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Problem statement

Mathematics needs practice. Therefore, there are exercises.

Problem: Feedback comes long after exercises have been finished
(typically about a week later) and can in particular not enter the
process of solving and presenting a solution.

Approach: Partially automatize the feedback.
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From the QED Manifesto:
“The third motivation for the QED project is education. (...) The development

of mathematical ability is notoriously dependent upon ”doing” rather than

upon ”being told” or ”remembering”. The QED system will provide, via such

techniques as interactive proof checking algorithms (...), an opportunity for the

one-on-one presenting, checking, and debugging of mathematical technique,

which it is so expensive to provide by the method of one trained mathematician

in dialogue with one student. QED can provide an engaging and

non-threatening framework for the carrying out of proofs by students, (...).”
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Some sample proofs

A mathematical argument can proceed by a step-by-step
deduction, but it doesn’t have to:

Example 1: On Monday, 8.00, Gandalf starts in the Shire and
travels to Rivendell, where he has a date with Galadriel at 19.00.
On Tuesday morning, he starts in Rivendell at 8.00 and travels back
to the Shire along the same route. Show that there is a time of the
day at which he was in the same spot on Monday and Tuesday.

Solution: Imagine two Gandalfs travelling on the same day.
Clearly, they must meet.
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PROOFS WITHOUT WORDS?

Example 2: Picture Proof for Σn
i=1i =

(n+1
2

)
.

From https://mathoverflow.net/questions/8846/proofs-without-words.
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Example 3: Do objects with a larger weight have a greater fall
velocity? Imagine two objects with weight a and b > a. Join them
with a rope. The compound object should (i) fall quicker because
it has weight a + b and (ii) fall slower because the objects with
weight b is ‘slowed down’ by the object with weight a.
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An essential part of mathematical understanding and proving
consists in conducting thought experiments, looking a the problem
from a new perspective etc.
This is an important part of mathematics - in particular of
mathematical creativity - that has little to do with logical
deduction.

On the other hand: Step-by-step deduction.

Example 4: Show that, for all sets A,B,C , we have
A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof: ”⊆”: Let x ∈ A ∩ (B ∪ C ). Then we have x ∈ A and
x ∈ B ∪ C . Hence, we have x ∈ B or x ∈ C . If x ∈ B, then
x ∈ A ∩ B and hence x ∈ (A ∩ B) ∪ (A ∩ C ). If x ∈ C , then
x ∈ A ∩ C and hence x ∈ (A ∩ B) ∪ (A ∩ C ). In any case, we have
x ∈ (A ∩ B) ∪ (A ∩ C ).

”⊇”: ...
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Checking creative though experiments is out of scope.
However, step-by-step dedductions of this kind are a central part of
the mathematical armamentarium. If automatization can yield
some progress here, it is certainly worth it.
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Goal

A system that takes proof attempts in a controlled form that is still
natural for beginner’s students, checks it and provides helpful

feedback.

Feedback:
(1) Proofreading of natural language, type checking (”Suppose we
have 7 + ∅”), logical consistency, achievement check for proof goal.
(2) Hints for proof search: (1) general (“to show A→ B, try to
assume A and to deduce B”), (2) specific (proof attempt is
completed automatically (if possible) and then an intermediate
step is proposed) (3) heuristical (hints explictly provided by the
person who posed the exercise).
(3) Diagnosis of possible fallacies (“Anti-ATP”).
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The model: Naproche

Naproche (NAtural PROof CHEcking) is a joint project of the logic
group in Bonn and linguists from Duisburg-Essen (Bernhard
Schröder), initiated by Peter Koepke. The system was essentially
developed by Marcos Cramer in his dissertation. Further important
contributors are Bernhard Fisseni, Daniel Kühlwein, Nikolay Kolev
and others.
It is the goal of Naproche to develop an automated system for the
verification of natural language mathematical proofs.
For example, the system can read a slightly adapted version of the
first chapter of Edmund Landau’s ‘Foundations of Analysis’ (and
has considerably developed recently).
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Theorem 9: Fix x , y . Then precisely one of the following cases holds: Case 1:
x = y . Case 2: There is a u such that x = y + u. Case 3: There is a v such
that y = x + v .
Proof: Fix x , y . By theorem 7, case 1 and case 2 are inconsistent and case 1
and case 3 are inconsistent. Suppose case 2 and case 3 hold. Then
x = y + u = (x + v) + u = x + (v + u) = (v + u) + x . Contradiction by
theorem 7. Thus case 2 and case 3 are inconsistent. Thus for all x , y , at most
one of case 1, case 2 and case 3 holds. (...)

Theorem 9: For given x and y, exactly one of the following must be the case:
1) x=y 2) There exists a u such that y = x + v 3) There exists v such that
y = x + v
Proof: A) By Theorem 7, cases 1) and 2) are incompatible. Similarly, 1) and 3)
are incompatible. The incompatibility of 2) and 3) also follows from Theorem
7: for otherwise, we would have
x = y + u = (x + v) + u = x + (v + u) = (v + u) + x . Therefore we can have
at most one of the cases 1), 2) and 3). (...)
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Naproche and Didactics

In spite of its strength, Naproche is not suitable for a didactical application in
German universities, due to several reasons:

The input language is English

‘too smart’: will accept steps that a beginner student should elaborate.
(In many cases, it will accept the empty string as a sufficient proof for an
exercise problem.)

No possibility to control the admissible deduction rules; but teaching
should start with demanding very basic steps and then gradually allow for
greater leaps.

‘too nice’: It does not attempt to enforce a strict style of presentation. A
lot of bad writing (such as adding irrelevant stuff after reaching the proof
goal) will go through.

No differentiated feedback: A sentence is either verified or it is not.

No didactical extra functions, such as hints, a problem database etc.

Not taylored to the language and prerequisites of beginner’s exercises;
e.g., no use of → for ‘I am now showing one direction of an equivalence’,
no module for term manipulations or calculations such as
0 ≤ (a− b)2 = (a− b)(a− b) = (a2 − ab − ba + b2) = (a2 − 2ab + b2).
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The goal is thus go come up a didactical “offshoot” of Naproche -
namely “Diproche”. We will reuse the basic idea of the Naproche
architecture, but no part of the code. Diproche is built up from
scratch.

Diproche - Automatic Proof Checking for Didactical Applications



The goal is thus go come up a didactical “offshoot” of Naproche -
namely “Diproche”. We will reuse the basic idea of the Naproche
architecture, but no part of the code. Diproche is built up from
scratch.

Diproche - Automatic Proof Checking for Didactical Applications



The goal is thus go come up a didactical “offshoot” of Naproche -
namely “Diproche”. We will reuse the basic idea of the Naproche
architecture, but no part of the code. Diproche is built up from
scratch.

Diproche - Automatic Proof Checking for Didactical Applications



The architecture of the checking routine

Components:

Preprocessing of the input string

Annotation

Determination of text structure

Generation of ATP-tasks

ATP
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Example

Input: ”Es gelte a. Ferner gelte (a→ b). Dann folgt b.”

list format: [[es,gelte,a],[ferner,gelte,[a,− >,b]],[dann,folgt,b]]

Annotated Format:
[[1,[],[],ann,bam,[]],[2,[a],[],ang,[],a],[3,[a,b],[],ang,[],[a,− >,b]],
[4,[b],[],beh,[],b],[5,[],[],ann,bem,[]]]

text structure graph: [[2,4],[3,4]] - encodes which assumptions
are available at which text portions.

ATP-task (for “line” 4): [[a,[a,− >,b]],[b]]

ATP: Contains the (Prolog) rule “accept pairs [Vss,Y], where
[X,− >,Y] and X belong to Vss”.
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The controlled ATP

The ATP is specifically designed to only accept proof steps that
should be accepted as sufficient in the context of beginner’s
exercises.

It is thus intentionally weak: It only accepts a step when it
matches one of the (many) rules in its database, i.e. there is no
iteration in the proof search.

In addition, one can specify ‘difficult degrees’, i.e. subsets of
prover rules, for specific exercises. In this way, the ATP can
become more liberal as the student advances.

(For example, when proving the de Morgan rule, one should not
have the de Morgan rule available; but for later exercises, one
certainly should.)
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The Diproche Language

Assumptions: “Es gelte/Angenommen, es gilt/Nehmen wir an,
dass/...”

Claims: “Dann folgt/Es gilt/Damit haben wir/...”

Annotations: ”Beweis:”, ”=>”, ”<=”, ”durch widerspruch”, ”wir
zeigen, dass...”, ”qed”, ”Fall 1”, paragraphs

An assumption is valid (only) in the paragraph in which it is
introduced.
Exception: Assumptions made in the first paragraph after a proof
start marker (“Beweis”) are valid until the (sub-)proof is declared
to be finished by a proof ending marker (“qed”).
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Sample text: propositional logic

Wir zeigen ((a ∨ b)↔ ((a→ b)→ b)).
=> Angenommen, es gilt (a ∨ b). Angenommen ferner, es gilt
(a→ b). Falls a gilt, so gilt b. Falls b gilt, so gilt ebenfalls b. Also
gilt b.
Damit folgt ((a→ b)→ b).
qed.
<=
Angenommen, es gilt ((a→ b)→ b). Nehmen wir an, es gilt ¬a.
Dann gilt auch (a→ b). Damit folgt b.
Also folgt (¬a→ b). Damit folgt (a ∨ b).
qed.
Also gilt auch (((a→ b)→ b)→ (avb)).
Damit folgt nun endlich ((a ∨ b)↔ ((a→ b)→ b)).
Qed.
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Sample text: Boolean set theory

Es seien A, B, C und D Mengen. Es gelte (A ∩ B) = ∅. Ferner
gelte (C ⊆ A) und (D ⊆ B). Wir zeigen (C ∩ D) = ∅.

Beweis.

Es gelte x ∈ (C ∩ D). Dann folgt (x ∈ C ). Also folgt (x ∈ A).
Ferner gilt (x ∈ D). Damit gilt auch (x ∈ B). Damit haben wir
(x ∈ (A ∩ B)).
Also gilt (x ∈ ∅). Widerspruch.

Also gilt (C ∩ D) = ∅.

qed.
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Sample text: even/odd

Es sei n eine natuerliche Zahl. Wir zeigen n(n + 1) ist gerade.

Beweis.

Angenommen, n ist gerade. Dann ist auch n(n + 1) gerade.

Nehmen wir nun an, n ist ungerade. Dann ist (n + 1) gerade.
Damit ist n(n + 1) ebenfalls gerade.

Also ist n(n + 1) gerade.

qed.
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Sample text: Induction, Gauß sum

Es gilt Σ1
i=1i = 1 = 1·(1+1)

2 .

Es gelte Σn
i=1i = n(n+1)

2 .

Dann folgt Σn+1
i=1 i = Σn

i=1i + (n + 1) = n(n+1)
2 + (n + 1) =

(n+1)(n+2)
2 = (n+1)((n+1)+1)

2 .

Also gilt Σn+1
i=1 i = (n+1)((n+1)+1)

2 .

Also haben wir Σn
i=1i = n(n+1)

2 → Σn+1
i=1 i = (n+1)((n+1)+1)

2 .

Damit folgt ∀nΣn
i=1i = n(n+1)

2 → Σn+1
i=1 i = (n+1)((n+1)+1)

2 .

Induktiv folgt nun ∀nΣn
i=1i = n(n+1)

2 .
Qed.
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Goaltracing

In Diproche, one can declare proof goals through formulations such
as:

Wir zeigen: Für alle Mengen A, B mit A ⊆ B gilt (A ∪ B) = B.

The goal tracing then attempts to determine the current goal at
each position in the proof test.
For example, the annotation “⇒” has the effect that the current
proof goal is changed from (φ↔ ψ to (φ→ ψ)
It is then checked for every proof ending marker whether the
corresponding goal has indeed been reached. The goal only counts
as reached when it is explicitly stated as the final statement before
the endmarker.
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Type-Checking

Many beginner’s mistakes happen at the type level. Either objects
are used in a way they cannot (‘Assume 7 + ∅’) or they are used
without having been declared at all.
This is taken care of by a type-checking algorithm. Declaration can
be made by formulations such as

“Es seien a, b und c natuerliche Zahlen und d eine reelle Zahl’.”

In particular, it is checked whether the content of an assumption or
a claim is indeed a proposition.
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Fallacy diagnosis: The Anti-ATP

A good tutor cannot just tell whether a step is right or wrong, but
only have an educated guess at what’s behind a mistake.
On the one hand, this allows one to specifically address
misconceptions, and on the other hand, one can recognize and
encourage possibly good ideas in a proof attempt.
At least the first function can be realized in Diproche to a certain
extent.
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The Anti-ATP works like an ATP, but has typical formal fallacies
instead of sound proof rules, such as.

From A ∨ B and A, derive ¬B
From A→ B and ¬A, derive ¬B
From ¬A, derive ¬(A→ B)

From ¬(A ∧ B), derive ¬A ∧ ¬B
Each of these fallacies has an internal index. When the ATP
cannot verify a step, it is passed on to the anti-ATP. When the
proof step in question is realizable by a formal fallacy, an according
feedback is given.
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Anti-Terms

The anti-ATP has a subroutine for false term manipluations, such
as:

n2

n3
= 2

3

n2

n4
= n

n2

a
b + c

d = a+c
b+d

...

These are dealt with in the same way as in the anti-ATP.
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Providing hints

The system provides three kinds of hints that users can request
when they are stuck at a certain point in a proof:

Prescribed, problem-specific hints. These are entered by the
teacher by hand and resemble those hints that are typically
found in the ‘solution’ part of a textbook.

General strategical hints, either based on the goal (“In order
to prove A→ B, assume A and try to prove B”) or based on
the assumptions (“When you have a disjunction in your
assumptions, try a case distinction”).

Proposed intermediate steps: A ‘real’ (unrestricted) ATP
attempts to complete the proof. If that works in a certain
number of steps, a step from the ‘middle’ of that proof is
offered as an intermediate step.

Diproche - Automatic Proof Checking for Didactical Applications



Providing hints

The system provides three kinds of hints that users can request
when they are stuck at a certain point in a proof:

Prescribed, problem-specific hints. These are entered by the
teacher by hand and resemble those hints that are typically
found in the ‘solution’ part of a textbook.

General strategical hints, either based on the goal (“In order
to prove A→ B, assume A and try to prove B”) or based on
the assumptions (“When you have a disjunction in your
assumptions, try a case distinction”).

Proposed intermediate steps: A ‘real’ (unrestricted) ATP
attempts to complete the proof. If that works in a certain
number of steps, a step from the ‘middle’ of that proof is
offered as an intermediate step.

Diproche - Automatic Proof Checking for Didactical Applications



Providing hints

The system provides three kinds of hints that users can request
when they are stuck at a certain point in a proof:

Prescribed, problem-specific hints. These are entered by the
teacher by hand and resemble those hints that are typically
found in the ‘solution’ part of a textbook.

General strategical hints, either based on the goal (“In order
to prove A→ B, assume A and try to prove B”) or based on
the assumptions (“When you have a disjunction in your
assumptions, try a case distinction”).

Proposed intermediate steps: A ‘real’ (unrestricted) ATP
attempts to complete the proof. If that works in a certain
number of steps, a step from the ‘middle’ of that proof is
offered as an intermediate step.

Diproche - Automatic Proof Checking for Didactical Applications



Providing hints

The system provides three kinds of hints that users can request
when they are stuck at a certain point in a proof:

Prescribed, problem-specific hints. These are entered by the
teacher by hand and resemble those hints that are typically
found in the ‘solution’ part of a textbook.

General strategical hints, either based on the goal (“In order
to prove A→ B, assume A and try to prove B”) or based on
the assumptions (“When you have a disjunction in your
assumptions, try a case distinction”).

Proposed intermediate steps: A ‘real’ (unrestricted) ATP
attempts to complete the proof. If that works in a certain
number of steps, a step from the ‘middle’ of that proof is
offered as an intermediate step.

Diproche - Automatic Proof Checking for Didactical Applications



Providing hints

The system provides three kinds of hints that users can request
when they are stuck at a certain point in a proof:

Prescribed, problem-specific hints. These are entered by the
teacher by hand and resemble those hints that are typically
found in the ‘solution’ part of a textbook.

General strategical hints, either based on the goal (“In order
to prove A→ B, assume A and try to prove B”) or based on
the assumptions (“When you have a disjunction in your
assumptions, try a case distinction”).

Proposed intermediate steps: A ‘real’ (unrestricted) ATP
attempts to complete the proof. If that works in a certain
number of steps, a step from the ‘middle’ of that proof is
offered as an intermediate step.

Diproche - Automatic Proof Checking for Didactical Applications



Providing hints

The system provides three kinds of hints that users can request
when they are stuck at a certain point in a proof:

Prescribed, problem-specific hints. These are entered by the
teacher by hand and resemble those hints that are typically
found in the ‘solution’ part of a textbook.

General strategical hints, either based on the goal (“In order
to prove A→ B, assume A and try to prove B”) or based on
the assumptions (“When you have a disjunction in your
assumptions, try a case distinction”).

Proposed intermediate steps: A ‘real’ (unrestricted) ATP
attempts to complete the proof. If that works in a certain
number of steps, a step from the ‘middle’ of that proof is
offered as an intermediate step.

Diproche - Automatic Proof Checking for Didactical Applications



Problem Database

For each area covered by Diproche, one can enter problems.
A problem consists of:

An index.

A verbal formulation for the user.

A formalization of the proof goal.

A specification of the degree of difficulty (=set of prover
rules).

A list of assumptions one may use during the solution.

A list of declarations that can be used throughout the exercise.

Moreover, each problem index is associated with a (possibly empty)
list of prescribed hints and (sometimes) a template solution.
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Problem Generators

In order to increase the available training material, it is desirable to
generate practice problems automatically. Currently, there are
routines for automatically generating problems in the following
areas:

Propositional logic.

Boolean Set Theory.

Induction (Divisbility).

Induction (Inequalities).
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‘Playing fields’

In spite of the logical strive for unification:
Mathematical work takes place in a number of contexts, each of
which has its own...

Specific types (natural numbers, lines, points, angles, areas,
matrices, vectors, sequences, functions...)

Notational conventions (In, id, α, e, 0, 1,...)

Elementary statements (unique prime factorization, sum of
angles in a triangle, ...)

Methods and deductions (Show A = B via A ⊆ B and B ⊆ A;
show “f is bijective” via “f is injective” and “f ist surjective”)

A sensible modelling of mathematical practice, even at the
beginner level, needs to take care of this. . For this, Diproche uses
‘playing fields’ (“Spielwiesen”).
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Subprojects

“Playing fields”: Boolean set theory, functions and relations,
real numbers, elementary number theory, group theory,
axiomatic geometry...

Refine the hints

Extend the problem generators

Systematical foundations of the Anti-ATP, using e.g.
empirical studies from didactics about common fallacies or
classifications of fallacies from argumentation theory

The trouble with class terms: How to safely deal with those
without introducing beginner’ students to formal set theory?
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Translating natural degrees of difficulty and proof methods
into prover rules.

Using, systematically testing and extending/improving

Proof analysis (identification of unnecessary proof parts by
backtracking from the goal; checking after each line whether
the goal is already reachable etc.)

Evaluating proof steps, e.g. by checking whether the shortest
ATP-proof becomes shorter using a proposed intermediate
step.

Diproche-based textbook linked to the system (possible to
refer to results from the book when doing exercises).
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Thank you for your attention!
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