse + interpret

One-step design: translation defines

syntax of CNL: parsing

semantics of CNL: complex logical transformation

Note: CNL can in principle be added to any FL

not necessarily close to natural language

readability may very

Cezary Kaliszyk Intuitive Language for Formalization 8 / 14



Our Envisioned Design

ILF: intermediate language (kernel)

formal abstract syntax (grammar + inference system)

concrete language unspecified

Concrete Syntax (frontend)

compositional transformation abstract ↔ concrete

no non-trivial logical translations, encodings

provide multiple alternatives

FL: formal logic-based (e.g., like Coq, Isabelle)
CNL: natural language-based (e.g., like ForTheL)

Theorem proving (backend)

more specific logics optimized for proof support

logical transformation ILF → ATP
possibly partial, possibly non-compositional

use multiple alternatives: FOL, HOL, . . .Cezary Kaliszyk Intuitive Language for Formalization 9 / 14



Architecture

FOL ATP

HOL ATP ILF

Backend Core

Formal
Languages

ITP Obligations

Frontend

Natural
Language

CNL

alternatives

Cezary Kaliszyk Intuitive Language for Formalization 10 / 14



Separation of Concerns

ILF

captures structure of natural language
better than both logics and CNLs

formal, rigorous semantics

complex task that needs attention in itself
intermediate layer for two-step migration NL → FL

ILF ↔ CNL

captures concrete syntax, parsing user interface

can reuse ideas from ForTheL, Mizar

ILF → ILF → FL

ILF → ILF: logic translations to simplify the language

ILF → (A)TP: provide proof support

ILF → ITP: migrate NL content to proof assistant

Cezary Kaliszyk Intuitive Language for Formalization 11 / 14



Planned Implementation (major effort)

Implement ILF in multiple logical frameworks

MMT: good for unrestricted experimentation

Isabelle: good for quickly building proof support

Allow multiple frontends and provers

implement parsers of FL and CNL concrete syntax as alternatives

can be done in separate projects

use interchange language to connect to implementations

Libraries

conduct representative case studies to evaluate

ensure building large library is feasible

Cezary Kaliszyk Intuitive Language for Formalization 12 / 14



Big Features we want in ILF

High-level structuring: modules, theories, records

missing/weak in Mizar, ForTheL

awkward solutions in Coq, Lean, Isabelle, . . .
but unclear how to do better

Soft type system

hard type systems have failed (Coq, Isabelle, . . . )

successful in Mizar, ForTheL

but strong support must arise as emergent feature
e.g., dependent functions, subtypes, quotients

must be undecidable and that’s alright

Declarative proof system

structured, assertion-based successful in ForTheL, Mizar

tactic-based proofs not readable

must allow for gaps so what if the prover fails to check it?

Cezary Kaliszyk Intuitive Language for Formalization 13 / 14



Small Features we want in ILF

small but subtle, and very difficult
Identification up to isomorphism

demanded by Buzzard, Big Proof II

very difficult, basically no prior work

Generated structures e.g., R[X], Group〈r, f |rn, f 2, (rf)2〉

requires using terms as values

but terms up to equality

little prior work

Conversions

use function-like objects like functions
e.g., evaluating a polynomial

use type-like objects like type e.g., use group like its universe

seamlessly cast along forgetful functors, canonical
projections/embeddings

Cezary Kaliszyk Intuitive Language for Formalization 14 / 14


