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Chapter 1

Introduction

'Twas brillig, and the slythy toves
did gyre and gimble in the wabe.
All mimsy were the borogoves
and the mome rath outgrabe.
(Lewis Carroll, Jabberwocky)

Set Theory, besides having its origins 1 in Cantor's investigations into the
convergence of trigonometric series, has been closely linked with attempts
to formulate a viable Foundation of Mathematics. At the turn of the cen-
tury Zermelo, with the purpose of clearly exhibiting the assumptions used
in his proof of the Well-Ordering Theorem, provided the basis for what has
now become the standard axiomatisation of Set Theory, namely ZF. From
the beginning, the question of the consistency of this (or any) system of
axioms loomed large. Hilbert [Hil00] had included the consistency of Arith-
metic in his famous list of open problems at the international congress of
mathematicians in Paris in 1900. The rest is history, one is tempted to say:
G�odel, in his 1931 paper [G�od31], showed that Hilbert's goal, i. e., proving
the consistency of ZF by purely �nitary means, could not be achieved. The
consistency of any system strong enough to code Peano arithmetic cannot be
proved even by means of the system itself, let alone by �nitary reasoning, as

1For a detailed survey of the early history of Set Theory and its rami�cations | which
we have not attempted here | cf. [Kan96].
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2 CHAPTER 1. INTRODUCTION

demanded by Hilbert. In fact, for any such system, there will be undecid-
able sentences. The prime example is, of course, the Continuum Hypothesis,
which dates back to Cantor's original investigations of the universe of sets.
G�odel [G�od38] gave one half of the independence proof, proving the consis-
tency of ZF+CH from Con(ZF), and Cohen [Coh63], [Coh64] showed that
the negation of CH is equally relatively consistent.
These two proofs already contain the two main methods for arriving at rel-
ative consistency results: G�odel constructed an inner model, i. e., a class
M � V which satis�es all the axioms of ZF, together with CH. His model, L,
can be seen as the prototype of the whole family of core models that were to
be developed later on. Cohen, on the other hand, by his method of forcing,
constructed an extension of the universe V[G], in which the ZF-axioms hold,
as well as the negation of CH.
All consistency proofs must be relative, i. e., they have to assume the con-
sistency of some set of axioms at the outset, possibly ZF, possibly ZF+�,
where � is some (set of) sentence(s). Then they can construct a new model
in which the statement in question, say CH or �, holds. One class of ex-
tensions of ZF, that of large cardinal axioms , has proved to be particularly
fruitful for these investigations. 2 They are perhaps best characterized by
positing the existence of some ordinal with special properties or that of some
elementary map from the universe of sets to some structure M . What makes
them attractive is the fact that they form a nearly linear scale against which
one can gauge the consistency strength of various other, say, combinatorial
statements. Thus, taking ZFC as the base system, if � 1 and �2 are large
cardinal axioms and � is some combinatorial statement, then � 1 is an upper
bound to the consistency strength of � if one can show that Con(ZFC+� 1)
implies Con(ZFC+�). Analogously, � 2 will be a lower bound to the consis-
tency strength of � if one can construct, starting from a model of ZFC+�,
a model of ZFC+�2. As exempli�ed by G�odel's and Cohen's results on CH
(although their proofs did not require any axioms beyond ZF), upper bounds
are usually constructed by the method of forcing, where the forcing exploits
the properties of the large cardinals, while the lower bounds make use of

2[Kan94] gives a comprehensive introduction to large cardinals including numerous his-
torical remarks.
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inner models.
Core models, a special type of inner models, where invented by Jensen and
Dodd [DJ81]. They go back to Jensen's investigation of G�odel's model L
of constructible sets. G�odel's fundamental idea was to construct the model
layer by layer, adding sets which are de�nable from parameters previously
constructed at each stage. Jensen [Jen72] took a closer look at this layering
or de�nability and thus arrived at more precise statements about the (�ne)
structure of the resulting model. Using this �nestructure, he succeeded to-
gether with Dodd in constructing K DJ, the �rst core model. It lies somewhere
between L and L[U ], the canonical inner model for a measurable cardinal.
The building blocks of this model are initial segments of the �nal model called
mice. They play a central rôle in all of core model theory. Subsequently, ex-
tensions of this concept of mouse led to new core models encompassing ever
larger large cardinal hypotheses. 3 Some common properties are their con-
struction from the bottom up along the ordinals, their rigidity (the existence
of an elementary embedding from K to K being the least large cardinal ax-
iom inconsistent with K) and some sort of covering lemma, which asserts
that | assuming the absence of the corresponding large cardinal in V |
the model K is close to V. Mitchell [Mit84] described the core model for
sequences of measures, Jensen [Jen8x] among others that for measures of or-
der zero. Schindler [Sch96], building on work of Jensen and Koepke [Koe89],
constructed a core model up to a strong cardinal. Transcending the bound-
ary of linear iterations using iteration trees, Steel [MS94], [Ste96] extended
the theory so as to accomodate even larger hypotheses, currently somewhere
in the region of limits of Woodin cardinals.
A common approach to consistency strength analysis using core models is the
following. Suppose we have some combinatorial statement � for which we
want to give a lower bound of its consistency strength, say �, where � is some
large cardinal axiom. Assume that � does not hold in V. Then a covering
lemma will hold for a suitable core model K. One then tries to show that the
close connection between the core model K and the surrounding universe V
contradicts �, in the sense that � disrupts the \constructible" nature of V
imposed by K.

3For an introduction and an approximate de�nition of this class of models cf. [Mit94].



4 CHAPTER 1. INTRODUCTION

In Chapter 2 we review the theory of the so-called short core models. This
theory has been developed in detail in [Koe83], and [Koe88] contains an intro-
duction to the main concepts and basic results, which we summarise without
proof. Short core models allow inner models for sequences of measurable
cardinals, provided that the length of the sequence is less than the least mea-
surable. This assumption greatly simpli�es the theory of iterations, as the
number of measures in a mouse does not change (increase, that is) when one
takes an ultrapower.
Chapter 3 takes another look at Chang's Conjecture, CC, and shows that
it is equivalent to an apparently stronger version, which we call Chang's
Conjecture at club-many points, CC club. Silver [Sil71] had shown that CC
can be forced to hold in a generic extension of the universe, using a variant
of the Levy collapse, now known as the Silver collapse. Later, Donder and
Levinski [DL89] and Baumgartner [Bau91] showed that the same result can
be achieved using the original Levy collapse. We modify this approach to
show that in the same generic extension also CC club holds.
In Chapter 4 a combinatorial principle closely related to Chang's Conjecture
is considered, the so-called Transversal Hypothesis, TH. Usually, the interest
lies in the negation of this hypothesis, as this is a consequence of CC. The
exact consistency strength of :TH at !1 has been determined by Donder
and Levinski [DL89] in terms of certain game principles. However, at higher
cardinals the situation is less clear. In fact, there is a large gap between the
lower and upper bounds for the consistency of CC at higher cardinals. So far,
a huge cardinal (cf. [For82]) has been needed to force, say, h@4;@3i� h@3;@2i,
whereas Schindler [Sch96] gets a strong cardinal as a lower bound for the
consistency strength of this statement (together with 2 @1 = @2). We in turn
consider a variant of TH, TH stat, concentrating on a stationary set, and give
a lower bound for the consistency strength of :THstat at cardinals beyond
@1, using the short core models of Chapter 2. Just as :TH is implied by CC,
:THstat is a consequence of CC club, considered in Chapter 3. That chapter
thus serves to make the consistency (relative to some large cardinal, of course)
of THstat plausible.
Chapter 5 lays the ground for another consistency strength result. To get
higher lower bounds than just 0 long (the \sharp" for short core models), we
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need to consider higher core models. For our purposes, core models up to a
strong cardinal will do nicely. The �nestructure for these models has been de-
veloped in [Koe89], and the actual core model construction is carried through
in [Sch96]. As in Chapter 2, we present a brief summary of the main concepts
and results.
In Chapter 6 we calculate an estimate for the length of certain short iterations
of mice. This bound will play a crucial rôle in the following chapter. We are
only able to give this bound under a more restrictive assumption than just
the absence of an inner model for a strong cardinal, which limits the possible
application in the subsequent consistency strength analysis. However, even
though our assumption is perhaps more restrictive than ultimately necessary,
some bound strictly below a strong cardinal is necessary, as a short \counter-
example" at the end of the chapter shows.
Finally, in Chapter 7 we compute a new lower bound for the consistency
strength of the existence of irregular ultra�lters. Regular ultra�lters were
�rst considered in Model Theory. Keisler showed that they yield ultrapowers
of maximal cardinality. However, not all ultra�lters need to be regular. A
measure on a measurable cardinal, for example, will always be fully irregular.
More interesting, though, is the question whether irregular ultra�lters can
exist on \small" or successor cardinals, @1 or @2, say. Prikry [Pri70] showed
that in L, all ultra�lters on !1 (in fact, on any successor cardinal) are regular.
Ketonen [Ket76] then showed that if there is, on some regular cardinal, a
weakly normal ultra�lter which is fully irregular, then 0 # exists. This result
was later improved by Jensen [DJK81], who proved that the existence of an
inner model for a measurable cardinal can be deduced. Kanamori [Kan76]
showed that if the ultra�lter lives on a successor cardinal, then the weak
normality requirement can be dropped. Donder [Don88] investigated the
matter at singular cardinals: if there is a uniform, non-regular ultra�lter on
� and � is singular, then there is an inner model for a measurable cardinal.
Also, if � is regular and (�+)KDJ = �+, then the same conclusion holds. Thus
in the Dodd-Jensen core model KDJ, all uniform ultra�lters are regular.
Not too much is known about the upper bound for the consistency strength
of (fully) irregular ultra�lters over small cardinals. Magidor [Mag79] used
a forcing starting from a huge cardinal to get a model in which !3 carries
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an ultra�lter that is not (!1; !3)-regular. Also, he constructed a model in
which !2 carries an ultra�lter that is not (!; !2)-regular. This not quite
full irregularity, though. Laver [Lav82] showed that in a model constructed
by Woodin, !1 carries an irregular ultra�lter. The hypothesis used for this
construction was \ZF+ADR+� regular"4. Finally, Foreman, Magidor, and
Shelah [FMS88] got an upper bound from large cardinals only: Given an
in�nite cardinal � and � > � huge, it is consistent that �+ carries a fully
irregular ultra�lter.5
We are able to improve the lower bound of the Jensen result [DJK81] to
\There exists an inner model with oM (�) > !". Were it not for the restric-
tion of the estimate of the length of short iterations from Chapter 6, our proof
would be able to cope with any hypothesis up to a strong cardinal. It is for
this reason that we have written up the proof in such a way that it would go
through for any such large hypothesis without change, provided this estimate
were improved. It is in this vein that we have also included a presentation of
the so-called Gitik Game, which permits the reconstruction of certain exten-
ders used in \long" iterations (cf. [Git93]). Given our assumptions it would
not have been truly necessary. However, we consider it an interesting method
in its own right, apart from its value in pinpointing the exact location of the
limitation of our proof. One should also note that our current assumptions
would permit further simpli�cations to the proof, e. g., there is obviously no
need to consider overlapped cardinals at all.
A word on notation: our notation adheres to the set theoretic standard, such
as that employed in [Kan94]. Thus H � denotes the collection of the sets
of hereditary cardinality less than �, where the hereditary cardinality of a
set is the cardinality of its transitive closure. The co�nality of an ordinal �

4Here, � = supf� j 9f : !! ! � ontog. The theory \ADR+� regular" is the strongest
determinacy type hypothesis known, much stronger than AD R alone (whose consistency
strength is within the limits of current inner model theory). Woodin has shown that the
axiom I1 is an upper bound for the strength of \AD R+� regular", where I1 is the statement
that there is an elementary embedding j : V�+1 ! V�+1.5Huberich [Hub94] extended this result to show that a measurable cardinal alone is su�-
cient to force the existence of a fully irregular ultra�lter on a non-measurable weakly compact
cardinal. This puts a bound on the possibility of irregular ultra�lters on limit cardinals hav-
ing high consistency strengths.
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is denoted by cf(�), the ordertype of a set x by otp(x), its cardinality by
card(x), or, in some cases, by x. The least upper bound of a set of ordinals
is lub(x). On denotes the class of all ordinals, Lim that of all limit ordinals,
Card that of all cardinals, Reg that of all regular cardinals.
A set x � � is called 
-club if it is unbounded in � and closed under limits
of co�nality at least 
. The set of all subsets of � of size � is denoted by [�]�,
that of all subsets of � of size less than � by [�]<�, accordingly.
If f is a function (a fact denoted by fun( f)), then dom(f) stands for its
domain and rge(f) its range. f 00x = ff(y) j y 2xg is the image of x under
f and f � x = fhy; f (y)i j y 2 xg is the restriction of f to x. If � is an
embedding from M to N , then crit(�) denotes the critical point of �, that is
the least ordinal moved by �.
U � P (�) is an ultra�lter if

i) it is closed under �nite intersections and supersets, and if
ii) it contains �, and if
iii) for any x � � it contains either x or � n x.

U is 
-complete, for some 
 6 �, if U contains the intersection of any �-many
elements of U , for any � < 
.
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Chapter 2

Short Core Models

Alice thought this must be the right way of
speaking to a mouse: she had never done
such a thing before, but she remembered hav-
ing seen in her brother's Latin Grammar, \A
mouse { of a mouse { to a mouse { a mouse
{ O mouse!"
(Lewis Carroll, Alice's Adventures in Won-
derland, Chapter II)

The theory of short core models has been developed in [Koe83]. The pa-
per [Koe88] contains a concise introduction to the main concepts and basic
results, of which we cite a number without proof for future reference. The
numbering from [Koe88] is given in parentheses.
J�[A] denotes the �-th level of the relativized Jensen-hierarchy, and <J�[A] its
canonical well-ordering. A class D is simple i� every element x of D is of the
form h�; ai, where � is an ordinal and a � �, and h�; ai2D implies h�; �i2D.
For simple D de�ne dom(D) := f� j h�; �i 2Dg, D(�) := fa j h�; ai 2Dg,
and D �X := fh�; ai j �2Xg.
U is a measure on � i� U is a non-principal, �-complete, normal ultra�lter
on �. U is a sequence of measures i� U is simple and U(�) is a measure on
� for every �2dom(U).

9



10 CHAPTER 2. SHORT CORE MODELS

2.1 Definition (2.1) Let D be a simple predicate. M = J�[U ; D] is a pre-
mouse over D i� U is simple, sup dom(D) < min dom(U), and M � U is a
sequence of measures. Then meas(M) := dom(U) \M is the set of measur-
ables in M , and lp(M) := H�, where � = minmeas(M), is the low part of
M (setting lp(M) := M if meas(M) = ;).
We omit the detailed de�nitions of ultrapowers, iterations, and iterability,
as well as the relevant criteria for iterability ([Koe88, De�nitions and Lemmas
2.2 { 2.8]).
2.2 Definition (2.9) Let M = J�[U ; D] be a premouse over D. M is called
short if i) either D = ; and otpmeas(M \ 
) < minmeas(M) for all 
 < !�
or ii) D 6= ; and otpmeas(M) 6 min dom(D).
A D-premouse is a short premouse over D, and a D-mouse is an iterable
short premouse over D.
The main advantage of dealing with short premice is that the number of mea-
sures present in a premouse does not change when one takes an ultrapower:
meas(Ult(M;U )) = �00(meas(M)).
2.3 Definition (2.13) \0long exists" means that there is an iterable pre-
mouse over ; which is not short. :0long is taken to abbreviate the statement
\0long does not exist".
2.4 Definition (3.1) Let D be simple such that D = ; or otp dom(D) 6
min dom(D). De�ne the class K[D] as

K[D] := [flp(M) j M is a D-mouseg:
For �2On set K�[D] := HK[D]� .
2.5 Theorem (3.2) K[D] is a transitive inner model of ZFC. �D := D \
K[D]2K[D] and K[D] � V = K[ �D]. If � > sup dom(D) is an uncountable
cardinal in K[D], then K�[D] � V = K[ �D].
2.6 Lemma (3.3) Let Q be a transitive model of a su�ciently large �nite
part of ZFC+V = K[ �D], where �D = D \ Q 2 Q. Assume dom( �D) =
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dom(D) and that �D-mice are absolute for Q. Then Q � K�[D], where
� = On\Q 61.
2.7 Theorem (3.4) For x, y 2 K[D] set x 6D y i� x 6M y for every
D-mouse M such that x, y2 lp(M). Then 6D is a well-ordering of K[D].
2.8 Definition (3.6) A model K[U ] is called a short core model if K[U ] �
U is a sequence of measures. A set U such that K[U ] is a short core model is
called strong .
2.9 Definition (3.8) Let U , U 0 be strong. Set U 6e U 0 if U = U 0 � � for
some �2On, i. e., if U 0 is an end-extension of U . Set U <e U 0 if U 6e U 0 and
U 6= U 0. U is maximal if U is strong and there is no strong U 0 end-extending
U .
2.10 Theorem (3.9) Assume :0long. Let U be strong, and 
2On. Then

i) U �
 is strong.
ii) K[U � 
] � K[U ], indeed, K[U � 
] = (K[ �U � 
])K[U ], where �U =

U \K[U ].
iii) P (
) \K[U �
] = P (
) \K[U ].

2.11 Theorem (3.11) Assume :0long. Let U be strong. Then there is a
maximal U 0 >e U .
2.12 Lemma (3.12) Assume :0long. Let U be strong. Then for every
regular cardinal �, sup(dom(U) \ �) < �.
2.13 Theorem (3.14) Assume :0long. Let K[U ], K[U 0] be core models
with dom(U) = dom(U 0). Then jK[U ]j = jK[U 0]j and U \K[U ] = U 0\K[U 0].
2.14 Definition (3.15) Let Ucan be the unique maximal strong sequence
satisfying

i) Ucan � K[Ucan],
ii) if �2 dom(Ucan), then � is the minimal ordinal � such that there is

some U 0 >e Ucan �� with � = min dom(U 0 n (Ucan ��).
Ucan is called the canonical sequence and K[Ucan] is the canonical core
model .
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2.15 Theorem (3.18) Assume :0long. Let K[U ] be a core model and let
j : K[U ] ! K[U ] be elementary with critical point � > sup dom(U).
Assume � is a regular cardinal greater than � which is a limit cardinal
in K[U ]. Then there exists a strong U 0 >e U with � := min dom(U 0 n U)
satisfying � > � and � = �, if � = !1, and � < �, if � > !2.
2.16 Theorem (3.20) Assume :0long. Let � be an ordinal such that
sup dom(Ucan � (� + 1)) < � . Then

i) If � > !2 is a limit ordinal and cf(� ) < card(� ), then � is singular
in K[Ucan].

ii) If � is a singular cardinal in V, then � is singular in K[Ucan] and
�+ = �+K[Ucan].

2.17 Theorem (3.24) Let D be a simple predicate with otp dom(D) 6
min dom(D) or D = ;. Let Q be a transitive model of a su�ciently large
�nite part of ZFC+V = K[ �D], where �D := D \ Q2Q. Let !1 � Q and
dom(D) = dom( �D). Then

i) Let M be a D-mouse, meas(M) 6= ;, and let � = minmeas(M) be
singular in Q. Then lp(M) � Q.

ii) Let � � Q be a cardinal greater than sup dom(D) and assume
the following condition is satis�ed: If C � � is closed unbounded
in �, then there exists a � 2 C which is singular in Q. Then
K�[D] � Q.

2.18 Theorem (3.25) Assume :0long. Let K[U ] be a core model. Let �
be a cardinal greater than 
 := sup dom(U). Assume � : K�[U ] ! W is
elementary, W is transitive, and � has critical point �, greater than 
.
Then there is an elementary embedding �� : K[U ] ! K[U ] with critical
point �.



Chapter 3

Chang’s Conjecture at

club-many Points

Hotspur Will this content you, Kate?
Lady Percy It must of force.
[Exeunt]
(William Shakespeare, King Henry IV,
Part I, Act 2, Scene 3)

3.1 Definition Chang's Conjecture , CC, is the statement that any struc-
ture A = hA;P; : : :i of countable type such that card(A) = !2 and card(P ) =
!1 has an elementary substructure B � A, B = hB;R; : : :i, such that
card(B) = !1 and card(R) = !. This is also written as h!2; !1i � h!1; !i.
For regular cardinals �; �; �; � , h�; �i � h�; �i denotes the obvious general-
isation. Instead of requiring card(R) = � one can also consider demanding
card(R) < �, denoted by h�; �i� h�;<�i.
Silver [Sil71] showed that the existence of an !1-Erd}os cardinal (cf. De�nition
3.7) implies that CC holds in some forcing extension of the universe. He used
a modi�cation of the Levy collapse as partial order for his forcing, which is
now aptly known as the Silver collapse. Later, Donder and Levinski [DL89]
and Baumgartner [Bau91] showed that, in fact, the Levy collapse will also
do. On the other hand, Donder [DJK81] established that if CC holds, then

13
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!2 is !1-Erd}os in an inner model, so that this is really the exact consistency
strength of CC. We now want to consider what seems at �rst sight to be
a strengthening of CC, requiring that there exist a closed unbounded set C
such that the ordertype of the predicate R of B can assume any value from
this set. It will turn out that this is actually equivalent to the original CC.
Note �rst that by relabeling, if necessary, one can assume that A = !2 and
P = !1 (or respectively � and �).
3.2 Definition CCclub is the statement that for any structure A = hA;P; : : :i
of countable type such that A = !2 and P = !1, there exists a closed un-
bounded set C � !1 such that for all � 2 C there exists an elementary
substructure B� � A, B� = hB�; R�; : : :i, such that card(B�) = !1 and
R� = �. We denote this by h!2; !1i �club h!1; <!1i.
For higher cardinals, one has to be slightly more careful, as the example in
[Sch96, Lemma 6.2] shows that not all co�nalities for � are always possible.
Thus, assuming � = %+, let h�; �i �club h�;<�i denote the obvious generaliza-
tion of the above statement, except that we now require C to be only %-club
in �, and hence w.l.o.g. concentrating on � with cf(�) = %.

Note that if �� denotes the inverse of the transitive collapse of B� to C�,
then � will be the critical point of ��, and ��(�) = �.
It is known that CC has a combinatorial equivalent in terms of a partition
property.
3.3 Definition Let � ! [�]<!�;� denote the statement that for any func-
tion f : [�]<! ! � there exists some H � �, card(H) = �, such that
card(f 00[H]<!) = �.
Let � ! [�]<!�;<� denote the statement that for any function f : [�]<! ! �
there exists some H � �, card(H) = �, such that card(f 00[H]<!) < �.
3.4 Lemma Let � > �, � > � > � > !. Then

h�; �i� h�;<�i i� �! [�]<!�;<� :
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Proof Cf. [Kan94, Theorem 8.1], or the proof of Lemma 3.6 below. �
Note that h!2; !1i � h!1; !i is equivalent to h!2; !1i � h!1; <!1i, and thus
to !2 ! [!1]<!!1;<!1 , as an in�nite predicate can surely not be reduced to a
�nite one in a substructure.
It is thus natural to seek a combinatorial equivalent for CC club:
3.5 Definition Let � !club [�]<!�;<� denote the statement that for any function
f : [�]<! ! � which is onto there exists a %-club set C � �, where � = %+,
such that for any � 2 C there is a set H� � �, card(H�) = �, such that
f 00[H�]<! = �.
3.6 Lemma Let � > �, � > � > � = %+ > !. Then

h�; �i�
club
h�;<�i i� �!

club
[�]<!�;<� :

Proof Assume h�; �i �club h�;< �i. Let f : [�]<! ! � be onto. Let
A := h�; �;2 ; (f � [�]n)n2!i. Let C � � be a %-club set guaranteed by the
assumption. Choose �2C, and let B� = hB�; R�;2 ; : : :i be as guaranteed
by the assumption. B� is an elementary substructure of A, and f 00[�]<! = �,
so that f 00[B�]<! = � \ B� = R� = �, and card(B�) = �.
On the other hand, assume that � !club [�]<!�;<� . Let A = h�; �; : : :i. Let
fhn j n 2 !g be a complete set of Skolem functions for A such that hn is
k(n)-ary, k(n) 6 n. De�ne a function f : [�]<! ! � by setting

f(�1; : : : ; �n) :=
8><
>:
hn(�1; : : : ; �k(n)) if this is less than �,
0 else.

Note that f 00[�]<! = �, as e. g. h9v1(v1=v0)(�) = �, for � < �. Thus we can
apply the assumption to get some %-club set C � �. Let � 2 C and let
H� � �, card(H�) = �, f 00[H�]<! = �. Let B� := Sn2! hn00[H�]k(n), so
that card(B�) = �. Let B� := hB�; � \ B�; : : :i. Then B� � A. Also,
� \ B� � f 00[H�]<! = �. In fact, the converse is true, too: f 00[H�]<! is a
subset of � by the de�nition of f , and a subset of B�, by the de�nition of
B�. Thus R� = �. �
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3.7 Definition � ! (�)<!� denotes the statement that for any f : [�]<! !
� there exsits an H � � with card(H) = � such that H is homogeneous for
f , i. e., card(f 00[H]n) 6 1 for every n 2 !. For � > !, any � that satis�es
�! (�)<!2 is called �-Erd}os , and the least such � is denoted by �(�).
3.8 Theorem Suppose � = �(!1), the least !1-Erd}os cardinal. Then


Col(!1;�) � = _!2 ^ CCclub :

Proof The proof is based on that of that of [Kan00, Theorem 33.10]. Let
� = �(!1) and let P := Col(!1; �) be the Levy collapse, i. e.,
P := fp j fun(p) ^ dom(p) � �� !1 ^ card(p) < !1 ^

8h�; �i2dom(p) (� > 0 ! p(�; �) < �)g:
Then P is !1-closed, and as � is inaccessible, P has the �-chain condition
(�-c.c.). P collapses � to !2, preserving !1 and cardinals greater than � (cf.
[Kan94, x10]). Assume that p02P is a forcing condition such that

p0 
 _f : [�]<! ! !1 onto.
Let G be a P -generic �lter over V. We now seek a closed unbounded set
C � !1 such that, in V[G],

8�2C 9Y � � � (card(Y �) = !1 ^ _fG00[Y �]<! = �):
We will actually �nd such a set C independently of G. Note that if C2V is
club in V, then C is club in V[G], too.
Since � is the least !1-Erd}os cardinal, for each 
 < � there exists a function
f
 : [
]<! ! 2 witnessing 
 6! (!1)<!2 . For n 2 !, let gn : [�]n+1 ! 2 be
de�ned by

gn(�1; : : : ; �n; 
) := f
(�1; : : : ; �n):
Let W : V� ��! � be a bijection (recall that � is inaccessible), such that for
all � < � such that � is inaccessible, too, W � � : V� ��! � is also bijective.
Finally, code _f into a predicate R � P � [�]<! � !1 by setting

hp; x; �i2R $ p 6 p0 ^ p 
 _f(�x) = �:
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Let A := hV�;2; !1; f!1g; P;6P ; fp0g;W;R; (gn)n2!i, and let hhn j n2!i be a
complete set of de�nable (using W ) Skolem functions for A. Assume w.l.o.g.
that hn is k(n)-ary with k(n) 6 n. Let h'� j � < !1i be an enumeration of
the formulae of LA [ fc� j � < !1g. De�ne a function g : [�]<! ! !1 by
setting

g(�1; : : : ; �n) :=

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

hn(�1; : : : ; �k(n))
if m = 2n+ 1 and hn(�1; : : : ; �k(n)) < !1,

0 if m = 2n+ 1 and hn(�1; : : : ; �k(n)) > !1,
0 if m = 2n and h�1; : : : ; �ni and h�n+1; : : : ; �2ni

realize the same type over hA; (c�)�<!1i,
� if m = 2n and '� is a witness to the fact that

h�1; : : : ; �ni and h�n+1; : : : ; �2ni do not
realize the same type over hA; (c�)�<!1i.

As � is !1-Erd}os, let E � �, card(E) = !1, be homogeneous for g. Let
E = f�� j � < !1g be the increasing enumeration and assume w.l.o.g. that
�! is minimal. Let

H := H0 := fhn(�1; : : : ; �k(n)) j n2! ^ �1 < : : : < �k(n)2Eg
H� := fhn(�1; : : : ; �k(n)) j n2! ^ �1 < : : : < �k(n)2E [ �g;

and let H, H� be the corresponding substructures of respectively A and
hA; (c�)�<�i. To enhance legibility, for any � 6 !1, let A� denote hA; (c�)�<�i.
Claim 1 For any �2!1, E is a set of indiscernibles for H�.
Proof Let � 2 !1, and h�1; : : : ; �ni and h�1; : : : ; �ni from [E]<!. Choose
another n-tuple h#1; : : : ; #ni from [E]n, such that #1 > max(�n; �n). E is
homogeneous for g, so

g(�1; : : : ; �n; #1; : : : ; #n) = g(�1; : : : ; �n; #1; : : : ; #n) = �;
for some � 2!1. If � = 0, then h�1; : : : ; �ni and h�1; : : : ; �ni realize the same
type over A!1 and so, a fortiori, over A�, so that

H� � '(�1; : : : ; �n) $ H� � '(�1; : : : ; �n):
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If, on the other hand, � > 0, then �nd another n-tuple h�1; : : : ; �ni from [E]n,
such that �1 > #n. Then

g(�1; : : : ; �n; �1; : : : ; �n) = g(#1; : : : ; #n; �1; : : : ; �n) = �;
too. But this gives the following absurdity:

A!1 � '�(�1; : : : ; �n) $
:A!1 � '�(#1; : : : ; #n) $ A!1 � '�(�1; : : : ; �n)

$ :A!1 � '�(�1; : : : ; �n):
Note that any � 2 E must be at least !1, as else A�+1 � c� = �, which no
other element �2E can possibly satisfy. �(Claim 1)
Claim 2 For any �2!1, H� \ !1 is countable.
Proof Let � 2 !1, and �1; : : : ; �l 2 �, �1; : : : ; �n 2 E. Let h be one of the
Skolem functions and assume that h(�1; : : : ; �l; �1; : : : ; �n) < !1. If l = 0,
then by the homogeneity of E for g, we get

h(�1; : : : ; �n) = h(�1; : : : ; �n)
for any n-tuple h�1; : : : ; �ni from E. Thus for l = 0, only countably many
di�erent values are possible. If l > 0, then let 
 := h(�1; : : : ; �l; �1; : : : ; �n) <
!1. Assume w.l.o.g. that � > 
. If h�1; : : : ; �ni is another n-tuple from E,
then by Claim 1 (and as the Skolem functions are de�nable) we may conclude
that

A � h(�1; : : : ; �l; �1; : : : ; �n) = 

$ A� � h(c�1 ; : : : ; c�l ; �1; : : : ; �n) = c

$ A� � h(c�1 ; : : : ; c�l ; �1; : : : ; �n) = c

$ A � h(�1; : : : ; �l; �1; : : : ; �n) = 
:

Now [�]<! is countable and there are only countably many Skolem functions,
so that, indeed, H� \ !1 is countable. �(Claim 2)
Claim 3 The set C := f�2!1 j H� \ !1 = �g is closed and unbounded in
!1.
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Proof To see that C is closed, let h�i j i < 
i be a sequence from C, 
 < !1.
Let � := Si<
 �i. Let � 2H� \ !1. Then there are some Skolem function h,
some �1; : : : ; �l2�, and some �1; : : : ; �n2E such that

� = h(�1; : : : ; �l; �1; : : : ; �n):
Obviously, there exists some i0 < 
 such that �1; : : : ; �l2�i0 , whence

�2H�i0 \ !1 = �i0 � �:
Thus H� \ !1 � �, and the converse is trivially true, so that �2C.
To see that C is unbounded in !1, let �0 < !1 be arbitrary. De�ne inductively
�i+1 := sup(H�i\!1) < !1 for i < ! and set � := Si<! �i. Again � � H�\!1
is trivially true. Let � 2H� \ !1. Then there are some Skolem function h,
some �1; : : : ; �l2�, and some �1; : : : ; �n2E such that

� = h(�1; : : : ; �l; �1; : : : ; �n):
Again, there exists some i0 < ! such that �1; : : : ; �l2�i0 , so that now

�2H�i0 \ !1 � �i0+1 � �:
�(Claim 3)

Claim 4 For any �2!1 the set E is �-remarkable , i. e., for any (l+m+n)-
ary Skolem function h, any �1 < : : : < �l < �, and any �1 < : : : < �m+n < !1,
if h(�1; : : : ; �l; ��1 ; : : : ; ��m+n)2��m+1 ; then for all �m < �1 < : : : < �n < !1

h(�1; : : : ; �l; ��1 ; : : : ; ��m+n) = h(�1; : : : ; �l; ��1 ; : : : ; ��m ; ��1 ; : : : ; ��n):

Proof Assume that for some � 2 !1, some Skolem function h, some �1 <
: : : < �l < �, and some �1 < : : : < �m+n < !1,

h(�1; : : : ; �l; ��1 ; : : : ; ��m+n)2��m+1 ;
but

h(�1; : : : ; �l; ��1 ; : : : ; ��m+n) 6= h(�1; : : : ; �l; ��1 ; : : : ; ��m ; ��1 ; : : : ; ��n)
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for some (and hence by indiscernibility for all) n-tuple �1; : : : ; �n from !1
such that �1 > �m. Now partition E into successive bits s
 of length n,
with the exception of s0, having length m. I. e., s0 = f�1; : : : ; �mg, s1 =
f�m+1; : : : ; �m+ng, and s! = f�!; : : : ; �!+n�1g. By indiscernibility, for 
 <
� < !1,

h(~�; s0; s
) 6= h(~�; s0; s�):
But surely h(~�; s0; s
) > h(~�; s0; s�) is impossible, as this would give an
in�nite descending chain of ordinals. Thus 
 < � must imply h(~�; s0; s
) <
h(~�; s0; s�). Note that by assumption, and indiscernibility, we have

h(~�; s0; s!)2�!:
But fh(~�; s0; s
) j 
 < !1g is a set of indiscernibles for A of size !1, and
hence homogeneous for g, contradicting the minimality of �!. �(Claim 4)
Claim 5 For any �2 !1, Condition II of the theory of 0# holds for E [ �,
i. e., for any (l + n)-ary Skolem function h, any �1 < : : : < �l < �, and any
�1 < : : : < �n+1 < !1,

if h(�1; : : : ; �l; ��1 ; : : : ; ��n)2On then h(�1; : : : ; �l; ��1 ; : : : ; ��n)2��n+1 :
Proof If the claim is false, then using indiscernibility one sees that

E 0 := E n ��n+1 � 
 := h(�1; : : : ; �l; ��1 ; : : : ; ��n) + 1:
E 0 has cardinality !1, is a subset of 
, and the functions gn ensure that it is
homogeneous for f
 : let m2!, �2f0; 1g, and h�#1 ; : : : ; �#mi; h��1 ; : : : ; ��mi2
[E 0]m. Then

f
(�#1 ; : : : ; �#m) = �
$ A � gn(�#1 ; : : : ; �#m ; 
) = �
$ A � '(�; �1; : : : ; �l; ��1 ; : : : ; ��n ; �#1 ; : : : ; �#m)
$ A� � '(�; c�1 ; : : : ; c�l ; ��1 ; : : : ; ��n ; �#1 ; : : : ; �#m)
$ A� � '(�; c�1 ; : : : ; c�l ; ��1 ; : : : ; ��n ; ��1 ; : : : ; ��m)
$ f
(��1 ; : : : ; ��m) = �:

But this contradicts the choice of f
 as a witness to 
 6! (!1)<!2 . �(Claim 5)
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Claim 6 If �2E, then � is inaccessible.
Proof By indiscernibility, it su�ces to show that �0 is inaccessible. So let
j be an order-preserving injection from E to E with j(�0) > �0. This map
easily extends to an elementary embedding e| : H ! H. By remarkability, we
must have crit(e|) = �0: Let 
 = h(��1 ; : : : ; ��n) < �0. Remarkability implies
that we can substitute for ��1 ; : : : ; ��n any other n-tuple of indiscernibles (we
have � = m = 0), so in particular


 = h(��1 ; : : : ; ��n) = h(j(��1); : : : ; j(��n)) = e|(
):
From this, we can conclude that �0 is totally indescribable, whence inacces-
sible: Assume that for some formula '

H � �R � V�0 ^ hV�0 ;2; Ri � '
�:

Then
H � 9� < e|(�0) �R � V� ^ hV�;2; Ri � '�;

and since e| is an elementary embedding from H to H,
H � 9� < �0 �R � V� ^ hV�;2; Ri � '�;

so �0 is totally indescribable (and thus inaccessible) in H. Since H � A, �0 is
really inaccessible. �(Claim 6)
Consider now the partial order P . Let P
 := Col(!1; 
). Then P ' P
 �
Col(!1; � n 
), by [Kan94, Lemma 10.17 b)].
Claim 7 If A is a maximal antichain in P
 , then it is a maximal antichain
in P .
Proof Let A be a maximal antichain in P
 . Let p2P n A. Then p �
 2P
 ,
so that there is some q2A such that p �
 and q are compatible. But surely
p� (�n
) and q are compatible, too, so that in the end p and q are compatible.
Thus A is maximal in P , too. �(Claim 7)
Let S := fx2 [E]<!1 nf0g j x has no last elementg, and de�ne a partial order
on S by setting

x <i y $ 9
 < [y (x = y \ 
);
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i. e., x <i y i� x is a proper initial segment of y.
From now on, let �2C. For x2S, let N�x be the domain of the Skolem hull
of x [ � in A. Then N�x is a countable model of ZFC.
For p 2 P , say that p is P -generic over N�x i� fq 2 P \ N�x j q > pg is
P -generic over N�x , and similarly de�ne P
-generic for 
2N�x \ �.
Claim 8 Let x; y 2S, x <i y, 
 := min(y n x). Assume that p is P -generic
over N�x . Then p is P
-generic over N�y .
Proof Let A2N�y be a maximal antichain in P
 . Then

A = h(�1; : : : ; �n; ��1 ; : : : ; ��m ; ��m+1 ; : : : ; ��m+n);
for some �1; : : : ; �n2�, ��1 ; : : : ; ��m 2x, and ��m+1 ; : : : ; ��m+n 2ynx. By Claim
6, 
 is inaccessible, so P
 has the 
-c.c. Thus card(A) < 
, and hence A2V
 .
Recall that W �V
 : V
 ��! 
 is bijective. Applying �-remarkability, one can
�nd ��1 ; : : : ; ��n 2x (!) such that A = h(�1; : : : ; �n; ��1 ; : : : ; ��m ; ��1 ; : : : ; ��n).
This shows that A2N�x . Since A is a maximal antichain in P
 , it is also a
maximal antichain in P , by Claim 7. Since p was assumed to be P -generic
over N�x , there must exist some q 2P \ N�x such that q > p and q 2A. But
N�x � N�y , so that fq2P
 \N�y j q > pg \ A 6= ;. Thus p is P
-generic over
N�y . �(Claim 8)
Claim 9 Suppose x2S, and p is P -generic over N�x . Then there exists some
y2S, y >i x, and some p0 6 p such that p0 is P -generic over N�y .
Proof Let � := supf� < sup(E) j 9� (h�; �i2dom(p))g. Then � < sup(E),
as p is countable. Choose some y2S, y >i x, such that y n x � E n (� + 1).
Set 
 := min(y n x). By Claim 8,

G0 := fq2P
 \N�y j q > pg
is P
-generic over N�y . Apply the product analysis ([Kan94, Lemma 10.17
b)]) to P ' P
 � Col(!1; � n 
) to �nd some G1 such that G0 � G1 is P -
generic over N�y . (Recall that N�y is countable, so that generics exist.) Note
that On \N�y � sup(E), by Claim 5, so that if r 2 G1, then dom(r) �� sup(E) n (� + 1)� � !1. Thus if r2G1, then p and r are compatible, since
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dom(p) � �(� + 1) [ (� n sup(E))� � !1. Finally, set p0 := p [ [G1. Then
p0 2 P , as G1 is countable and P is !1-closed, and p0 is P -generic over N�y .

�(Claim 9)
We will now proceed to show that whenever G is P -generic over V such that
p02G, then there exists some set Y �2V[G] of size !1 such that _fG00[Y �]<! =
�.
De�ne recursively in V[G] a sequence hy� j � < !1i of elements of S, such
that � < � implies y� <i y� , and a sequence hq� j � < !1i of elements of G,
such that q� 6 p0 and such that q� is P -generic over N�y� .
Set y0 := f�n j n2!g, the �rst !-many elements of E. Note that p02N�y , as
it was included as a constant in A. Now �nd some q02G, q0 6 p0, such that
q0 is P -generic over N�y0 . To this end, let hDn j n 2 !i be an enumeration
of the dense subsets of P from N�y0 . Note that if N�y0 � D dense in P , then
by elementarity, A � D dense in P , too. So inductively �nd r0 6 p0 and
rn 6 rn�1 such that rn2G \Dn. As P is !1-closed, there exists q02G such
that 8n2!(q0 6 rn). Then q0 is as desired.
At successor steps, assume y� and q� to be given. Then the set fq 6 q� j q 6
p0 ^ 9y (y >i y� ^ q is P -generic over N�y )g is dense in P below q�: For
let r 6 q�. Then r is P -generic over N�y� , too, and by Claim 9 there exists
some yr >i y� and some qr 6 r such that qr is P -generic over N�yr . But
now, since G is P -generic and q� 2 G, there must exist some q�+1 6 q�,
q�+1 2G \ fq 6 q� j q 6 p0 ^ 9y (y >i y� ^ q is P -generic over N�y )g. Let
y�+1 be an appropriate witness.
At limit stages � < !1, set y� := S�<� y� and, using the !1-closure of P and
the genericity of G, �nd some q� 2G such that for all � < �, q� 6 q�. Then
obviously q� is P -generic over N�y� .
Finally, set Y � := S�<!1 N�y� \ �. All N�y are countable, so card(Y �) 6 !1,
and as y� <i y�+1, in fact, one has card(Y �) = !1. Now

_fG00[Y �]<! � !1 \ [
�<!1N

�y� � !1 \H� = �;

for if h
1; : : : ; 
ni2 [Y �]n, then h
1; : : : ; 
ni2S�<� N�y� = N�y� , for some � < !1,
so that _fG(
1; : : : ; 
n)2N�y� , too. But the converse is true, too. Let � < �.
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Then �2N�y0 , and D� := fq 6 p0 j 9x2 [�]<! (q 
 _f(�x) = �)g is an element
of N�y0 and dense in P below p0 (as p0 
 _f onto). Now q0 is P -generic over
N�y0 , and q02G. So there is indeed some x2 [�]<!\N�y0 such that _fG(�xG) = �.
But then x2 [Y �]<!, as N�y0 \ � � Y �. Thus �2 _fG00[Y �]<!.
Thus _fG00[Y �]<! = �, as desired.
We have shown that given any p0 such that p0 
 _f : [�]<! ! !1 onto, there
exists some closed unbounded set C � !1 such that for any �2C and for any
P -generic �lter G with p0 2G, there is a set Y � � �, card(Y �) = !1, such
that V[G] � _fG00[Y �]<! = �. That is, 
Col(!1;�) � = _!2 ^ CCclub. �
Note that the proof will only work for CC club and not for higher transfer
properties, say h�+; �i �club h�;< �i, where � = �+ > !1: The countability of
the N�x is essential to get the required generic objects G in the proof of Claim
9. This is no coincidence. For example, [Sch96, Theorem 6.2] shows that one
needs at least a strong cardinal to get a model for h@4;@3i � h@3;@2i and
2@1 = @2. So far, any forcing to get this uses, in fact, a huge cardinal [For82].



Chapter 4

The Transversal Hypothesis

\Contrariwise," continued Tweedledee, \if it
was so, it might be; and if it were so, it would
be; but as it isn't, it ain't. That's logic."
(Lewis Carroll, Through the Looking-Glass,
Chapter IV)

We will now consider a combinatorial principle closely related to Chang's
Conjecture.
4.1 Definition Let � be a regular cardinal. The Transversal Hypothesis ,
TH(�), is the statement: There exists a sequence of functions hg� j � < �+i
such that for all �, g� is regressive, and that for all � < � , f� < � j g�(�) =
g�(�)g has cardinality less than �. TH*(�) is the same statement, with \has
cardinality less than �" replaced by \is not stationary". In this case, the set
f� < � j g�(�) 6= g�(�)g contains a club set.
Assume � = %+. Let THstat(�) be the statement: There exists a set S � �, a
sequence of functions hg� j � < �+i and sequences of sets hD� j � < �i and
hD�� j � < � < �i such that

i) S is stationary and S � CF% := f� < � j cf(�) = %g.
ii) 8� < �+ �D� is club in �, D� \ S � dom(g�); and g� is regressive�.
iii) 8� < � < �+ �D�� is club in � and

D�� \ S � f�2D� \D� \ S j g�(�) 6= g�(�)g�.
25
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Obviously, TH(�) ! TH*(�) ! THstat(�). Jensen observed (cf. [Don84])
that TH*(�) ! TH(�). It su�ces that the g� only be de�ned on club
sets themselves. THstat(�) intends to capture the essence of TH *(�) when
restricted to a �xed stationary set S. Shelah [She86] has shown that without
the requirement that S � CF%, THstat(@n) (for 2 6 n 6 !) is a theorem of
ZFC. Usually, the interest lies in the negations of these hypotheses, as, e. g.,
Chang's Conjecture at �, with � = %+, implies :TH(�). Correspondingly,
:THstat(�) is a consequence of h�+; �i �club h�;<�i, cf. Lemma 4.2 below. The
previous chapter, in showing the consistency of h!2; !1i �club h!1; < !1i from
the existence of an !1-Erd}os cardinal, hence serves to make the consistency of
:THstat(�) plausible for � > !1 (although surely larger cardinals are needed
than just Erd}os-cardinals). In Theorem 4.3, we give a lower bound for the
consistency strength of this hypothesis.
4.2 Lemma Let � = %+ be a cardinal, and assume that h�+; �i�

club
h�;<�i.

Then :THstat(�) holds.

Proof Assume h�+; �i �club h�;<�i. Assume S, hg� j � < �+i, hD� j � < �i
and hD�� j � < � < �i satis�ed the conditions of TH stat(�). Code the
sequences by some predicates G � �+ � � � �, and D1, D2 � �+ � �+ � �.
Set A := h�+; �;G;D1; D2i. Now apply h�+; �i �club h�;< �i to �nd a set
C � � such that C is %-club, and such that for all 
 2C there exists some
B
 � A, card(B
) = �, B
 \ � = 
. As S is stationary and S � CF%, there
exists a 
2C \ S.
We claim that for any � < � , both from B \ �+, 
 is an element of D�� : D��
is club in �, thus as B
 � A and B
 \ � = 
, it follows that D�� \ 
 is club
in 
. But then sup(D�� \ 
) = 
2D�� , as D�� is closed.
Now if 
 is both in D�� and in S, then g�(
) 6= g�(
) (provided of course that
�, � are both from B\�+). Thus x := fg�(
) j �2Bg has cardinality �. But
all the g� are regressive, so that x � 
 < �, contradiction! Hence TH stat(�)
must fail. �

4.3 Theorem Let � be a successor cardinal, � = %+ > !2, 2� = �+.
Assume that :THstat(�). Then 0long exists.
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Proof The proof of this theorem adapts techniques from [Koe88] and [DK83],
especially the proof of Theorem B there, as well as those of Ketonen's proof
that the existence of an irregular ultra�lter entails the existence of 0 # (cf.
also Chapter 7).
Let � = %+ > !2, and assume :THstat(�). We have to show that 0 long
exists. So assume to the contrary that 0 long does not exist and work for a
contradiction.
Let Ucan be the canonical, maximal strong sequence of �lters from De�nition
2.14. Let U := Ucan ��+, � := sup dom(U). Then by Lemma 2.12, � < �+.
For � 2 (�; �+) let f� be a surjection from � onto � , and let F := fh�; �; � i j
f� (�) = �g. Let F �� := F \ (�� � � � ).
For � 2 (�; �+) such that cf(� ) = �, let g� : � ! � monotone co�nally. If
cf(� ) < �, let g� : �! � be arbitrary. Let G := fh�; �; � i j g� (�) = �g. Let
G�� := G \ (�� � � � ).
Let h : �+ ! H�+ be a bijection. Let H = hH�+ ;2; h;U ; F;Gi, W := K�+ [U ].
For � 2 (�; �+), let fH� := H� (h00� ), H� := h00� = jfH� j, W� := H� \W . Let
E := f� 2 (�; �+) j fH� � H ^ On\H� = �

^ H� transitive ^ fH� � W� = K[U ]g
Then E is a club subset of �+.
For � 2E let

K� [U ] := W�
Q� := hK� [U ];2;U ��; F ��; f� ; G�� i
eQ�� := the smallest Q � Q� s. t. � � Q
C� := f� < � j eQ�� \ � = �g

If x is an element of K� [U ], then f� 2 C� j x 2 eQ��g is a �nal segment of
C� . Assume w.l.o.g. that min(C� ) > %, where %+ = �. Then for � 2 C� ,
card(�)+ = �. Also, by Lemma 2.12, 
 := sup dom(U � �) < �, so that we
may also assume w.l.o.g. that min(C� ) > 
. It is straightforward to show
that C� is club in �.
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Let Q�� := hK��;2;U �� ; F �� ; (f� )��; G��i be the transitive model isomorphic to eQ��
and let ~��� : Q�� ! eQ�� be the inverse of the collapsing isomorphism. Let
K�� := (K[U �� ])Q�� , �� := On\K��, and ��� := ~��� � K��. Then ��� : K�� !
K� [U ] is an elementary embedding. We refer to this setup as a Ketonen
diagramme , cf. Figure 4.1.

�K
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����

��
��

''''''''''''''''''''''''������������������������

'
'

_______
�

�

�K��; K��

OO
�
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ff
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ff

���

Figure 4.1: The basic structure of the Ketonen diagramme.

Let �; � 2 E, � < �, � 2 rge(���), and � 2 C�. Then � 2 C� and Q�� =
(~���)�1(Q� ) 2 Q��, ~��� = ~��� � Q��, and hence K�� = (���)�1(K� [U ]) 2 K�� ,
��� = ��� �K��, and K�� � K�� .
The following lemma, adapted from [DJK81, Lemma 2.3], will play a key rôle
in the proof:
4.4 Lemma Let S � CF% be stationary, f 2 Q�2S card(�)+. Let � 2 E.
Then there is a �2E, � > � , such that

f�2S \ C� j f(�) < ��g is stationary.

Proof Assume the statement to be false. Then for all � 2E, � > � , there
exists a set D0� � � such that D0� is club in � and such that D0� \ f� 2
S \ C� j f(�) < ��g = ;. Set D� := D0� \ C�. Then D� is also club in �,
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and for all � 2D� \ S, f(�) > ��. For each � 2 S, let h� be an injection
from f(�) + 1 into card(�). For � 2 E, � > � , de�ne a function g� with
dom(g�) = D� \ S by setting g�(�) := h�(��). Surely, g� is regressive. For
� < �0 set D��0 := D� \ D�0 \ C��0 . Then if � 2 D��0 \ S, �� 6= �0� and
hence g�(�) 6= g�0(�), i. e., hg� j � 2 E n (� + 1)i is a THstat(�)-sequence,
contradiction. �(Lemma 4.4)
We now start to distinguish several cases. One of two things will happen:
Either, as in Case 1, we can de�ne, from one of the embeddings ���, an
ultra�lter on some � which allows us to get an embedding from K[U ] to
K[U ], contradicting the rigidity of K[U ]. Or we can, as in Case 2.1, show that
some ultra�lter has been omitted in the de�nition of the canonical sequence,
equally a contradiction.
Case 1 dom(U) \ [�; �+) = ;.
In this case, there is no ultra�lter from the canonical sequence in the inter-
val from � to �+. By Lemma 2.12 we now know that � = sup dom(U) =
sup dom(U � �) < �. By restricting to the right sets of � 's and �'s, we can
mimick the original Ketonen proof, as the K�� condensate more or less to
initial segments of K[U ].
For the rest of this case, assume that for all � 2E, min(C� ) > �. Also, as
d := dom(U) � � < � < �+, d 2 K[U ], we have that d 2 eQ�� for a �nal
segment of C� , so again assume w.l.o.g. that this holds for all �2C� . Then,
as � < �, we have that dom(U ��) = dom(U). Similarly argue that U 2 eQ��, so
U �� = (���)�1(U), and if �2E, � < �, and � 2rge(���), then U �� = U�� .
The following assertion (?)� is a variation of the property (�)� from the proof
of [DK83, Theorem B].

(?)� Let � 2 E, S � C� \ CF%, S stationary, and let hM� j � 2 Si be
a sequence of short, iterable U ��-premice, card(M�) < card(�)+ = �.
Then there is �2E, � > � , and S 0 stationary, S 0 � S \ C�, such that

8�2S 0 �� 2rge(���) ^ lp(M�) � K��
�:

Claim 1 (?)� holds.
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Proof By Theorem 2.16 we have that for limit ordinals �2 (max(�; �); �+)
with cf(�) < card(�)

K[Ucan] � \� is singular".
Thus

K�+ [U ] � \� is singular".
By our choice of G we then get that
8�2 (max(�; �); �+) hK�+ [U ]; F;Gi � \g� does not map � monotone

co�nally into � =) � is singular".

Let � , S, hM� j �2Si be given, and let �� := minmeas(M�). By iterating
M� with its least measure if necessary, we can assume w.l.o.g. that �� > �
and thus �� > �, while still keeping �� < �. Then the !1-st iterate �(!1)�
of �� is also less than � = card(�)+. Thus by Lemma 4.4 there is a � 2E,
� > � , and S 0 stationary, S 0 � S \ C�, such that for � 2 S 0 we have that
� 2 rge(���) and �(!1)� < ��. Now set ��� := �(!)� or := �(!1)� and M �� := M (!)�
or := M (!1)� , ensuring that cf(���) 6= cf(�). Then, setting � := ���(���),

hK�� ; F �� ; G��i � \(g��)��� does not map � monotone co�nally into ���",
so

hK�+ [U ]; F;Gi � \g� does not map � monotone co�nally into �".
As �2 (max(�; �); �+) , it follows that

hK�+ [U ]; F;Gi � \� is singular",
and so

hK�� ; F �� ; G��i � \��� is singular".
As U�� = U �� , Theorem 2.17 now implies that lp(M�) � K�� . �(Claim 1)
Now pick some � 2E.
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Claim 2 The set S1 := f�2C� \ CF% j U �� is strongg is stationary.

Proof Assume not. Then there is some closed unbounded set D such that
D \ S1 = ;, and for any �2D \ C� \ CF%, K[U �� ] � \U �� is not a sequence
of measures". This is witnessed, for some � 2dom(U ��), by some x2P (�) \
K[U �� ], or x2 �� \ K[U �� ], or x2 �P (�) \ K[U �� ], for some � < � . x� := x is
either a set not measured by U ��(�), or a non-constant regressive function, or
a sequence of sets of the �lter whose intersection is not in the �lter. In any
case, x2K�+K[U��] [U �� ], and �+K[U�� ] 6 �. Thus, for �2D \ C� \ CF%, we can
�nd a short iterable U ��-premouse M�, card(M�) < �, such that x�2 lp(M�).
(?)� implies that there is a �2E, � > � , and S 0 stationary, S 0 � D\C�\CF%,
such that for all � 2 S 0, � 2 rge(���) and x� 2 lp(M�) � K�� . As U�� = U �� ,
K�� � \ U�� is not a sequence of measures\. But this is a contradiction.

�(Claim 2)
For � 2 S1, U �� is strong and dom(U ��) = dom(U), so that Theorem 2.13
implies that U �� = U . This is what we meant when we said that the K��
condensate more or less to initial segments of K[U ].
Claim 3 � is inaccessible in K[U ].

Proof Assume to the contrary that � = �+K[U ]. We can assume that
min(C� ) > �. Thus for each � 2 S1, K[U ] � \� is not a cardinal". Pick
for each such � a short iterable U -premouse M�, card(M�) < �, such that
there is a surjection h� : �! �, h�2 lp(M�). By Lemma 4.4 there is a �2E,
� > � , and S stationary, S 0 � S1\C�, such that for all �2S 0, � 2rge(���) and
lp(M�) � K�� . But then K�� � \� is not a cardinal", clearly a contradiction,
as ���(�) = �. �(Claim 3)
Claim 4 The set S2 := f�2S1 j P (�) \K[U ]2K��g is stationary.

Proof By the last claim, P (�) \K[U ]2K�[U ] for � < �. Pick a sequence
hM� j �2S1i of short iterable U -premice such that P (�) \K[U ]2 lp(M�).
Then, again, there is a � 2E, � > � , and S 0 stationary, S 0 � S1 \ C�, such
that for �2 S 0, � 2 rge(���) and P (�) \ K[U ]2K�� . As K�� � K[U ], we get
that P (�) \K[U ] = P (�)K�� . Since K�� � K�� , K�� � \P (�) exists", and so
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P (�)K�� = P (�)K�� = P (�)\K[U ]2K��. S2 is obviously a superset of S 0 and
hence is also stationary. �(Claim 4)
For �2S de�ne K[U ]-ultra�lters V�� by

x2V�� :$ �2���(x):
Claim 5 There is an �2S2 such that Ult(K�[U ];V��) is well-founded.
Proof Assume not. Then for each �2 S2 there are functions f�0 ; f�1 ; : : : 2
K�[U ] such that for all i 2 !, f� < � j f�i+1(�) 2 f�i (�)g 2 V��. Pick short
iterable U -premice M�, card(M�) < �, such that f�i 2 lp(M�). Find � 2E,
� > � , and S 0 stationary, S 0 � S2 \ C�, such that for all �2S 0, � 2 rge(���)
and lp(M�) � K�� . Then

�2���
�f� < � j f�i+1(�)2f�i (�)g

�

= ���
�f� < � j f�i+1(�)2f�i (�)g

�

= f� < � j ���(f�i+1)(�)2���(f�i )(�)g:
This gives an in�nite descending sequence of ordinals,

: : :2���(f�i+1)(�)2���(f�i )(�)2 : : :2���(f�0 )(�):
�(Claim 5)

Let � 2 S2 be such that Ult(K�[U ];V��) is well-founded, and let � denote
the canonical embedding of this ultrapower. We thus have � > !1, � >
sup dom(U), and � : K�[U ] ! W , crit(�) = � > �. Theorem 2.18 implies
that there is an elementary embedding ~� : K[U ] ! K[U ] with the same
critical point. As � is inaccessible in K[U ] and � > !2, Theorem 2.15 implies
that there is U 0 >e U with � := min dom(U 0 n U) satisfying � > � > � and
� < �. But this contradicts the de�nition of U = Ucan ��. �(Case 1)
Case 2 dom(U) \ [�; �+) 6= ;.
Again let � := sup dom(U).
Case 2.1 �+ > �+K[U ].
We have U 2 K�+ [U ]. W.l.o.g. assume that for all � 2 E, U 2 K� [U ]. Fur-
thermore, assume that for all �2C� , U 2 eQ��. Then U �� = (���)�1(U), and if
� 2rge(���), then U�� = U �� . Pick some � 2E.
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Claim 6 (?)� holds.
Proof Assume w.l.o.g. that for � 2 C� , � 2 eQ��, and let ��� := (���)�1(�).
Note that � > �. Then as before we have
8�2 [� + 1; �+) hK�+ [U ]; F;Gi � \g� does not map � monotone

co�nally into � =) � is singular".
Given the sequence hM� j � 2 Si, proceed as before. Iterate M� initially
with its least measure to ensure not only �� > � but also �� > ���. Then
� := ���(���) will be larger than ���(���) = �, so we can continue as in Case 1.

�(Claim 6)
Claim 7 The set S1 := f�2C� \ CF% j U �� is strongg is stationary.
Proof As before. �(Claim 7)
Now pick an � from S1. U �� is strong, so U �� �� is strong, too. Furthermore,
dom(U �� ��) = dom(U ��) = dom(U ��), as we assured � > 
 = sup dom(U �
�) at the outset. Thus by Theorem 2.13, U �� �� = U ��. Hence U �� >e U ��.
Now min dom(U ��nU ��) = min dom(U ��nU �� ��) < �, as dom(U)\[�; �+) 6= ;.
This contradicts the de�nition of U = Ucan ��+ (cf. Figure 4.2). �(Case 2.1)
Case 2.2 �+ = �+K[U ].
Case 2.2.1 � =2 dom(U).
This is similar to Case 2.1. We have d := dom(U) � �, so d2K�+ [U ], hence
w.l.o.g. d2 eQ�� for all relevant � and �. Set d�� := (���)�1(d), so d�� = dom(U ��),
and if � 2 rge(���), then d�� = d��. But then U�� = U �� , too. For if �2d��, then
� := ���(�) = ���(�)2 d, and U ��(�) = (���)�1(U(�)) = (���)�1(U(�)) = U��(�).
Note that U(�)2 eQ�� as it is de�nable from � and U .
The rest of the proof is as Case 2.1. Note that we need neither the functions
g� nor Theorem 2.16 to show that ( ?)� holds, as K�+ [U ] � \� is singular" for
any �2 (�; �+), anyway. �(Case 2.2)
Case 2.2.2 �2dom(U).
In this case, there is an ultra�lter \at �". To proceed, we will just cut this
ultra�lter away from the sequence and try to continue as before: If there is
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Figure 4.2: The condensated substructure K�� provides an ultra�lter (U ��)��
that should have been included in the canonical sequence, as indicated by
the dotted circle.

some ultra�lter left, at some � 2 [�; �), we copy Case 2.1, which will happen
in Case 2.2.2.1. Otherwise, in Case 2.2.2.2, there is no ultra�lter with critical
point between � and �, which makes it possible to apply the method of
Case 1.
Case 2.2.2.1 9�2dom(U) \ [�; �).
Set U 0 := U � �. Note that as in Case 2.2.1 K�+ [U ] � \� is singular" for any
�2 (�; �+). By Theorem 2.10, P (�)\K[U ] = P (�)\K[U ��], so K�+ [U ��] �
\� is singular", too. Now consider the \ 0-version" of the Ketonen-diagramme,
i. e., de�ne Q0� ; E 0; eQ0��;U 0��, etc., starting out from K[U 0] instead of K[U ].
Then show that the corresponding property ( ?0)� holds, noting that by the
above remark K[U 0] � \� is singular". Continue as in Case 2.1 to see that U 0��
is strong for su�ciently many � and then derive a contradiction as before.

�(Case 2.2.2.1)
Case 2.2.2.2 dom(U) \ [�; � ] = f�g.
The proof of this case is a combination of the proofs of Case 2.2.2.1 and Case
1. Again, build the \ 0-version" of the Ketonen-diagramme and show that
(?0)� holds. Prove that U 0�� is strong for su�ciently many �. We cannot, as in
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Case 2.2.2.1, derive a contradiction from this just yet, as there is no ultra�lter
on the U 0��-sequence above �. But we can show, returning to Case 1, that if
U 0�� is strong and � > � 0 := sup dom(U 0) (� 0 < � by our assumption), then
U 0�� = U 0, as dom(U 0��) = dom(U 0). Thus we can continue as in Case 1 to
prove that � is inaccessible in K[U 0]. The de�nition of the K[U 0]-ultra�lters
V�� also goes through. Note that sup dom( U 0) < �. Thus as before we get an
elementary embedding � : K�[U 0]! W with crit(�) = � > � 0. This leads to
the same contradiction as in Case 1. �(Case 2.2.2.2)
This completes the proof of the theorem. �
:TH implies the weak Chang's Conjecture (cf. [DK83]). One could try to
extend the above proof to start from the assumption of wCC( �) instead of
:THstat(�). However, this fails for the same reason as the attempt to start
from just :TH instead of :THstat: the proof requires a repeated application
of the assumption (or rather of Lemma 4.4). But :TH needs as an \input"
at least a club set, yielding only a stationary set as \output"; wCC, in fact,
gives even just one single �. In contrast, although :THstat also just yields
a stationary set, that is also enough as \input" for a second application (or,
indeed, a �nite number of them). In Chapter 7, we will show how in�nite
applications can yield even stronger results, albeit starting from a stronger
premise, the existence of an irregular ultra�lter.
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Chapter 5

Core Models up to a Strong

Cardinal

\What do you keep that mouse for?" I said.
\You should bury it, or throw it into the
lake."
\Why, it's to measure with!" cried Bruno.
(Lewis Carroll, Bruno's Revenge)

To cope with inner models for larger large cardinals, in our case anything
up to a strong cardinal, we need to extend our concept of mouse. Every
year seems to bring a new de�nition of this fundamental concept of core
model theory, encompassing ever larger hypotheses. For our purposes, the
�nestructure developed in [Koe89] will su�ce completely. [Sch96] goes on
to show how one can build a decent core model from these mice. As in
Chapter 2, we now proceed to review some basic de�nitions and theorems.
The original numbering from [Sch96] is given in parentheses. Any terms not
de�ned here can be found there or in [Koe89].
5.1 Definition A predicate E is natural i�

i) 8z 2 E 9� 2 Lim 9� < � 9a 2 [�]<! 9x 2 P �[�]card(a)� �z =
h�; �; a; xi�.

ii) 8h�; �; a; xi; h� 0; �0; a0; x0i2E �� = � 0 ! � = �0�.
37
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�(�) = �E(�) is the unique � such that, for some a and x, h�; �; a; xi is in
E. For � 2On set E� := fha; xi j h�; �(�); a; xi 2Eg, and for a2 [�]<!, set
E�;a := fx j ha; xi2E�g. Let dom(E) := f�2On j E� 6= ;g, and for X � On
let E �X := fh�; �; a; xi j �2Xg.
5.2 Definition Let E be a natural predicate and M := hJ�[E]; F i, for some
�2On (or � = On), be an acceptable model. For � < �, let EM� := E� and
set EM� := F . Then M is called an extender structure i�

i) 8�2dom(E) �E� � J� [E] is a 0-folded extender at �(�); � on J� [E]�,
ii) E is coherent , i. e., for any �2dom(E), if N := Ult(J� [E]; E�), then

EN �� = E �� and EN� = ;,
iii) 8� 2 dom(E) 8� 2 [�(�)+J� [E]; � ] �� 2 dom(E) and E� is an extender

at �(�), � on J�[E]�,
iv) E is non-overlapping , i. e., for any �2dom(E) and any � less than

�(�), supf� < �(�) j �(�) < �g < �(�).
5.3 Definition Let �2On and let M = hJ�[E]; E�i be an extender struc-
ture. Let �2CardM . Then de�ne

i) OM (�) to be the smallest limit ordinal greater than or equal to �+M
which is a strict upper bound of f� 6 � j E� 6= ;g,

ii) oM (�) := (OM (�)� �+M )=!, the Mitchell order of � in M .
M is called topless if E� = ;. For � 6 � set M j� := hJ� [E]; E�i and
M # � := hJ� [E]; ;i. These are both extenderstructures, M # � being the
topless version of M j�.
Let N be another extenderstructure. Then M is an initial segment of N
and N an end-extension of M , denoted by M � N , i� M = N j(On\M)
or M = N # (On\M). If M � N and M 6= N , then M is a proper initial
segment of N .
5.4 Definition (1.2) An extender structure M = hJ�[E]; E�i is called weak-
ly amenable i� E� 6= ; and if for all sequences hx� j � < �(�)i from J�[E]
and for any a2 [�]<! the set f� < �(�) j x�2E�;ag is in J�[E].
5.5 Lemma (1.2) Assume M = hJ�[E]; E�i is an extender structure such
that N := Ult(M;E�) is transitive. Then

M is weakly amenable $ P (�(�)) \N = P (�(�)) \M:
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Premice and (coarse and �ne) ultrapowers are de�ned in a straightforward
way. An iteration is given by the sequence of indices h�i j i < #i, indicat-
ing which extender to use to compute the next ultrapower, the sequence of
cutback-points h�i j i < #i, and the sequence of indicators hri j i < #i, de-
termining whether coarse or �ne ultrapowers should be taken. An iteration is
non-degenerate if only �nitely many �i are less than On \M i. A premouse
M is iterable above � if any iteration with indices at least � can be freely
continued. M is a mouse if it is iterable above 0. An iteration is simple if
no cutbacks occur, i. e., if for all i less than #, �i is equal to On \M i.
Mice are �nely coiterable. If M � and N � denote the coiterates of respectively
M and N and if M � � N �, then we say M 6� N . Also, the iteration of M to
M � is simple in this case.
If M is a mouse above � , then there exists a unique premouse M0 such that
M0 is � -sound and M is a simple �ne iterate of M0 above maxf�; %!Mg. This
is the � -core of M , denoted by core� (M). The core of M is its 0-core.
5.6 Definition (1.14) Let M = J�[E] be an extender structure. Then let
�M be de�ned as follows:

i) If there exists some � 6 � such that E� is an extender at �, � on
M and for all � 2 [�; �), E� is an extender at �, � on M , then set
�M := �,

ii) otherwise, let �M := sup(CardM ).
Thus, if E� 6= ;, then �M = crit(E�).
5.7 Definition (1.15) Let M = hJ�[E]; E�i be a premouse such that �M <
�. A collapsing mouse for M is a premouse N = hJ� [E 0]; E 0�i such that

i) M � N ,
ii) sq(N) is a �M -sound mouse above �M ,
iii) P ��M� \N �M , but
iv) %!sq(N) 6 �M .

In this case, sq(N) is called a squashed collapsing mouse for M (for details
on squashed and stretched mice, see [Sch96]). N is thus a \minimal" end-
extension of M over which (�M )+M is collapsed onto �M . M is presolid if
�M < � and there is no collapsing mouse for M .
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5.8 Lemma (1.16) Collapsing mice are unique: let M be a premouse
such that N and Q are collapsing mice for M . Then N = Q.
5.9 Corollary (1.17) Let M and N be coarse mice such that for some
� < On\M \ N , M # � = N # �, and EM� = EN� = ;. Let � :=
minf�+M ; �+Ng. Then M #� = N #�.
5.10 Definition (1.19) Let M = hJ�[E]; E�i be a premouse, � 6 �. M is
called neat beyond � provided

i) 8
 < � (M j
 is a mouse),
ii) 8
2 [�; �] (EM
 6= ; ! EM
 is countably complete).

M is neat if it is neat beyond 0.
Any neat premouse is a mouse [Sch96, Lemma 1.20].
5.11 Definition (1.21) Let M = hJ�[E]; E�i be a premouse, � 6 �. An
iteration I of M is called beyond � if all indices � used in the iteration are
greater than or equal to �. M is called (coarsely, �nely) iterable beyond
� if any non-degenerate (coarse, �ne) iteration of M beyond � can be freely
continued beyond �.
M is called prestrong provided the following holds: Any premouse N end-
extending M which is �nely iterable beyond � + ! (or �, if EM� = ;) is, in
fact, a mouse.
M is called strong if M is prestrong and for any mouse N end-extending M ,
M is an initial segment of core(N).
M is called solid if M is presolid and prestrong.
Hence every prestrong premouse is a mouse, and every strong mouse is sound.
Moreover, neat mice are prestrong [Sch96, Lemma 1.22].
5.12 Definition (1.26) Lstrong denotes the statement that there exists an
inner model with a strong cardinal. :Lstrong denotes the negation of this
statement.
5.13 Definition (1.27) A J-model M = hJ�[E]; U i is called a pistol-pre-
mouse (p-premouse) if
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i) �M := J�[E] is a topless premouse such that � := � �M is the largest
cardinal in �M .

ii) There is some � < � such that O �M (�) > � (in which case one says
that � is overlapped 1.

iii) M � \U is a non-trivial �-complete normal ultra�lter on �".
M is called neat if �M is neat above � and U is countably complete.
5.14 Lemma (1.27) If there is a neat p-premouse, then Lstrong holds.

Next, we present a result on upward extensions of embeddings. The construc-
tion itself is de�ned in detail in [Sch96, Chapter 4], which also contains the
proofs of the following statements. Starting from a premouse N = hJ� [A]; F i
and some �2CardN [f�g, set M := N #�. Assume that � : M !�0 Q is a
co�nal map, Q some topless premouse. Then one can construct an ultrapower
of N using �, yielding some map e� : N ! R, such that if R is transitive,
then R is a premouse, e� � �, and Q = R# e�, where e� = On\Q = sup �00�. e�
is then called the �ne upward extension of � with respect to N , N is called
M-based , and R is denoted by Ult�(N;�).
5.15 Definition (4.6) Let # > ! be regular and let � : �H !�! H#, where�H is transitive. Let Q 2 rge(�) be a topless mouse and set M := ��1(Q).
Then � �M : M !�! Q and for any � 6 
 := On\M , � � (M #�) : M #
�!�0 Q� (sup �00�) co�nally.
Let � 6 
, M 0 := M # �. � is called 1-lousy at � with respect to M if
� := �M 0 is the largest cardinal in M 0 and there is a M 0-based mouse N
above � such that Ult�(N; � �M 0) is not a mouse above �(�) = �Q#(sup�00�).
� is called 2-lousy at � with respect to M if there is a M 0-based coarse
mouse (or mouse above �) N such that, if e� : N ! Ult�(N;� �M 0) = R
is the upward extension of � �M 0 : M 0 ! Q � �00�, then R is not a coarse
mouse (or mouse above e�(�)).

1In keeping with [Sch96], although it is a somewhat unfortunate piece of terminology, for
any premouse M , we will call any � such that there exists � < � with O �M (�) > � overlapped.
This is not the same as saying that the extender-sequence EM is overlapping: this would
only be the case were � measurable itself.
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� is called 3-lousy at � with respect to M if there exists a stretched M 0-
based �0-mouse N such that Ult(N;� �M 0) is a stretched premouse but not
a stretched �0-mouse.
Finally, � is called perfect with respect to M if it is neither 1-, 2-, nor 3-lousy
at � with respect to M for any � 6 
.
5.16 Lemma (4.7) Let # be a regular uncountable cardinal, and let � :
�H ! H# be perfect with respect to M , where M 2 �H, �H is transitive,
and Q := �(M) is a mouse such that �M is the largest cardinal of M .
Suppose that � �M : M ! Q co�nally. Then

i) if Q is presolid, then so is M , and
ii) if Q is solid, then so is M .

5.17 Lemma (4.8) Let # be a regular uncountable cardinal, � : �H !�!
H# where �H is transitive and ! �H � �H. Let Q2rge(�) be a topless mouse.
Then � is perfect with respect to M := ��1(Q).

Finally, we conclude our summary of strong core model basics by some re-
marks on a covering lemma.
5.18 Definition (2.8) A weasel is an extender structure W = J[E] such
that for every � 2 On, W j� is a mouse. W is called universal if the �ne
coiteration of W with any coiterable premouse terminates. W is called weakly
universal if the �ne coiteration of W with any mouse terminates.
5.19 Definition (5.1) Let M be a mouse or a weasel. Let � < On\M . M
is called weakly full above � if for all � 2 [�;On\M), if N � M # � is a
collapsing mouse for M #� then N �M . M is weakly full if it is weakly full
above 0.

Weakly universal weasels are weakly full, as are solid mice [Sch96, Lemma
5.8]. Also, strong mice are weakly full [Sch96, Lemma 5.9].
5.20 Definition (5.2) Let M = hJ�[ �E]; ;i be a strong topless mouse, and
let � be a non-empty set or class of uncountable regular cardinals. A weasel
W = L[E] is called �-full over M if
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i) L[E] end-extends M , and W is weakly full above �.
ii) For any � > �, if E� 6= ; is an extender at �, � on W , then � > �,

E� is countably complete, and cf(�)2�.
iii) For any � > �, if � < � := �W#� < �, W #(�+W#�) is presolid, cf(�)2

�, and F is a countably complete extender at �, � on W # � such
that Ult(W # �; F )j� = W # � and hW # �; F i is weakly amenable,
then F = E�.

W is called full over M if it is �-full over M when � is the class of all
uncountable regular cardinals. W is called �-full (or full) if it is �-full (or
full) over ;.
5.21 Lemma (5.3) For any strong topless mouse M = hJ�[ �E]; ;i and any
non-empty set or class � of uncountable regular cardinals there is a
unique �-full weasel over M , denoted by W �(M).
Kc, the countably complete core model , is the unique �-full weasel over ;,
where � is the class of all uncountable regular cardinals.
5.22 Lemma (5.10) Assume :Lstrong. Let � 2 CardKc be such that � is
not overlapped in Kc. Let � := OKc(�). Let x � � be a set such that
card(x)@0 < card(�). Then there is some y 2 Kc such that x � y and
cardKc(y) 6 �.
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Chapter 6

Short Iterations

\Mine is a long and a sad tale!" said the
Mouse, turning to Alice, and sighing.
\It is a long tail, certainly," said Alice, look-
ing down with wonder at the Mouse's tail;
\but why do you call it sad?"
(Lewis Carroll, Alice's Adventures in Won-
derland, Chapter III)

In this chapter, we show how under considerably more restrictive assumptions
than just the absence of an inner model for a strong cardinal one can give an
upper bound for the length of certain short iterations. This will be done by
considering an in a sense complete iteration into which any short iteration
may be embedded.
Let us introduce the following de�nition:
6.1 Definition Let �M be a mouse, and let I be an iteration of �M , of length
#, with indices h�i j i < #i and iteration maps h�ij j i 6 j 6 #i. I is short
if no extender has been used in I for !1 + 1 many times in a row, i. e., if for
no j < # with cf(j) = !1 the set

P (j; �j) := fi < j j �ij(�i) = �jg
is unbounded in j.

45
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Given a mouse �M , we want to �nd an upper bound for the ordinal height of
short iterates of �M .
6.2 Lemma Let �M be a sound, topless mouse, card( �M) < �, � some
regular cardinal greater than !1. Assume that there is no inner model
for oM (�) > !. Then there is an ordinal s < �, denoted by s(!1)( �M),
which is an upper bound for the ordinal height of short iterates of �M :
s(!1)( �M) > supf(On\M) + 1 j M is a short, simple, �ne iterate of �Mg:

Proof We take s(!1) to be the ordinal height of one specially de�ned iterate
of �M . This iterate, M#(!1) , will be de�ned recursively. The lemma will be
proved if we can show that any arbitrary short, simple, �ne iterate M � of �M
can be embedded into M#(!1) . Let us note that the iteration yielding M#(!1)
will, in fact, not be short itself.
For a mouse M , let

c(M) := f�2On\M j � is the critical point of some extender EM� g;
d(M;�) := f�2On\M j EM� is at �, �g:

Note that we assumed �M to be topless, so that these de�nitions really capture
all possible extenders of �M .
Set M 0 := �M . Let � = !!1 (using ordinal exponentiation). De�ne bookkeep-
ing functions m0 and fm0 : c(M 0) ! � + 1, setting m0(�) = fm0(�) = 0 for
all �.
Let j be a limit ordinal and assume hM i j i < ji had been de�ned, with
iteration maps h�ii0 j i 6 i0 < ji. Then let M j be the direct limit of
this system, with corresponding maps h�ij j i < ji. De�ne the auxiliary
bookkeeping function fmj as follows

fmj(�) := supfmi(��i) j i < j ^ �ij(��i) = �g
By induction, if all mi take values less than � + 1, then so does fmj. Note
that if �2c(M j) and � = �ij(��i), then ��i2c(M i) and hence mi(��i) is de�ned.
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If j is a successor ordinal i+ 1, then set

fmj(�) :=
8><
>:
mi(��i) if � = �ij(��i)
0 if � =2 rge(�ij):

Again, note that if �2c(M j) \ rge(�ij), then mi(��i) is de�ned.
To construct M j+1, for arbitrary j, let �rst be

�j := the least �2c(M j) such that fmj(�) < � and 8i < j (�i < �):
We are thus looking for the �rst critical point which has not been used up
�-many times yet, and which would allow us to continue the iteration in a
normal way.
Case 0 If no such � exists, then set #(!1) := j and terminate the construc-
tion.
Case 1 cf(j) 6= !1 (including the case that j is a successor ordinal).
Let �j := min d(M j; �j), and set M j+1 := Ult(M j ; EM j�j ), �j;j+1 := the canon-
ical embedding, and for i < j let �i;j+1 := �j;j+1 � �ij . Set mj := fmj . I. e.,
we take the least extender associated with this critical point and take the
ultrapower with it. The bookkeeping function remains unchanged.
Case 2 cf(j) = !1.
Let �j be the least �2d(M j; �j) such that the set

P (j; �) := fi < j j �ij(�i) = �g
is bounded in j.
Case 2.1 If such �j exists, again set M j+1 := Ult(M j; EM j�j ), �j;j+1 := the
canonical embedding, �i;j+1 accordingly, and mj := fmj . Thus instead of just
taking the least extender with the chosen critical point, we insist that it had
also only been used boundedly often before j.
Case 2.2 If no such � exists, i. e., if for all �2d(M j; �j), P (j; �) is unbounded
in j, then set �j := min d(M j; �j), and let M j+1 := Ult(M j ; EM j�j ). In this
case, we have exhausted all extenders with critical point �j, i. e., used them
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all co�nally up to j, and now start all over again. Informally, we will call
this a block of the iteration. To keep track of how often we do this, we now
increase the bookkeeping function at �j, setting

mj(�) :=
8><
>:
fmj(�) + 1 if � = �j
fmj(�) else.

This completes the de�nition of the iteration.
Claim 1 Let j < #(!1), and assume fmj(�) < �. Then

8�0 > � (fmj(�0) < �);
i. e., not only is �j the least � such that fmj(�) < �, it is also the least upper
bound (in c(M j)) of those � that have fmj(�) = � (as well as satisfying the
normality requirement 8i < j (�i < �)). Since mj(�) 6 fmj(�) + 1 for any �,
this claim is also true if one replaces fmj by mj.
Proof Assume the claim were false. Let j be the least index such that this
happens. Recall that �j was de�ned to be the least � such that fmj(�) < �.
Thus there must be some � > �j , �2c(M j), such that fmj(�) = �. As j was
chosen minimally,
8i < j ��i = min c(M i) n f�02c(M i) j fmi(�0) = � ^ 8i0 < i (�i0 < �0)g�:

First note that j must be a limit ordinal. Assume to the contrary that
j = i + 1. Then we must have �2 rge(�ij), as otherwise fmj(�) = 0. So let
� = �ij(��). Obviously, �� > �i, as otherwise � = �ij(��) = �� < �i < �j < �,
contradiction. But then, by the minimal choice of j, fmi(��) < �, whence
mi(��) < �, as well, so that fmj(�) = mi(��) < �. Contradiction.
So j is a limit ordinal. Find some i0 < j such that �; �j 2 rge(�i0j), and
set ��i := ��1ij (�) and e�i := ��1ij (�j), for i 2 [i0; j). As � > �0 := fmj(�j) =
supfmi(e�i) j i < jg, we know that

8i2 [i0; j) (mi(e�i) 6 �0 < �):
Note that again we must have that for all i2 [i0; j) (��i > e�i > �i): the �rst
inequality is immediate from � > �j, whereas the failure of the second would
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imply that �j = �ij(e�i) = e�i < �i < �j , a contradiction. But then we have
that

8i2 [i0; j) (mi(��i) = fmi(��i));
as this holds for all �0, unless we are in Case 2.2 of the de�nition of the iter-
ation and �0 = �i (whereas we just showed that ��i > �i). Thus inductively
ones sees that

8i2 [i0; j) (mi(��i) = fmi0(��i0)):
As the claim is true at i0, we conclude that

mi0(��i0) < �
since ��i0 > e�i0 and mi0(e�i0) 6 �0 < �. Thus

fmj(�) = supfmi(��i) j i2 [i0; j)g = mi0(��i0) < �;
contradicting the assumption. �(Claim 1)
Claim 2 The construction terminates at some #(!1) < �.
Proof Assume to the contrary that #(!1) > �. We will show �rst that the
set

C := fj2� j cf(j) = !1 and P (j) := P (j; �j) is unbounded in jg
is stationary in �. Assume to the contrary that there is some club subset
D � � such that C \D = ;. Let C0 := � nC and C1 := C0 \ fj2� j cf(j) =
!1g. Then C1 is stationary in �: let D0 be a club subset of �. We have to
show C1 \ D0 6= ;. Since both D and D0 are club, so is D \ D0. Let i be a
limit point of D \ D0 of co�nality !1. As i2D and D � C0, we must have
i2C1. Thus i2C1 \D0, and so C1 must, indeed, be stationary.
Let
E := fj2� j j is a limit ordinal and

j is closed under � and �3 and (i < j ! On\M i < j)g;
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where � denotes the G�odel Pairing Function and � 3 the derived function for
triples. Then E is club in �. Hence C2 := C1 \ E is stationary in �. De�ne
a function f : C2 ! � by letting

f(j) := �3(i; �; b);
where i is the least i such that �j 2 rge(�ij), � = ��1ij (�j), and b is the least
upper bound of P (j). Note that i < j as j is a limit ordinal, � < j as
On\M i < j (j 2 E!), and b < j as j 2 C1. Thus, as j is closed under
G�odel Pairing, f(j) < j, i. e., f is regressive. By Fodor's Theorem, there is
a stationary set C3 � C2, and �{, ��, and �b auch that

8j2C3 (f(j) = �3(�{; ��;�b)):
Now choose i < j2C3. Then ��{i(��) = �i and �ij(�i) = �ij(��{i(��)) = ��{j(��) =
�j . Thus i 2 P (j), so that i < �b = the least upper bound of P (j). On the
other hand, i > �b, as �b is also the least upper bound of P (i), which must be
less than i as i2C0. This is a contradiction. Hence C really is stationary in
�.
Assume w.l.o.g. that C � E. Now again de�ne a function f : C ! � by
letting

f(j) := �(i; �)
where i and � are chosen as before. Again, there will be a stationary set
C4 � C and �{, �� such that

8j2C4 (f(j) = �(�{; ��)):
Pick a sequence hj� j � 6 �i of elements of C4. Thus for all � 6 �, P (j�)
is unbounded in j�. Note that this can only happen if we are in Case 2.2 of
the de�nition of the iteration. (Not only is P (j�) = P (j�; �j�) unbounded in
j� but one also uses the extender EM j��j� to construct the next ultrapower.) In
this case, the bookkeeping function mj� is incremented by one at �j� . Thus
inductively one sees that

8� < �(mj�(�j�) > �):
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and so
mj�(�j�) > supfmj�(�j�) j � < �g+ 1 > � + 1

which is absurd, as no mj ever takes values greater than �. (Note that, of
course, if �ij(�i) = �j , then �ij(�i) = �j , too.) Thus the iteration cannot
have had length #(!1) > �. �(Claim 2)
Claim 3 Let N � = N# be a short, simple, �ne, normal iterate of N 0 := �M ,
with indices h�j j j < #i, critical points h�j j j < #i, and maps h�Nij j i 6
j 6 #i. Then there exists an embedding h : N � ! M#(!1) , and hence
On\N � 6 On\M#(!1) .
Proof We will inductively construct a sequence of maps hj, j < #, such
that the limit of this sequence will be the desired map h. Each hj will map
N j into some M�j . Set �0 := 0, h0 := id��� �M .
Basically, if we have embedded N j into M�j and are given the task of em-
bedding N j+1 = Ult(N j; ENj�j ) into some M�j+1 , �rst consider the image of
ENj�j under hj . Set b�j := hj(�j) and b�j := hj(�j), where �j = crit(ENj�j ).By elementarity of hj, EM�jb�j will be an extender at b�j , b�j . Now ��j will not
necessarily be equal to b�j . But possibly there will be a (least) �j > �j such
that �M�j�j (b�j) = ��j . In this case, let gj := �M�j�j � hj . We can then use
[Koe89, Theorem 14.2] to get the desired map hj+1 : N j+1 ! M�j+1 , where
�j+1 := �j + 1, completing the diagramme in Figure 6.1.

M�j �M�j�j // M�j EM�j
��j

// M�j+1

N j
hj
OO

gj
77ooooooooooooo

ENj�j�Nj;j+1 // N j+1
hj+1
OO�
�
�

Figure 6.1: The map hj+1 is the canonical completion of the diagramme.

At limits, the obvious completion is used. The problem thus reduces to
ensuring that at every stage j < #, there exists some �j > �j such that



52 CHAPTER 6. SHORT ITERATIONS

�M�j�j (b�j) = ��j , so that we can construct hj+1. Furthermore, we have to do
some bookkeeping. Inductively, we prove the following statement

(1) 8� > �j �enj(�) = fm�j (hj(�))�
(2) 8� > �j �nj(�) = m�j (hj(�)) = m�j (gj(�))�;(�)

where the functions enj and nj will be de�ned similarly to fmj and mj .
Case 1 j is a successor ordinal, j = i + 1.
Set

enj(�) :=
8><
>:
ni(��i) if � = �Nij (��i)
0 if � =2 rge(�Nij ):

We claim that ��j 6 b�j . We �rst show that the normality requirement is
ful�lled, i. e., that

8� < �j (�� < b�j):
It is of course su�cient to show ��i < b�j , as �j = �i + 1 and IM is normal.
Assume to the contrary that b�j 6 ��i . By construction of M�i+1 we have
that oM�i+1(��i) = ��i . Since we are in a situation where extender sequences
do not overlap, we conclude that then b�j 6 ��i , as by elementarity of hj , b�j
is measurable in M�i+1. Using the fact that gi and hj agree up to �i we now
reach the following contradiction:

b�j 6 ��i = gi(�i) = hj(�i) < hj(�j) = b�j :

By Claim 1, the bookkeeping function m�i takes values less than � for argu-
ments greater than or equal to ��i = �M�i�i(b�i). But at successor steps (in the
iteration of M) the bookkeeping function does not increase, so that

8� > ��i (m�i+1(�) < �)
This is true for those � 2 rge(�M�i;�i+1), � > �M�i;�i+1(��i), as they keep the m-
values of their pre-images, as well as for those � =2 rge(�M�i;�i+1), as they take
m-value 0 by de�nition. (We are not interested in � less than ��i . In fact, we
are not even interested in � less than ��i , as we have b�j > ��i . The m-values
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for these � might indeed be �. In fact, they are bound to be �, as otherwise
��i would not have been chosen correctly!)
Now, since b�j > ��i , we conclude that

m�j (b�j) < �:

We know inductively that �j = �i+1 = �i + 1, i. e., �j is itself a successor
ordinal. Hence PM (�j ; b�j) is bounded in j (by i, trivially). Thus ��j 6 b�j .
This implies that the extender EM�jb�j will be used later on in the iteration,
i. e., there does exist some least �j > �j such that �M�j�j (b�j) = ��j .
Thus we can now set �j+1 := �j + 1 and de�ne hj+1 : N j+1 ! M�j+1 as
described above. Set nj := enj
Case 2 j is a limit ordinal.
Note that cf(�j) = cf(j). Set

enj(�) := supfni(��i) j i < j ^ �Nij (��i) = �g

Case 2.1 ��j 6 b�j.
We must have m�j (b�j) < �, by Claim 1.
Case 2.1.1 cf(j) 6= !1.
As cf(�j) 6= !1, there will be a least �j > �j such that �M�j�j (b�j) = ��j .
As in Case 1, set �j+1 := �j+1 and de�ne hj+1 : N j+1 ! M�j+1 as described
above. Note that we must have m�j = fm�j , as this is true for all � except
those of co�nality !1, in the special Case 2.2 of the de�nition of the iteration
of M . Set nj := enj .
Case 2.1.2 cf(j) = !1.
Case 2.1.2.1 ��j > b�j .
In this case, we �rst go to M�j+1. Note that there, PM (�j+1; �M�j ;�j+1(b�j)) willbe bounded in �j+1 (by �j, trivially). Also, ��j+1 6 �M�j ;�j+1(��j ), as this lastterm satis�es both conditions for the de�nition of ��j+1: fm�j+1(�M�j ;�j+1(��j ))= m�j (��j ) by de�nition, and this last term must be less than �, by the choice
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of ��j . But then there will be some least �j > �j+1 such that ��j = �M�j ;�j (b�j)and we are done. Set nj := enj .
Case 2.1.2.2 ��j 6 b�j and PM (�j; ��j ) is bounded in �j.
In this case the existence of a least suitable �j is immediate. Set nj := enj.
Case 2.1.2.3 ��j 6 b�j and PM (�j; ��j ) is unbounded in �j .
In this case we have reached, on the M -side of the iteration, a point where the
critical point ��j has been exhausted, i. e., we are in the situation of Case 2.2
of the de�nition of the iteration of M . For in no other case will an extender
EM�� be used although PM (�; �) is unbounded in � and cf(�) = !1. Note
that this implies that for all �2d(M�j ; ��j ) we must have that PM (�j ; �) is
unbounded in �j , and that ��j = min d(M�j ; ��j ).
However, there will none the less exist some least �j > �j such that ��j =
�M�j ;�j (b�j), so that the construction of hj+1 can proceed as before. The only
di�erence is that we have to adjust the bookkeeping function, provided that
hj(�j) = ��j . In this case, set

nj(�) :=
8><
>:
enj(�) + 1 if � = �j
enj(�) else,

Note that m�j (��j ) increases by one at this point, too. Otherwise (i. e., if
hj(�j) > ��j ) let nj = enj . The following subclaim will be used later on.
Subclaim If hj(�j) = ��j , then the set QN(j) := fi < j j �Nij (�i) = �jg is
unbounded in j.

This says that we can conclude that one and the same critical point must
have been used co�nally up to j on the N -side. Unfortunately, we cannot
tell which of the extenders (with this critical point) was responsible, i. e., we
cannot show that PN(j; �j) is unbounded in j, as well. However, by later on
taking su�ciently closed limits, we will be able to remedy the situation.
Proof j is a limit ordinal, so there exists some i0 < j such that �j2rge(�Ni0j).
For i 2 [i0; j), let ��i := (�Nij )�1(�j). Note that then ��i > �i, as otherwise
�j = �Nij (��i) = ��i < �i, contradicting the normality of IN . As a consequence,
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we can conclude that �Nij (�i) 6 �j. Also, set ��� := (�M��j )�1(hj(�j)), for� > �i0 , so that ���i = hi(��i).
Now assume for a contradiction that QN(j) were bounded in j. Then there
exists some i1 (w.l.o.g. i1 > i0) such that for all i2 [i1; j) (�Nij (�i) < �j), i. e.,
�i < ��i. Subsequently,

8i2 [i1; j) (hi(�i) < ���i):
Since PM (�j; hj(�j)) is unbounded in �j, it follows that also QM (�j ; hj(�j))
:= f� < �j j �M��j (��) = hj(�j)g is unbounded in �j. (If some extender is
used co�nally often, then, a fortiori, its critical point is used co�nally often.)
Recall that �i 6 �i and ��i = �M�i�i(hi(�i)). Thus

��i < �M�i�i(hi(��i)) = ���i :
Now for � 2 QM (�j ; hj(�j)), �� = ���. Thus it cannot hold that for all
su�ciently large i, �i = �i. For then we would have that for all su�ciently
large �, there exists some i such that � = �i = �i, and thus �� = ��i < ���i :
This would imply � =2QM (�j; hj(�j)), so that this set would be bounded in
�j , contradiction. This is just a complicated way of saying that if on the
M -side the critical point corresponding to �j is used co�nally often below
�j , and if the upwards maps hi from N i always require the use of critical
points corresponding to �i < ��i = (�Nij )�1(�j), then sometimes we have to
skip from �i to �i to make room for possible uses of the higher critical point
(cf. Figure 6.2).

M�i // � � � // M� crit=���// M�+1 // : : : // M�icrit=��i// M�i+1 = M�i+1

N i
hi
OO

gi

44hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh crit=�i<��i // N i+1
hi+1
OO

Figure 6.2: �i cannot always be equal to �i if the pre-image of �j is not used
co�nally below j.
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But this will yield a contradiction. Pick some i 2 [i1; j) such that �i < �i,
and there is �2 [�i; �i) \QM (�j; hj(�j)), i. e., �� = ���. Then

�M�i�(hi(�i)) < �M�i�(hi(��i))
= �M�i�(���i)
= ��� = �� = crit(�M�;�+1) < crit(�M�+1;�i)

so that
�M�i�i(hi(�i)) = �M�+1;�i � �M�;�+1 � �M�i�(hi(�i))

= �M�+1;�i
��M�i�(hi(�i))

�

= �M�i�(hi(�i))
< ��;

while at the same time
�M�i�i(hi(�i)) = ��i > ��;

by the normality of IM . Contradiction. �(Subclaim)
Case 2.2 ��j > b�j or �j = #(!1).
In this case, no suitable �j exists. Let the construction break down.

�(Construction of hj)
We now turn to the proof of (�). Properly, this proof should be part of the
same induction, but to avoid confusion, we separate the two. Say ( �) had
been shown to hold for all i < j .
Case 1 j = i+ 1 a successor ordinal.
Equation (1) \at j" follows from (2) \at i": Let � > �j . If �2 rge(�Nij ), say
� = �Nij (��), then

hj(�) = hj(�Nij (��)) = �M�i;�i+1(gi(��)):
Thus fm�j (hj(�)) = m�i(gi(��)) = ni(��) = enj(�), applying the de�nition of
fm�j , (�) (2) at i, and �nally the de�nition of enj . If � =2rge(�Nij ), then enj(�) =
0, by de�nition. It su�ces to show that hj(�) =2 rge(�M�i;�i+1) as well, as then
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fm�j (hj(�)) = 0, again by de�nition. So assume to the contrary that hj(�) =
�M�i;�i+1(��). Now � = �Nij (f)(a) for some a2 [�i]<!, f : [�i]a ! N i, and by the
construction of hj (cf. [Koe89, Theorem 14.2]), hj(�) = �M�i;�i+1(gi(f))(gi(a)).Now

N i � f is not constant modulo Ea,
where E := EN i�i , whence

M�i � gi(f) is not constant modulo �Ea,
where �E := EM�i��i . But then hj(�) = �M�i;�i+1(gi(f))(gi(a)) is not an element
of rge(�M�i;�i+1) either. So fm�j (hj(�)) = 0 = enj(�).
This proves (�) (1) \at j". As for (2), note that �j = �i + 1 is a successor
ordinal, whence m�j = fm�j , and that we set nj = enj. So it remains to show
that m�j (gj(�)) = m�j (hj(�)) for all � > �j . But if this were not true, then
we would have, somewhere between �j and �j , exhausted a critical point
greater than or equal to hj(�). But this is absurd, since then we would have
used EM�jhj(�) not only once but in fact many times before �j, contradicting the
choice of �j as the �rst index where this extender is used.
Case 2 j is a limit ordinal.
As in Case 1, (�) (1) follows from (2) at earlier stages: Let � > �j. Then � =
�Nij (��), for some i < j and some ��. Thus hj(�) = �M�i�j (hi(��)) = �M�i�j (gi(��)).Note that �j = supf�i j i < jg = supf�i j i < jg, so that using (2) at i,
one concludes that

fm�j (hj(�)) = supfm�(��) j � < �j ^ �M��j (��) = hj(�)g
= supfm�i(��) j i < j ^ �M�i�j (��) = hj(�)g
= supfm�i(��) j i < j ^ �� = gi(��) ^ �Nij (��) = �g
= supfni(��) j i < j ^ �Nij (��) = �g
= enj(�)

To see that (2) holds, note that nj(�) = m�j (hj(�)) for all � > �j . For
� > �j this follows from nj(�) = enj(�) = fm�j (hj(�)) = m�j (hj(�)), noting
that then hj(�) > ��j , too. It is also true for �j itself, as nj(�j) = enj(�j),
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unless we are in Case 2.1.2.3 and hj(�j) = ��j . But in this case nj(�j) =
enj(�j) + 1 = fm�j (��j ) + 1 = m�j (��j ), so (2) holds anyway.
It remains to show that m�j (gj(�)) = m�j (hj(�)). But �j was chosen to be
the least � such that �� = �M�j ;�(hj(�j)), i. e., the �rst place in the iteration
of M where the extender EM�jb�j is used. This will happen long before the
next point at which this critical point will be exhausted and hence m would
be increased.
Note that (1) remains true when the construction of hj breaks down in Case
2.2. �(Proof of (�))
Subclaim The construction goes through for all j 6 #.
Proof Assume the construction breaks down at some j, i. e., hj is de�ned,
but hj+1 cannot be constructed. (Recall that if j is a limit ordinal and all
hi are constructed, it is a rather trivial matter to �nd hj.) This can only
happen in Case 2.2, whence j must be a limit ordinal. So either ��j > b�j or
�j = #(!1).
Note �rst that b�j satis�es the normality requirement of the de�nition of ��j :
For assume that there existed some � < �j such that �� > b�j. As j is a limit
ordinal and �j = supf�i j i < jg, there must be some i < j such that �i > �
and thus ��i > �� (by the normality of IM ). Pick i large enough such that
�j2rge(�Nij ), say �j = �Nij (��). By normality of IN , �� > �i. But then

b�j = hj(�Nij (��)) = �M�i;�j (hi(��))
> �M�i;�j (hi(�i))
> �M�i;�j (��i)
> �M�i;�j (��) = ��
> b�j ;

a contradiction! Thus the only reason why ��j might be larger than b�j or
not de�ned at all is that fm�j (b�j) = �.
By (�) we know that then enj(�j) = �, too. This will lead to a contradiction.
We will �nd a sequence hi� j � < �i of indices where ni was increased at �j (or
rather its pre-image). At each of these points, one extender with critical point
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(corresponding to) �j must have been used co�nally before. By su�ciently
thinning out the sequence, we will show that at i!n1 (where n = oNj (�j)),
all available extenders must have been used up co�nally, leaving none to
continue the iteration in a short way.
Fix some notation: for i < j such that �j 2 rge(�Nij ), let ��i := (�Nij )�1(�j).
For � < �, let i�+1 be the least i < j , i > i�, such that ni(��i) = eni(��i) + 1,
and for limit ordinals � < �, let i� := supfi� j � < �g. Such i must exists,
as � = enj(�j) = supfni(��i) j i < jg. Note that then �i�+1 = ��i�+1 and that
��i�+1 = hi�+1(�i�+1). By the subclaim of Case 2.1.2.3 of the construction of
hj , we know that

QN(i�+1) = fi0 < i�+1 j �Ni0i�+1(�i0) = �i�+1g is unbounded in i�+1.
But it is also true that at the limit points i� of the sequence the same critical
point is used, i. e., �i� = ��i� : We cannot have �i� > ��i� , for then one would
get the absurdity of

�j = �Ni�j(��i� ) = ��i� < �i� < �j;
where the last inequality stems from the normality of the iteration IN . On
the other hand, the normality also implies �i� > ��i� , for this critical point
has been used co�nally up to i� : Surely �i� > �i for any i < i� . Now assume
�i� < ��i� . Then, for some i < i� , �i� = �Nii� (e�i). Since i� = supfi� j � < �g,
assume w.l.o.g. that i = i�+1 for some such �. But then, keeping in mind
that �Nii� (��i) = ��i� and ��i = �i, we must have e�i > �i, as otherwise �i� =
�Nii� (e�i) = e�i < �i, contradicting normality, and also e�i 6 �i, as otherwise
�i� = �Nii� (e�i) > �Nii� (�i) = ��i� , which we excluded earlier on.
Thus we know that at every point of the sequence hi� j � < �i, �i� = ��i� ,
i. e., we use the same critical point at all these stages. Also, this same critical
point has been used co�nally leading up to each i�:

QN(i�) is unbounded in i�
for any � < � (and not only the successor ordinals).
We will now show that, setting 
 := !n1 , every possible index k < n :=
oNj (�j) will be used co�nally leading up to i
. But then we will arive at a
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contradiction: at stage i
, we must again use some extender with the right
critical point. But no matter which index is used, the iteration cannot have
been short any more, contradicting the assumption at the outset that IN ,
indeed, was short.
To this end we will de�ne sets and sequences of sets as well as (�nite) ordinals
and sequences of �nite ordinals. The idea is that at any stage of the iteration
from a prescribed set we can tell which of the (�nitely many) extenders has
been used. We consider 
 as a limit of ordinals of co�nality !1 such that each
of the ordinals is again a limit ordinal of co�nality !1 such that etc., n-levels
deep. In a �rst step, we choose one extender (i. e., an index k1 < n) which
will be used co�nally up to i
 at the limit points of the �rst level. Then,
for each of these points leading up to i
 on the �rst level, we look at the
limit points of the second level. Again, one extender must have been used
co�nally, depending only on the point of the �rst level we are leading up to.
By thinning out the �rst level now, we can assure that all these \second-
level" extenders are, in fact, the same. Thus, after the second step of our
construction, we will have shown that already two di�erent extenders must
have been used co�nally up to i
, provided of course that the iteration IN
is short. Repeating this n-times shows that, in fact, all n-many extenders
with critical point �i
 must have been used co�nally up to i
, leaving none
to continue IN in a short way.
For the �rst step, in which A11 and k1 are de�ned, note that

!n1 = lim�1!!1 !n�11 (�1 + 1);
and since the sequence hi� j � < �i is a normal sequence, also

i!n1 = lim�1!!1 i!n�11 (�1+1):
To facilitate notation, let e� := �i� , the index of the extender used at stage
i� of the iteration IN . Now there are only n possible values of e�, so there
must exist some k1 < n such that the extender with index k1 has been used
stationarily often, i. e., the set

A11 := f�1 < !1 j e!n�11 (�1+1) = k1g
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is stationary in !1. Note that then
PN(i
; k1) = fi < i
 j �Nii
(�i) = k1g

is unbounded in i
, as it contains fi!n�11 (�1+1) j �12A11g.
For the second step, �rst �x some �1 2 A11. Now consider !n�11 �1 + !n�11 =
lim�2!!1

�!n�11 �1 + !n�21 (�2 + 1)�. Thus,
i!n�11 (�1+1) = lim�2!!1 i!n�11 �1+!n�21 (�2+1):

As before, there must now exist some k21(�1) such that the set
A22(�1) := f�2 < !1 j e!n�11 �1+!n�21 (�2+1) = k21(�1)g

is stationary in !1. Again, one concludes that
PN(i!n�11 (�1+1); k2(�1)) is unbounded in i!n�11 (�1+1):

The iteration IN was assumed to be short, so that PN(i!n�11 (�1+1); e!n�11 (�1+1))must be bounded in i!n�11 (�1+1). And since �1 was chosen from A11, one has
e!n�11 (�1+1) = k1. Thus it follows that k21(�1) 6= k1.
Next, notice that there must be some k2 such that the set

A12 := f�12A11 j k21(�1) = k2g
is stationary in !1. Obviously, k2 6= k1. Furthermore,

PN(i
; k2) is unbounded in i
;
as this set contains fi!n�11 �1+!n�21 (�2+1) j �12A11 ^ �22A21(�1)g and this latter
set is unbounded in i
.
Before writing down the induction step in full generality, we present the case
n = 3 in some detail, believing that this will much better serve the purpose
of shedding some light onto this rather unwieldy profusion of indices.
Let q1(�1) := !n�11 �1 and q2(�1; �2) := !n�11 �1+!n�21 �2. Fix some �12A12, and
some �22A22(�1). Then the second step ensured that

eq1(�1+1) = k1 and eq2(�1;�2+1) = k21(�1) = k2:
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Set q3(�1; �2; �3) := !n�11 �1 + !n�21 �2 + !n�31 �3 and note that
q2(�1; �2 + 1) = lim�3!!1 q3(�1; �2; �3 + 1);

so that, since hi� j � < �i is a normal sequence, also
iq2(�1;�2+1) = lim�3!!1 iq3(�1;�2;�3+1):

Thus there must be some k32(�1; �2) < n such that the set
A33(�1; �2) := f�3 < !1 j eq3(�1;�2;�3+1) = k32(�1; �2)g

is stationary in !1. Thus, as before,
PN(iq2(�1;�2+1); k32(�1; �2)) is unbounded in iq2(�1;�2+1);

which implies, together with the shortness of IN , that
k32(�1; �2) 6= k21(�1) = k2:

Now let �2 range over elements of A22(�1). Surely there must exist some k31(�1)
such that

A23(�1) := f�22A22(�1) j k32(�1; �2) = k31(�1)g
is a stationary subset of A22(�1). Note that for a �xed �1, the set

fiq3(�1;�2;�3+1) j �22A23(�1) ^ �32A33(�1; �2)g
is unbounded in iq1(�1+1), so that

PN(iq1(�1+1); k31(�1)) is unbounded in iq1(�1+1);
whence by the shortness of IN

k31(�1) 6= eq1(�1+1) = k1:
(The last equation holds as �1 was chosen from A12 � A11.) Finally (for the
third step), we need to thin out the set A12 to get one value of k31 working for
all �1: �nd some k3 < n such that the set

A13 := f�12A12 j k31(�1) = k3g
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Figure 6.3: Arrows indicate the order in which the sets are chosen in the
construction. Sets in the l-th row contain \good" values for �l. Sets in the m-
th column represent combinations �1; : : : ; �m which simultaneously \exhaust"
the extenders with indices from fk1; : : : ; kmg.

is stationary in A12. Obviously, we must have k32nfk1; k2g. Furthermore,
fiq3(�1;�2;�3+1) j �12A13 ^ �22A23(�1) ^ �32A33(�1; �2)g

is unbounded in i
, and at any such stage eq3(�1;�2;�3+1) = k3, so that
PN(i
; k3) is unbounded in i
:

Let l 6 n, and assume that all relevant (sequences of) sets and ordinals
had been chosen (cf. Figure 6.3). De�ne ql(�1; : : : ; �l) := �lm=1!n�m1 �m. Fix
�12A1l�1, �22A2l�1(�1), : : : , �l�12Al�1l�1(�1; : : : ; �l�2). Note that

iql�1(�1;:::;�l�2;�l�1+1) = lim�l!!1 iql(�1;:::;�l�1;�l+1):
Thus there is some kll�1(�1; : : : ; �l�1) < n such that

All(�1; : : : ; �l�1) := f�l < !1 j eql(�1;:::;�l�1;�l+1) = kll�1(�1; : : : ; �l�1)g
is stationary in !1. This also implies that
PN(iql�1(�1;:::;�l�2;�l�1+1); kll�1(�1; : : : ; �l�1)) is unbounded in iql�1(�1;:::;�l�2;�l�1+1);
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whence by the shortness of IN and the fact that eql�1(�1;:::;�l�2;�l�1+1) = kl�1 it
follows that

kll�1(�1; : : : ; �l�1) 6= kl�1:

Assume that m < l, klm(�1; : : : ; �m) < n is unequal to km, and
Am+1l (�1; : : : ; �m) =

f�m+12Am+1l�1 (�1; : : : ; �m) j klm+1(�1; : : : ; �m; �m+1) = klm(�1; : : : ; �m)g
(if m < l � 1, or

All(�1; : : : ; �l�1) = f�l2!1 j eql(�1;:::;�l�1;�l+1) = kll�1(�1; : : : ; �l�1)g
if m = l � 1) is a stationary subset of Am+1l�1 (�1; : : : ; �m) (if m < l � 1, or !1,
if m = l� 1). Then there must be some klm�1 < n such that
Aml (�1; : : : ; �m�1) :=

f�m2Aml�1(�1; : : : ; �m�1) j klm(�1; : : : ; �m) = klm�1(�1; : : : ; �m�1)g
is a stationary subset of Aml�1(�1; : : : ; �m�1). Again one concludes that klm�1(�1;
: : : ; �m�1) cannot be equal to eqm�1(�1;:::;�m�1+1) = km�1. Repeating this pro-
cedure l-times �nally gives some kl 2 n n fkm j m < lg such that for any
�12A1l , �22A2l (�1), : : : , �l2All(�1; : : : ; �l�1),

eql(�1;:::;�l�1;�l+1) = kl;
and consequently

PN(i
; kl) is unbounded in i
:

At the end of this procedure, one will have chosen n-many kl, so that fkl j l <
ng = n. By the pigeon hole principle, we must have that e
 = kl, for some
l < n. But then, at stage i
, the iteration IN cannot have been short.
Contradiction. Thus the construction of the hj cannot have broken down at
some j < # and we can indeed embed N# into M#(!1) . �(Subclaim)

�(Claim 3)
�
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Our original goal was to prove in Chapter 7 that the existence of an irregular
ultra�lter on � implied the existence of an inner model for a strong cardi-
nal. Currently, the restrictions on Lemma 6.2 prevent this. This Lemma is
central to the proof of Claim 8 in the proof of Theorem 7.5. The following
example shows that it cannot be extended straightforwardly to accomodate
inner models for, say, strong cardinals.
Let M be a mouse of size %, where � = %+, with a measurable cardinal �
with oM (�) = %. Then for any � < � there are iterations of M of length � in
which any extender is used at most once (not even <!1-many times). Just
consider a well-ordering r of % of ordertype � (assuming w.l.o.g. that � > %),
and use the (image of the) r(�)-th extender on � to construct the �-th step
of the iteration. Hence the bound of the ordinal height of short iterates of
M cannot be less than �.
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Chapter 7

Irregular Ultrafilters

If there wasn't anything to �nd out, it would
be dull. Even trying to �nd out and not �nd-
ing out is just as interesting as trying to �nd
out and �nding out; and I don't know but
more so.
(Mark Twain, Eve's Diary)

Recall some basic ultra�lter de�nitions.
7.1 Definition Let V be an ultra�lter on some cardinal �. Then V is called
uniform i� every element of V has cardinality �. V is called normal i� it
is closed under diagonal intersections i� every regressive function (mod V)
is constant (mod V). V is called weakly normal i� every regressive function
(mod V) is bounded below � (mod V).
From now on, V will always denote an ultra�lter on some cardinal �.
7.2 Definition An ultra�lter V is regular i� there is a sequence ha� j � < �i
of elements of V such that the intersection of any !-many of them is empty.
Such a sequence is then called regularity sequence .
More generally, V is (
; �)-regular (for some 
 < �) i� the intersection of
any 
-many of them is empty. V is (
; � )-regular if the regularity sequence
has length � instead of �. (This last concept will not be considered here.)

67
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Finally, for the purpose of this thesis, call an ultra�lter V weakly (
; �)-
regular i� the intersection of any 
-many elements of the sequence ha� j � <
�i is bounded in �.
So regularity is a (strong) form of incompleteness. Trivially, if V is (
; �)-
regular, then it is (
 0; �)-regular for any 
 0 > 
. Recall that an ultra�lter V
is 
-complete i� the intersection of any �-many sets from V , � < 
, is again
an element of V .
Note the following (easy) equivalence, illustrated in Figure 7.1: V is (
; �)-
regular i� there exists a (
; �)-covering sequence for V , i. e., a family
hx� j � < �i of subsets of �, each of cardinality less than 
, such that for all
� < �, f� < � j � 2 x�g 2 V .

: : : : : :
: : : : : :
: : : : : :

: : : :
: : : : : :

'& %$ ! "# a�2V��

'& %$

 ! "#

x� = f� < � j �2a�g

+� �//

�OO

Figure 7.1: The two versions of (
; �)-regularity are just two ways of looking
at the same diagramme. \Horizontal" sets a� are elements from the regularity
sequence, i. e., elements of V , whereas \vertical" sets are elements from the
covering sequence, i. e., of cardinality less than 
.

We are interested in the connection between weak regularity and regularity.
7.3 Lemma Let % > !1 be a cardinal such that %@0 = %. Let � = %+.
Assume V is a uniform ultra�lter on � which is weakly (!; �)-regular.
Then V is (!1; �)-regular.
Proof Let V be a uniform ultra�lter on � > !1 which is weakly (!; �)-
regular, and let ha� j � < �i witness this fact. We have to construct an
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(!1; �)-regularity sequence. This is done by induction on � < �. The idea is
to successively cut o� the a� so that they have empty intersection with any
!-many a� preceeding them in the sequence. The assumption that %@0 = %
thus seems to be essential to the proof.
For � < !, set b� := a� 2V . Now assume hb� j � < �i had been constructed,
for some � < �. For any sequence x = h�i j i2!i of ordinals less than �, we
know that Ti2! a�i is bounded in �, since the sequence ha� j � < �i witnesses
weak (!; �)-regularity. So let

�x := sup \
i2! a�i < �

and let
�� := supf�x + 1 j x2!�g:

Since, by assumption, card( �) 6 % and %@0 = % < � it follows that �� < �.
Set b� := a� n �� . b� 2V , as V is uniform.
It remains to show that hb� j � < �i is an (!1; �)-regularity sequence. So
let x = h�i j i2!1i be a sequence of ordinals less than �. By construction,
b�i � a�i , and thus, considering the intersection of the �rst !-many of these
sets,

\
i2! b�i �

\
i2! a�i � �h�i j i2!i =: ��:

But h�i j i2!i2!�!, so by the de�nition of ��! , �� < ��! and so
� \
i2! b�i

� \ b�! � �� \ (� n ��!) = ;:
A fortiori, Ti2!1 b�i = ;, and hb� j � < �i is an (!1; �)-regularity sequence. In
fact, the proof shows that already the intersection of ( !+1)-many sets from
the sequence is empty. �
7.4 Definition An ultra�lter V is fully irregular i� it is not (
; �)-regular
for any 
 < �.
7.5 Theorem Let � = %+ be successor cardinal, � > !3. Assume 2% = %+
and %@0 = %. Let V be a fully irregular ultra�lter on �. Then there is an
inner model N satisfying oN(�) = ! for some �.
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Proof Assume for a contradiction that there is no such inner model. As
we have mentioned before, this proof is written up so as to go through for
the assumption that there was no inner model for a strong cardinal. It is
only Lemma 6.2, which in turn is used in the proof of Claim 8 below, that
forces us to make the much stronger assumption that there is no inner model
satisfying oN(�) = !. A proof based completely on this latter assumption
would, of course, permit numerous simpli�cations, e. g., in the discussion
of the various subcases, some of which are outright impossible under the
stronger assumption.
Note that by [BK74, Corollary 2.2], cited as [Ket76, Theorem 1.11], we can
conclude that 2� = �+.
By a theorem of Kanamori and Ketonen ([Kan76], [Ket76]), we may assume
that V is weakly normal. By [Kan76, Theorem 2.3], we may also assume that
f�2� j cf(�) > !2g2V . Thus, if x � � is !2-club, then x2V .
Let h : �+ ! H�+ be a bijection. For � 2 (�; �+) let f� be a surjection from
� onto � , and let

F := fh�; �; � i j f� (�) = �g:
Write F �� for F \ (�� � � � ).
Let H = hH�+ ;2; h; F i, W := Kc #�+. For � 2 (�; �+), let fH� := H � (h00� ),
H� := h00� = jfH� j, W� := H� \W . Let
I := f� 2 (�; �+) j cf(� ) = !2 ^ fH� � H ^ On\H� = � ^ H� � H�

^ H� transitive ^ !1H� � H� ^ W� = W #�g
7.6 Lemma I is unbounded in �.
Proof The usual construction of building a tower of substructures of height
!2, where each successive structure is the closure of the previous one under
all relevant operations, yields the result. Note that card(H �) = 2% = �, so
that the initial step requiring H � � H is feasible. �
For each � 2 I , let h��� j � < !2i be a co�nal sequence in � . Let ���� :=
f�1� (h�1(��� )) < �. Since � is regular, � > !2, we will have ��� := supf���� j � <
!2g < �.
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For � 2 I let H� := hH� ;2; h � �; F � �; f� i. For �2� let fH�� := H� � (h � f� 00�)
and fH�� := jfH��j = h � f� 00�. Let

C� := f�2 (%; �) j fH�� � H� ^ � \ fH�� = � ^ !1fH�� � fH�� ^ � > ���g
and for �2C�

e��� : H�� ��! fH��; H�� transitive
H�� := jH��j; �� := On\H��
K�� := (Kc)H�� ; ��� := e��� �K��

Since � = crit(���) > ��� , we have f� 00��� � fH��, so On\fH�� is co�nal in � .
This implies ��� : K�� !e W� co�nally.
7.7 Lemma i) For � 2I, C� is !2-club, hence C� 2V.

ii) !1H�� � H��.
iii) ��� : K�� !e W� � W
iv) crit(���) = �.
v) K��#� = K#�.

Proof This is straightforward. �

7.8 Lemma Let �; � 2I, � 2rge(���), �2C� \ C�. Then
H�� � H�� e��� = e��� �H��
K�� � K�� ��� = ��� �K��

and, in fact, H�� = (e���)�1(H� )2H�� and K�� = (���)�1(W� ).

Proof Note that H� is de�nable from � in H�, since H� = h00� = (h�H�)00�
etc. Thus H� 2 H�. But then fH�� \ H� � H�. Since every H � H� is
uniquely determined by jHj \ � via h, we get that fH�� = fH�� \ H� . But fH��
is an end-extension of fH�� \H� , by which the rest follows. �
The following lemma [DJK81, Lemma 2.3] (cf. also Lemma 4.4) will fre-
quently be used.
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7.9 Lemma Let C2V and f 2Q�2C �+. Then there is a �2I such that
f� 2 C \ C� j f(�) < ��g2V :

If f� 2 � j '(�)g 2 V , say that '(�) holds for V-almost all �, or also
8V� �'(�)�.
Claim 1 8� 2I 8V�2C� �K�� is not weakly full�.
Proof This proof is modelled after the proof of a similar claim in [Sch96,
Lemma 5.6]. Pick some � 2I .
Case 1 � not overlapped in W .
In this case, we have that 8� < � �OW (�) < �� and thus EW� = ;.
Case 1.1 8V�2C� �EW� = ;�.
Pick such an �. By elementarity of ��� we have EK��� = ;, and also EW �
� = EK�� � �. It follows from 5.9 that W # minf�+W ; �+K��g = K�� #
minf�+W ; �+K��g. We claim that �+K�� 6 �+W . Assume not. Then �+K�� >
�+W , and an initial segment of K��#�+K�� is a collapsing mouse for W #�+W .
(Note that �W#�+W = �.) Since W is weakly full, this initial segment would
be a subset of W , clearly a contradiction.
If �+K�� < �+W , we can similarly deduce that K�� is not weakly full: an initial
segment of W # �+W is a collapsing mouse for K�� # �+K�� which cannot be
contained in K��.
So assume that �+K�� = �+W . This will lead to a contradiction. We can
conclude P (�) \ W = P (�) \ K��. As � is not overlapped in W, � :=
OW (�) < � = ���(�). Thus we can de�ne an extender F at �; � on W : For
a2 [�]<!, x2P �[�]a� \W set

x2Fa $ a2���(x):
Since H�� is !-complete and P (�) \W = P (�) \ K��, the usual argument
shows that F is countably complete: Let hxn j n 2 !i be a sequence such
that for n 2 !, xn 2 Fan , where an 2 [�]<!. We need to show that there
is a function h : Sn2! an ! � such that for all n 2 !, h00an 2 xn. Let
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� = otp(Sn2! an) < !1, and let f : � ! S an be the monotone enumeration.
Since P (�) \W � K��, we have xn2K��, too. And since fH�� is closed under
!-sequences, it follows that hhxn; f�100ani j n 2 !i 2 fH��. Notice that the
function f is an element of H� : � < !1 < � and also sup (Sn2! an) < �, since
� < �, an � �, and cf(�) = � > !. So f 2H� � H� . Also, � < � = ���(�),
and an2���(xn) by the de�nition of F , so
H� � 9g �g : � ! ���(�) ^ g is orderpreserving ^

8n2! �g00(f�100an)2���(xn)
��;

since f is a possible candidate. By elementarity, one concludes that
fH�� � 9g

�g : � ! � ^ g is orderpreserving ^ 8n2! �g00(f�100an)2xn��:
Pick any such g and set h := g�f�1. Then h : Sn2! an ! � is orderpreserving
and for n2!, h00an2xn.
To reach a contradiction, it now su�ces to show that if j : W #� !F Ult(W #
�; F ) =: fW , then fW j� = W #� and hW #�; F i is weakly amenable. For then,
by the de�nition of W , one concludes that EW� = F , contradicting the fact
that � = OW (�). For what follows, refer to Figure 7.2. Since W # �+W =
K�� # �+K�� , we have fW # j(�) = Ult(K�� # �+K�� ; F ) # j(�). F was derived
from ���, so there is a canonical map k : Ult(K�� # �+K�� ; F ) !�1 W # �+W
such that k � j � (K�� # �+K��) = ��� � (K�� # �+K��) and crit(k) > �. But
this now immediately implies that fW j� = W j� = hW # �; ;i and also that
hW # �; F i is weakly amenable, as desired. (Note that � > �+W , so that
P (�) \W = P (�) \W j� = P (�) \ fW j�.)
Case 1.2 8V�2C� �EW� 6= ;�.
For such �, EW� is an extender at some ��, � on W #�.
Case 1.2.1 8V�2C� �� < �+W�

�.
Notice that then � =2 CardW and �K��#� = ��. Take 
� minimal such that
!%!W k
� 6 ��, but P (��) \ W k
� � W # � = K�� # �. Then W k
� is a
collapsing mouse for K�� #� (�K��#� = �� < �!). Notice 
� < �+W� 6 � = �+.
We claim that for V-almost all �, W k
� 6� K��. To see this, use Lemma 7.9
to �nd � 2 I such that � 2 rge(���) and 
� < �� for V-almost all �. Then
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fW = Ult(W #�; F )

W K��
Ult(K��#�+K�� ; F )

'''''''''''''''���������������

j(�) ___ ���� = OW (�)

��+

��
��+W

��

***************

��

���������������

��
��+K��o/ o/

''''''''''''������������j(�) ___

OOOOOOOOOOO

gg ���
{{{{{{{

==k �1

IIIIIIIIIIIIII

dd

j
F

__F

Figure 7.2: F is an extender at �, � , so that j(�) > � and thus ~W j� = W #�.

we would have K�� � � =2Card, a contradiction. Thus in this case, too, we
can conclude that K�� is not weakly full (for V-almost all �). Note that we
need to go up to � as the assumption W k
� � K�� does not already imply
� =2CardK�� .
Case 1.2.2 8V�2C� �� > �+W�

�.
Then OW (��) > �. Note that ���(��) = ��. If �+K��� > �, then

�+W� = ���(��)+K�� = ���(�+K��� ) > ���(�) = �;
implying the obvious contradiction � > �. Thus we must have �+K��� < �.
Since K�� # � = W # �, it follows that OK��(��) > �. This in turn implies
OW (��) > ���(OK��(��)) > �, contradicting the assumption of Case 1 that �
is not overlapped in W .
Case 2 � overlapped in W .
Say, OW (�) > �, for some � < �.
Case 2.1 8V�2C� �P (�) \W � K��

�.
Pick some such � and de�ne U := fx 2 P (�) \ K�� j � 2 ���(x)g. Let
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N := hK��#�+K�� ;Ui. Then
N � \U is a non-trivial, �-complete ultra�lter on �":

U is countably complete: Let hxn j n 2 !i be a sequence of elements of U .
As H�� is !-closed, hxn j n2!i2H��. By the de�nition of U one has that

8n2! ��2���(xn)
�;

whence
H�+ � 9� 8n2! ��2���(xn)

�;
and by elementarity of ���

H�� � 9� 8n2!
��2xn�;

so that Tn2! xn 6= ;. Furthermore, N is amenable: Let x 2 K�� # �+K�� be
arbitrary. Pick some function f 2K�� mapping � onto x \ P (�) \K��. Then

x \ U = ny2P (�) \K�� j y2x ^ 9� < � ��2���(f)(�)
�o:

Since x\P (�)\K�� 2 W , x\U 2 W . Thus x\U 2 P (�)\W � K��, and
by acceptability of K��, x \ U 2 K�� #�+K�� . Thus N is a neat p-premouse
and Lstrong exists by 5.14. This is a contradiction.
Case 2.2 8V�2C� �P (�) \W 6� K��

�.
Case 2.2.1 �+W = �.
In this case we get the required collapsing mice for K�� fairly soon: By el-
ementarity of ���, �+K�� = � < � = �+W . So let 
� be minimal such that
!%!W k
� 6 �, 
� > �. Note that �K��#� = �, and K�� # � = W # �. By the
minimality of 
�, we have P (�) \W k
� � K�� #�. Thus W k
� is a collaps-
ing mouse for K�� #�. If W k
� were contained in K�� then we would get a
contradiction as in Case 1.2.1. Thus K�� is not weakly full for V-almost all �.
Case 2.2.2 �+W < �.
W.l.o.g. � > �+W , and so �+K�� = ���(�+K��) = �+W , P (�)\W = P (�)\K��,
and OK��(�) > �.
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Case 2.2.2.1 OW (�) < �+.
We can assume w.l.o.g. that for all � 2I , OW (�) < � . Thus 8V�2C� �OK��(�)
< ���. Pick � and �, and let �� := OK��(�) < �� < � 6 OW (�). Then by the
Condensation Lemma [Koe89, Theorem 22.3] we have W #�� = K��j��.
As in Case 1.1, we aim to derive a contradiction from de�ning an extender
F at �, � := OW (�) from (more or less) ���. However, ��� has critical point
� and ���(�) is equal to �, which in turn is less than or equal to �, so the
direct approach from Case 1.1 will fail. We will thus �rst take an ultrapower
of W with the extender at �, �� = OK��(�), with embedding i, and then lift
��� to this ultrapower, giving some map j. The composition k of i and j will
then su�ce to de�ne an appropriate extender F (see Figure 7.3).

W ��

W � = Ult(W;EW� )

W K��

'''''''''''''''���������������

'''''''''''''''''�����������������

�+W � ___
?

?
____

'
'

***************

��+

�� = OK��(�)

���������������

����
+W��

���� = OW (�)��
'''''''''''''''''

��

�����������������

��+K��
��
�� = OK��(�)

qq ���
OOOOOOOOO

ggEW�

JJJJJ
ddEW�
i

-----

VV j = lifting of ���
tt k = j � i

M = Ult(W #�;EW� )

Figure 7.3: Let i : W ! W � = Ult(W;EWOK�� (�)). Lift ��� to W �, giving j,
and let k := j � i. Then de�ne an extender F at �, � from k and go for a
contradiction.

Let M� := Ult(W # ��; EW�� ). Then M�j�� = W # �� = K��j��, and EM��� =
EK���� = ;. Let �� := minf�+K��� ; �+M�� g. Then by Corollary 5.9

M�#�� = K��#��:
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If �+M�� > �+K��� , then an initial segment of M� is a collapsing mouse omitted
in K��, and K�� is not weakly full, as claimed.
So assume �+M�� 6 �+K��� . Then, since M�#�+M�� = K��#�+M�� , P (��)\M� �
K��. This will lead to a contradiction. For the sake of legibility, denote ��
by �, M� by M etc. Let i : W !EW� W �. Then W � # � = M # � and
EW �� = EM� = ;. In fact, the two ultrapowers agree up to �+M = �+W � , since
� is the index of the extender used, and P (�) \W #� = P (�) \W .
Since �+M 6 �+K�� , we can thus construct the upward extension of ��� �
(K�� # (�+M )) to W �, say j : W � ! W ��. Notice that �+M 2 CardW � . Let
k := j � i denote the composition, k : W ! W ��. Let � := OW (�). Then
k(�) = j(i(�)) > j(�) = j(OK��(�)) = ���(OK��(�)) = OW (�) = �. So we can
derive an extender F at �, � on W by setting, for a2 [�]<! and x2P �[�]a�,

x2Fa $ a2k(x):
Noting that P (�) \W = P (�) \ K��, one sees that the same argument as
in Case 1.1 shows that F must be countably complete. In fact, hW #�; F i is
weakly amenable, and if h : W #� !F fW denotes the ultrapower map then
fW j� = W #� (see Figure 7.4).
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Figure 7.4: fW j� = W #�.

We have fW # h(�) = Ult(W #�+W ; F ) # h(�). Since F was derived from k,
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there is the canonical map g : Ult(W #�+W ; F )!�1 W ��#k(�)+W �� such that
g � h � (W #�+W ) = k and crit(g) > �. Thus fW #� = W �� #�. Furthermore,
OW ��(�) = j(OW �(�)) = j(�) = j(OK��(�)) = ���(OK��(�)) = OW (�) = �, so
E eW� = ;. Also, j was the upward extension of ��� � (K�� # �+K��), so W �� is
an extension of W #sup(���00�+K��). Since sup(���00�+K��) > ���(�) = OW (�) =
�, we get fW j� = W ��j� = W j�. Since � > � > �+W , we conclude that
P (�) \W � W #� = fW #�, so hW #�; F i is indeed weakly amenable.
But taking all this together, one concludes that by the de�nition of W one
should have EW� = F , whereas, by the choice of � = OW (�), EW� = ; |
contradiction.
Case 2.2.2.2 OW (�) = �+.
In this case, for all � 2 I , 8V� 2 C� �OK��(�) = ���. By the Condensation
Lemma [Koe89, Theorem 22.3] we have K�� = W # ��. First we show �
to be inaccessible in W . Assume to the contrary that � = �+W and pick
for each � 2 C� a surjection h� : � ! �, h� 2 W . Then h� 2 W # 
�
for some 
� < � = �+. Now pick � 2 I such that, for V-almost all �,
� 2 rge(���) and 
� < ��. Note that, since also 8V� 2 C� �OK��(�) = ���,
K�� = W #��, again by the Condensation Lemma. Then for such � we will
have K�� � \� is not a cardinal", obviously a contradiction.
Hence � is inaccessible in W . Thus for each � < � there is 
� < � = �+
such that P (�) \W 2W # 
�. Using Lemma 7.9, �nd � 2 I such that, for
V-almost all �, � 2 rge(���) and �� > 
�. Since we have full condensation it
follows that P (�) \W 2K�� . By elementarity, P (�) \W 2K��, too. But the
assumption of Case 2.2 is that P (�) \W 6� K��, contradiction.
This proves the claim. �(Claim 1)
Assume w.l.o.g. that Claim 1 holds for all � 2I and all �2C� . Note that since
H�� is closed under !-sequences K�� is neat and thus prestrong. If �K�� < ��,
then K�� must have a collapsing mouse: otherwise it would be presolid, and
since a presolid, prestrong mouse is solid, and since solid mice are weakly full,
it would also be weakly full. Thus either �K�� = �� or K�� has a collapsing
mouse.
Case A First, let us analyse the case that there is some � 2I such that for
V-almost all � we have �K�� < �� and hence K�� has a collapsing mouse. By
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elementarity, we must have �W < �+ and so, in fact, this is true for all �.
Let N �� denote the collapsing mouse for K��.
Denote �K�� by ���. Then if � 2 C��, it follows that ��� = ��� by elementarity.
Claim 2 8� 2I ���� is the largest cardinal in K��

�.
Proof We �rst show that by increasing � , one can always increase the power
set of ���:

8� 2I 9�2I �f�2C�� j P (���) \K��  P (���) \K��g2V
�:

Assume to the contrary that � is such that
8�2I; � > � �f�2C�� j P (���) \K�� = P (���) \K��g2V

�:
But then for any � > � in I , if N�� is a collapsing mouse for K�� , it is
also a collapsing mouse for K��. Since, by Lemma 5.8, collapsing mice are
unique it follows that N�� = N �� . Pick � 2 I such that, for V-almost all
�, �� > On\N �� . Notice that now On \N�� > On\K�� = �� > On\N �� ,
contradicting N�� = N �� .
Assume that ��� is not the largest cardinal in K��. Pick some � as above. Then
���+K�� exists, and by elementarity so does ���+K�� . But since P (���) \K��  
P (���) \K�� , ���+K�� < ���+K�� , contradicting K�� � K�� . �(Claim 2)
Claim 3 �+ is a successor cardinal in W .
Proof This is immediate by the elementarity of ���. �(Claim 3)
So we have �+ = �+W . For �2C� , let ��� = ����1(�). Then ��� = ��� is the
largest cardinal in K��.
Claim 4 There is a set C 2V and a sequence hM� j �2Ci of mice of size
less than � such that for all � 2 I , and for V-almost all �, if M� and K��
coiterate to respectively M �� and K���, then K��� �M �� and the coiteration is
simple on the K-side.
The point of this claim is that the sequence hM� j �2Ci is independent of
� .
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Proof To prove the claim, we distinguish several di�erent cases.
Case 1 � is not overlapped, i. e., 8� < � �OW (�) < ��.
Case 1.1 � is a successor in W , say � = #+W .
Then we must have �o := supfOW (�) j � < �g < �: Assume contrariwise that
�o = �. Then the measurables � have to be co�nal in �, since any measurable
� is not overlapped, i. e., � > OW (�0) for �0 < �. But we assumed � to be a
successor cardinal in W | contradiction.
Let C := (maxf�o; #g; �) 2 V . Then for any �2C there is a minimal 
� such
that, setting M� := W #
�, we have

M� � 9f� �f� : #! � onto�:

Pick some arbitrary � 2 I , and let � 2 C� \ C. Then EW� = ; and thus
EK��� = ;, too. Coiterate M� and K�� to get respectively M �� and K���. The
iteration is obviously beyond � on both sides. Since � is a cardinal in K�� and
EK��� = ;, the coiteration is, in fact, above � on the K-side. Let F := EM�� be
the �rst extender used on the M -side, let � = crit(F ). If � were less than #,
then we would have � > � > # > �+W , so F would be a full extender on W
and � < OW (�) 6 �o < �, contradicting the fact that the iteration is beyond
�. Thus � > #, i. e., the iteration is above #.
Assume that the coiteration is not simple on the K-side. Then it must be
simple on the M -side and M �� � K���. Assume that K��� 6� M ��. Then
M ��2K���, and again, the coiteration must be simple on the M -side. In both
cases, one can conclude that

P (#) \M� = P (#) \M ��
� P (#) \K��� � P (#) \K��:

But this implies K�� � � =2Card, a contradiction. Thus the coiteration must
be simple on the K-side and K��� �M ��, as claimed.
Case 1.2 � is a limit cardinal in W .
In this case set C := CardW \�2V . For �2C, there exists 
� < � such that
P (�) \W 2 W #
� =: M�.
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Let � 2 I and pick � 2 C� \ C. Again we must have EW� = ;, and thus
EK��� = ;. As before, the coiteration is thus above (and not only beyond) �
on the K-side.
In fact, the coiteration will also be above � on the M -side for V-almost all
�. Otherwise, some EM�� with critical point less than � and index � > � will
be used. By coherency, and since �2CardW , EM�� = EW� is also an extender,
with the same critical point ��, say. Then the function mapping � to �� is
regressive and monotone increasing on a set in V , hence constant on a set in
V . But then one concludes that for some � < �, OW (�) > �, contradicting
the assumption that � is not overlapped.
So assume w.l.o.g. that the coiteration is above � for all � 2 C� \ C, and
pick any such �. Let K��� and M �� be the coiterates of respectively K�� and
M�. As in the �rst case, if either the coiteration is not simple on the K-side
or if K��� 6� M ��, then the coiteration must be simple on the M -side and
M �� � K���. Then

P (�) \W = P (�) \M� = P (�) \M ��
� P (�) \K��� � P (�) \K��:

Note that, since � is not overlapped in W , OW (�) < � = ���(�). Thus one
can de�ne an extender at �, OW (�) on W as in Case 1.1 of Claim 1, and
reach exactly the same contradiction as there.
Hence, for V-almost all �, the coiteration is simple on the K-side and K��� �
M ��.
Case 2 � is overlapped in W
Then there is some � < � such that OW (�) > �. If � were a limit cardinal
in W then, since � is also regular (in V and hence in W ), we would get
W #� � ZFC and thus get a set model for a strong cardinal.
So � is a successor in W , say � = #+W , as in Case 1.1. We can assume that
for all � 2I and all �2C� , � > #.
Case 2.1 � = #.
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Let C := (#; �) 2 V . As in Case 1.1, for any �2C there is a minimal 
� such
that, setting M� := W #
�, we have

M� � 9f� �f� : #! � onto�:
Let � 2 I , �2C� \ C, and coiterate K�� and M� to get K��� and M ��. Then
the coiteration is beyond � and thus above # on both sides. Now conclude,
literally as in Case 1.1, that the coiteration must be simple on the K-side
and K��� �M ��, as claimed.
Case 2.2 � < #.
In this case we must have OW (�) < �+W . Otherwise, pick the 
� as in Case
2.1. If OW (�) > �+W , then, for any � 2 I and any � 2C� , � > #, one has
OK��(�) = ��, and by the Condensation Lemma K�� = W # ��. If � is now
chosen so that for V-almost all �, �� > 
�, one gets the contradiction that
there is, in K��, a function f� mapping # onto �.
Let �� := min(I), C := C�� . For � 2 C, let �� := OK ���(�), and set M� :=
Ult(W j��; EW�� ).
Let � 2I , and let �2C��� \ C. Then, since OK ���(�) = �� < ��� and K ��� � K��,
OK��(�) = ��, and by the Condensation Lemma K��j�� = W #��, so that also
M�j�� = K��j��.
The assumption that P (��) \M� � P (��) \ K�� leads to a contradiction,
literally as in the second part of Case 2.2.2.1 of the proof of Claim 1. All of
the relevant assumptions of that case hold here, too.
So we can conclude that P (��) \M� 6� P (��) \K��. Coiterate K�� and M�,
yielding respectively M �� and K���. Notice that the coiteration is above �� on
both sides: The coiteration is above � and beyond ��, and �� = OM�(�) =
OK��(�) | we are assuming that there are no overlapping extender sequences,
so �� cannot be a critical point on either side.
Assume that the K-side of the coiteration is non-simple or that K��� 6� M ��.
Then the M -side must be simple and M �� � K���. But then

P (��) \M� = P (��) \M ��
� P (��) \K��� � P (��) \K��;
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which we concluded not to hold. So if P (��) \ M� 6� P (��) \ K��, then
the coiteration must be simple on the K-side and K��� � M ��, as desired.

�(Claim 4)
Take the set C 2 V and the sequence hM� j � 2 Ci guaranteed by Claim
4. For � 2 I , assume w.l.o.g. that the conclusion of that claim holds for all
� 2 C� . Denote the coiteration of K�� and M� by respectively I�� and J �� ,
and let ��� be the length of this coiteration and let i��(�;�), j��(�;�) denote the
iteration maps, for � 6 � 6 ���. Let ���(�) be the critical point at stage � < ���
(cf. Figure 7.5). Recall that ��� = ����1(�) is the largest cardinal of K��, and
� = �+W .
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Figure 7.5: The coiteration of M� and K��, as guaranteed by Claim 4. I�� is
a simple iteration, no truncations are performed.

Claim 5 There is a � 2 I such that for V-almost all �, there is � < ��� such
that ���(�) > i��(0;�)(���).
Proof First, pick some � 2 I and let �2C� . To enhance legibility, we drop
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the indices � and � occasionally. E. g., let I, J be the coiteration of K�� and
M�, and let �(�) be the critical point at stage �, where � < � = ���, the length
of the coiteration. Since K��(�) � M (�)� , it follows that EM (�)� � �� = EK��(�) ,
where �� := On\K��(�). Let ���(�) := i(0;�)(���). Then ���(�) is the largest
cardinal in K��(�).
We can assume that for � < �, �(�) < ���(�). As in all coiterations, � <
max(cardK��; cardM�)+ = �. Thus there exists �2I such that for V-almost
all �2C��, �� > On\M (�)� (cf. Figure 7.6).
For such �, consider next the coiteration of K�� and M�, denoted by I 0, J 0
etc. Then I is an initial segment of I 0. This is proved by a straightforward
induction on � 6 � = length of the iteration I, using the fact that the
coiterations are simple on K-side in both cases, so that no truncations have
to be taken into account there. For the successor step, use [Koe89, Lemma
14.2], which applies here as K�� � K�� .
Then On \K�� (�) > �� > On\M (�)� , so � 0 > �. But actually nothing happens
on the K-side: Assume for a contradiction that some extender F is used to
build an ultrapower of K�� (�). This extender would have to have index at
least �� = On\K��(�). As ���(�) is the largest cardinal in K��(�) and in K�� (�)
and no truncations are allowed on the K-side, the critical point of F would
have to be less than ���(�). So by coherency K��(�) has extenders with this
critical point all the way up to ��. Then by elementarity, K�� has extenders
with some critical point � < ���, all the way up to ��. Thus by the de�nition
of ��� = �K�� , one gets ��� = � < ���, contradicting Claim 2.
E�ectively, the coiteration on the K-side halts, and all that happens is that
M (�)� is iterated till we have agreement. The index �(�) of the extender used
in the next step has to be at least ��, of course.
If the coiteration of K�� and M� terminates after the (� + 1)-th step, �nd
% 2 I to make sure that the coiteration of K%� and M� goes at least one
step further, by the same argument that gave � in the �rst place. Assume
w.l.o.g. that already the coiteration of K�� and M� takes at least (�+2)-many
steps. But again, nothing happens on the K-side after the �-th step, and
so i(0;�+1)(���) = i(0;�)(���). Fine coiterations are normal, so �(�+1) > �(�) >
�� > i(0;�)(���) = i(0;�+1)(���), so � and � + 1 are as desired. �(Claim 5)
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Figure 7.6: By choosing an appropriate � one can ensure that at some point
of the coiteration of K�� and M� the critical point �(�) is greater than the
largest cardinal ���(�) of K�� (�). It happens here at � = � + 1 (see the dotted
circles), where � is the length of the coiteration of K�� and M�, and where �
was chosen such that �� is greater than M (�)� \On. � 0 denotes the length of
the coiteration of K�� and M�.

This now quickly leads to a contradiction: �(�) is a cardinal in M (�)� . By
choosing a suitable �, one can arrange that On \K�� (�) > �(�), and hence
K�� (�) (and so K�� (�)) thinks �(�) has cardinality ���(�) < �(�). This contradicts
K�� (�) �M (�)� (for V-almost all �).
This concludes the discussion of Case A. �(Case A)
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Case B Recall that we had proved in Claim 1 that w.l.o.g. for all � 2I and
all �2C� , K�� is not weakly full. We now want to lead the assumption that
�K�� = �� to a contradiction. As before, by elementarity, if this is true for one
� 2 I and V-almost all �2C� , then it is true for all � 2 I (and V-almost all
�2C�). As before, K�� is neat and thus prestrong. As K�� is not weakly full,
it cannot be strong, since strong mice are weakly full by [Sch96, Lemma 5.9].
Thus there exists a mouse M �� end-extending K�� such that K�� 6� core(M ��).
We aim to show that, given some �, many of these core mice for varying �
are identical. This allows us to conclude that the iteration from this core to
some suitable M �� must be long (in the sense of De�nition 6.1). This in turn
is necessary for the Gitik Game to go through, which will be be �nal step
towards the desired contradiction.
We have to proceed with some care in the choice of M �� .
Claim 6 For each � 2I and each �2C� , there is a mouse M �� end-extending
K�� such that K�� 6� �M �� := core(M ��), P

�%!M��
� \M �� � K�� and such that for

no intermediate stage M 0 in the iteration from �M �� to M �� does K�� � M 0.
Let %�� denote %!M�� .
Proof Let M be any mouse end-extending K�� such that K�� 6� core(M) =:
�M . Such M exists as K�� is not weakly full. We want to arrange

P (%!M ) \M � K��:
Note that %!M < ��. Otherwise, since the iteration from �M to M is simple
and above %!M , we would have K�� � M # �� = �M # �� � �M , a contradiction.
Let

� := maxf� 6 On\M j P (%!M ) \M #� � K��g:
Let N := M #�. Then surely N is a mouse and K�� � N . Note that %!N 6 %!M
by the choice of �. Thus P�%!N

� \N � K��.
If K�� 6� core(N), then we have a good candidate for M �� : Let M �� be the
�rst stage of the iteration from core(N) to N such that K�� � M �� . i. e., if
N (0) = core(N), N (#) = N � K��, then let � 6 # be minimal such that N (�) �
K�� and set M �� := N (�). Since the iteration is simple and above %!N , one has
%!M�� = %!N and P�%!M��

�\M �� = P (%!N)\N � K��, and K�� 6� core(M ��) =: �M �� .
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Otherwise, K�� � core(N). Note that this implies N 6= M and so � < On\M .
We �rst claim that %!N = %!M : If %!N < %!M , then pick some a2P (%!N)\��(N)n
N . As � < On\M , we conclude

a2P (%!N) \M = P (%!N) \ �M
� �M #(%!N)+ �M � �M #%!M = M #%!M = K��#%!M � N;

a contradiction. (This uses the fact that ( %!N)+ �M 6 %!�M = %!M and that the
iteration from �M to M is simple and above %!M .)
Next we claim that � = On\M , which immediately gives a contradiction.
Otherwise, i. e., if � < On\M , as before pick some a2P (%) \ ��(N) n N ,
where % denotes %!N = %!M . As in the previous paragraph, a2 �M . Thus either
a2 �M #%+ �M or % is the largest cardinal of �M . In this latter case, since M is a
simple iterate of �M above %, we must have �M = M , contradicting K�� � M
and K�� 6� �M . But the former case also leads to a contradiction: Again as M
is a simple iterate of �M above %, M and �M agree up to %+M = %+ �M . Thus
a 2M # %+M . Now if %+M 6 ��, then a 2 K�� � N , contradiction. But if
%+M > ��, then K�� �M #%+M = �M #%+M , also a contradiction. �(Claim 6)
Claim 7 Let � < � both be elements of I and let �2C��. Then either

�M�� 6� �M �� or %�� < %��;
where 6� denotes the canonical pre-well-ordering of mice.
Proof Assume that %�� > %��. We �rst claim that the coiteration of �M ��
and �M�� is above % := minf%��; %��g = %��. Otherwise, since coiterations are
normal, there is a �rst disagreement between �M �� and �M�� at some �, �, where
� < %.
Say E �M��� is at �, �. Since I �M�� ;M�� is above %�� = %, it follows that EM��� = E �M��� .
If � < ��, then

E �M��� = EK��� = EK��� = EM��� = E �M��� ;
where the last equality holds as I �M�� ;M�� is above %�� > %. But this is a
contradiction. So � > ��. But then E �M�� ��� = EM�� ��� = EK�� , contradicting
the choice of M �� .
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Thus E �M��� = ;, and E �M��� is at �, �. As before, E �M��� = EM��� , E �M��� = EM��� and �
must be greater than ��. By the argument of the previous paragraph, � must
be less than ��. Thus EK��� is at �, �, and hence by coherence EK���� is at �, ��,
and EK�� � �� = EK�� � �� (recall that K�� does not have a largest cardinal, so
�+K�� = �+K�� exists and is less than ��). But this implies ��� = �K�� = � < ��,
whereas the general assumption of Case B is that ��� = ��.
Thus the coiteration of �M �� and �M�� is above %�� 6 %��. Let fM �� and fM�� be
the comparable coiterates and assume fM �� 2 fM�� . Then

P (%��) \ ��(M ��) = P (%��) \ ��( �M ��) as IM�� ; �M�� is simple above %��
= P (%��) \ ��(fM ��) as I �M�� ; eM�� is simple above %��
� P (%��) \ fM�� as fM ��2 fM��
� P (%��) \ �M�� as I �M�� ; eM�� is above %�� > %��
= P (%��) \M�� as I �M�� ;M�� is simple above %��
= P (%��) \K�� as P (%��) \M�� � K��
= P (%��) \K��
�M �� ;

a contradiction! The last equation holds since K�� has no largest cardinal:
Let � < ��. Then �+K�� exists and is less than ��, so P (�) \K��2K�� and as
K�� � K�� , P (�) \K�� = P (�) \K�� .
Thus the assumption fM �� 2 fM�� was wrong and fM�� � fM �� after all, i. e.,
�M�� 6� �M �� . �(Claim 7)
We are now in a position to prove that all the prerequisites of the Gitik Game
are satis�ed by some K�� .

Claim 8 There exists a � 2 I and an � 2 C� (in fact, unboundedly many
such �) such that the iteration I �M�� ;M�� from �M�� to M�� is not short (in the
sense of De�nition 6.1).

Proof We will inductively choose a �-long sequence of elements of I , corre-
sponding sets in V and functions from ��.
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Let � 0 be arbitrary, and set A0 := C�0 2V , f 02��, where

f 0(�) =
8><
>:
maxfs(!1)( �M �0� ); � 0�g+ 1 if �2A0,
0 else.

By Lemma 6.2, f 0 really takes values less than �.
Assume h� i j i < �i had been chosen. De�ne h� 2�� by setting

h�(�) = supff i(�) + 1 j i < � \ �g:
Then since inductively all the f i take values less than �, so does h� . Using
Lemma 7.9 �nd � � 2 I such that � � > supf� i j i < �g and such that for
V-almost all � � �� > h�(�). Set A� := f�2C� � j � � > h�(�)g2V and let

f �(�) =
8><
>:
maxfs(!1)( �M � �� ); � ��g+ 1 if �2A� ,
0 else.

Since V is not (%; �)-regular and % > !1, it is not weakly (!; �)-regular by
Lemma 7.3. Thus hAi j i < �i is not a weak regularity sequence, and so
there are indices hij j j2!i such that Tj2! Aij is unbounded in �.
Recall that C�� is a �nal segment of C�. So let ��� be (least) such that

8� > ��� ��2C� \ C� ! �2C���:
Let, for j < k < !, �jk := �� ij � ik and set

�� := supfij j j < !g [ supf�jk j j < k < !g < �:
Now pick some �2�Tj2! Aij� n ��.
Let j < k < !. Then � > ik, so hij (�) > f ik(�) > maxfs(!1)( �M � ik� ); � ik� g, as
also �2Aik . Thus

� ij� > hij (�) > � ik� [ s(!1)( �M � ik� ):
and so by Claim 7

8j < k < ! � �M � ij� = �M � ik�| {z }(A)
or �M � ij� >� �M � ik�| {z }(B)

or %� ij� > %� ik�| {z }(C)
�:
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By Ramsey's Theorem, there must be a homogeneous set J � ! of size !
such that one of (A), (B), (C) holds for all j < k 2 J . Obviously, if J
were homogeneous of \type (C)", then we would get an in�nite descending
sequence of ordinals. Similarly, a homogeneous set of \type (B)" would give
an in�nite descending sequence of mice, also a contradiction. Thus there
must be !-many indices � i that share the same core mouse �M . In fact, we
are only interested in two of them. I. e., we have � , �2I such that

On\M�� > �� > h�(�) > maxfs(!1)( �M ��); ��g:
and �M�� = �M �� . But then the iteration I �M�� ;M�� from �M�� to M�� cannot be
short. �(Claim 8)
We are now ready to play the Gitik Game. Our presentation follows closely
that of [Sch96, Chapter 6].
Pick � as in Claim 8 and some � such that the iteration I �M;M from �M := �M��
to M := M�� is not short. Let I �M;M have length #, iteration maps he�ij j i 6
j 6 #i, and indices he�i j i < #i. As the iteration is not short, there is a
sequence hi� j � 6 !1i of ordinals less than # such that

8� 6 � 6 !1 �e�i�i� (e�i�) = e�i�
�:

Let us introduce some further notational simpli�cations. We will subse-
quently only be interested in stages of the iteration determined by the se-
quence hi� j � 6 !1i, thus set, for � 6 � 6 !1,

N � := M i� �� := e�i�
��� := e�i�i� �� := crit(EN��� )

Let F := EN!1�!1 . The point of the Gitik Game is to reconstruct this extender
inside the collapsed substructure �H := H�� . (For convenience, denote K�� by
�K, too.)
Claim 9 F 2 �H.
Before we proceed with the proof of this claim, let us show how to conclude
the discussion of Case (B) and hence the proof of the theorem, given Claim
9.
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Claim 10 F is countably complete.
Proof Let � := �!1 , � := �!1 . Let han j n2!i be a sequence of elements
from [�]<! and let hxn j n 2 !i be a sequence of sets such that for all
n 2 !, xn 2 Fan . We have to show that there is an orderpreserving map
t : Sn2! an ! � such that for all n2!, t00an2xn.
First, �nd i < !1 such that there a sets yn and bn, n2!, in N i such that

xn = �i!1(yn) an = �i!1(bn):
Let t := ��1i!1 � Sn2! an. Then t is an orderpreserving map from Sn2! an
to Sn2! bn, since �i!1 is elementary. Also note that the iteration IN0N!1 is
normal, so � > � i. Sn2! an � � and �i!1(�i) = �, so Sn2! bn � �i � �.
Finally, xn2Fan =

�EN!1�i!1 (�i)
�
�i!1 (bn), thus yn2

�EN i�i
�
bn . By the normality of

IN0N!1 , bn2�i!1(yn), i. e., t00an = bn2xn. �(Claim 10)
Now recall that N!1 was just a stage in the iteration from �M�� to M�� . We
have

N!1 #�!1 = M�� #�!1 since I �M�� ;M�� is normal
= K�� #�!1 :

The second equation holds since �!1 must be less than ��. Otherwise an ear-
lier stage of the iteration I �M�� ;M�� would already have satis�ed the conditions
of Claim 6. Thus we have that

H�� � hK�� #�!1 ; F i is a premouse such that F is countably complete.
By de�nition, K�� = (Kc)H�� . Thus it follows that EK���!1 = F . On the other
hand, F is an extender used in the iteration from �M�� toM�� , an end-extension
of K�� , and thus EK���!1 = EM���!1 = ;, a contradiction.
This concludes the proof of the theorem, save for Claim 9.
Proof of Claim 9
Our aim is to show that the extender F = EN!1�!1 is an element of the structure
�H = H�� . By our choice of extenders (or rather indices) we have

8� 6 � 6 !1 ����(��) = ���
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and so it will be enough to reconstruct in �H a su�ciently good approximation
to the direct limit system hN � j � 6 !1i. More precisely, it will be enough
to de�ne in �H a thread b� for each � < �!1 , where the thread b� is taken to
represent � in the direct limit N!1 . Thus b� will be a sequence of ordinals
h�i j i < !1i, such that �i < � (since �i < �i < �i+1 < �) and such that

9j < !1 8i2 [j; !1) ��i!1(�i) = ��:
Given such threads in �H, one can reconstruct F as follows: Let a2 [�!1 ]<!
and x2P �[�]a� \ N!1 . Assume a = f�1; : : : ; �ng. Then x is in Fa if a �nal
sequence of the thread for a is in x, i. e.,

x2Fa $ 9j < !1 8i2 [j; !1) �f�1i ; : : : ; �ni g2x
�:

Thus if the threads b� are all de�nable in �H, then F is de�nable in �H and
hence an element of �H.
The threads will be de�ned via winning strategies for the second player in
the following game, due to Gitik ([Git93]).
The Gitik Game G is played by two players, say Alice and Bob, who alter-
natingly make !-many moves. Alice is the �rst to play. On her n-th move
Alice plays a pair hBn; hni such that

Bn � �!1 ; card(Bn) 6 @1; and Bn�1 � Bn; (if n > 0),
and

hn2��!1 \ �K:
Note that N i # �i = M # �i = �K # �i, as on the one hand the iteration after
index i is beyond �i and on the other hand �K = K�� �M�� = M .
Bob responds to Alice's move by playing a sequence tn = htni j i < !1i
satisfying the following three conditions:

i) For each i < !1, tni maps a submodel of N i # �i of size at most @1
elementarily into N!1 # �!1 , i. e., tni : N i # �i ,!�! N!1 # �!1 and
card(tni ) 6 @1.

ii) If n > 0, then for each i < !1, tni extends tn�1i , i. e., tn�1i � tni .
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iii) For su�ciently large i, rge(tni ) \covers" Bn\hn00�i, i. e., 9j < !1 8i2
[j; !1) �Bn \ hn00�i � rge(tni )

�.
If Bob is unable to �nd such a sequence, then Alice wins the game. Other-
wise, i. e., if the number of moves is in�nite, Bob wins. Thus Bob tries to
construct, in the course of the game, an approximation to the direct limit
system hN i j i < !1i, h�ij j i 6 j < !1i. Alice can require certain points
(given by Bn and hn) to be considered in this approximation, thus making
the task harder for Bob.
Note that �H is closed under !1-sequences and also that N i#�i = �K #�i � �H,
for any i 6 !1. Thus any move that either Alice or Bob makes is an element
of �H: they all have cardinality at most @1 and are subsets of �H. Again by
!1-closure, the whole run of the game is then also an element of �H. Also
note that the game G is closed and hence determined. Thus either Alice or
Bob must have a winning strategy. This last statement holds relativized to
�H, too.
Claim 11 Bob has a winning strategy � for G in �H, i. e.,

�H � 9� �� is a winning strategy for Bob�:

Proof Suppose not. Then Alice has a winning strategy � for G in �H.
Consider a run of the game where Alice plays hBn; hni according to � and
where Bob responds with the following sequence tn. For i < !1, let Hi be a
hull of ��1i!1 00Bn in �K #�i, card(Hi) 6 @1, constructed in V. Let tni := �i!1 �Hi.
Then by the above remark, tn = htni j i < !1i2 �H.
But these choices are always legal moves for Bob: Condition i) is satis�ed
by making Hi � �K # �i = N i # �i. Since Alice always chooses sets Bn
of size @1, card(Hi) 6 @1 can also always be achieved. Condition ii) is
ful�lled as Alice chooses Bn � Bn�1. Finally, note that the iteration from
N!1 to M � �K is beyond �!1 . Thus if hn 2 ��!1 \ �K, then hn 2 N!1 ,
by [Koe89, Lemma 17.2 (iii)]. Subsequently, �nd some j < !1 such that
there exists �h 2 N j satisfying �j!1(�h) = hn. Now let i 2 [j; !1) and set
�hi := �ji(�h). For any �2Bn\hn00�i, let ��i < �i be such that hn(��i) = �. Then
� = hn(��i) = �i!1(�hi)(��i) = �i!1

��hi(��i)� 2 rge(�i!1). Thus Bn \ hn00�i �
rge(�i!1). Furthermore, �2Bn \ rge(�i!1) implies that ��1(�)2Hi = hull of
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��1i!1 00Bn, so that � = tni (��1i! (�)) 2 rge(tni ). So for su�ciently large i, rge(tni )
indeed covers Bn \ hn00�i, and condition iii) is also satis�ed.
Thus this run of the game G is in�nite, so that Bob wins although Alice was
using her winning strategy | contradiction. �(Claim 11)
Let � 2 �H be any winning strategy for Bob. Given � < �!1 , we want to
show that this will yield a candidate for a thread for �. Consider a run of
the game G where Bob plays according to � and where Alice starts out by
playing the singleton B0 := f�g together with h0 := c� , the function with
constant value � (and domain �, of course). Then, by clause iii) for Bob's
moves, �2 rge(t0i ) for su�ciently large i. Thus there is j < !1 and there are
�i, for i2 [j; !1), such that t0i (�i) = �. Choose some arbitrary �i, for i < j,
and let � (�) denote the sequence h�i j i < !1i. Thus � (�) is a thread for
� in the sense of Bob's approximation t0 to the real direct limit system. We
will show next that in a certain sense the true thread for � is minimal among
these approximations.
Consider the ordering of sequences of ordinals by eventual dominance:
7.10 Definition Given sequences c = h
i j i < !1i and d = h�i j i < !1i,
let c 4 d (or c � d) i� for su�ciently large i, 
i 6 �i (or 
i < �i), i. e.,
9j < !1 8i2 [j; !1) �
i 6 �i� (or 
i < �i).

For � < �!1 let h ��i j i < !1i denote the (unique maximal) thread for � in
N!1 .
Claim 12 Let � be some winning strategy for Bob and let � < �!1 . Then
� (�) < h ��i j i < !1i.

Proof Let � (�) = h�i j i < !1i, where � is some winning strategy for Bob.
Assume for a contradiction that � (�) 6< h ��i j i < !1i, and consider the run
of game G where Alice starts out by playing B0 := f�g and h0 := c� . Bob
responds by playing tn = htni j i < !1i according to � . For n > 0, Alice
chooses Bn and hn as follows:

Bn := f�g [ [
i<!1 �i!1

00� dom(tn�1i ) \On �:
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Since all tn�1i have cardinality at most @1, so does Bn, so that Bn 2 [�!1 ]6!1
as required. By induction it also follows that Bn � Bn�1, using the fact
that tn�1i extends tn�2i (if n > 1). Note that by the !1-closure of �H Bn is
an element of �H. We now wish to apply the weak covering lemma 5.22 to
choose hn. � = �!1 is not overlapped in �K = (Kc) �H , as it is measurable and
by :Lstrong there are no overlapping extendersequences. Also, �!1 = O �K(�),
since an end-extension of �K is produced by iterating N!1 simply, beginning
with EN!1�!1 . Bn � �!1 and (card(Bn)@0 < card(�)) �H . Thus we can conclude
that there is some h2 �K, h : �! �!1 such that Bn � rge(hn).
This e�ectively forces Bob to respect all of Bn with his next move, for suf-
�ciently large i. This would not be a priori impossible, were it not for our
assumption that � (�) 6< h ��i j i < !1i, i. e., that the true thread for � un-
boundedly often lies strictly above Bob's approximation to it. This latter
fact is now used to show that Bob cannot win the game:
Suppose to the contrary that Bob does win, i. e., that the number of moves
is in�nite. Let n2!. Then hn 2 ��!1 \ �K � M . M is a simple �ne iterate
of N!1 beyond �!1 , so that we can use [Koe89, Lemma 17.2 iii)] again to
conclude that hn 2N!1 . Thus there is some j < !1 and some �h 2N j such
that hn = �j!1(�h). For any i2 [j; !1), set �hi := �ji(�h). We claim that

Bn \ rge(�i!1) � hn00�i:
To see this, let � 2 Bn \ rge(�i!1), say � = �i!1(��). By construction Bn �
rge(hn), so that

N!1 � 9�0 < � �hn(�0) = ��:
By elementarity,

N i � 9�0 < �i ��hi(�0) = ���:
So pick some �0 < �i such that

N i � �hi(�0) = ��:
Since the iteration from N i to N!1 is normal and above �i

N!1 � hn(� 0) = �;
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i. e., �2hn00�i, as claimed.
By condition iii) for Bob's moves, there is jn < !1 such that

8i2 [jn; !1) �Bn \ rge(�i!1) � Bn \ hn00�i � rge(tni )
�:

Since this is true for all n2!, let j := supfjn j n2!g < !1. Then
8n2! 8i2 [j; !1) �Bn \ rge(�i!1) � rge(tni )

�:(1)
W.l.o.g. pick j large enough so that also

8i2 [j; !1) �t0i (�i) = ��:(2)
This is possible by de�nition of h�i j i < !1i as � (�). (Recall that Alice
started out by playing B0 = f�g and Bob answered according to � .) Finally,
we want to make use of our assumption that � (�) 6< h ��i j i < !1i. This
ensures that for some i > j �i < ��i, i. e.,

9i2 [j; !1) ��i!1(�i) < �i!1( ��i) = ��:(3)
We can now inductively go back and forth between N i and N!1 and construct
a descending sequence of ordinals, as shown in Figure 7.7.
Fix some i as in equation (3). Let �0 := �i!1(�i) < �. Note that �0 2
B1 \ rge(�i!1): By equation (2), �i 2 dom(t01), so that �0 = �i!1(�i) 2
�i!1 00(dom(t01)\On) � B1. Assume that �n�1 had been de�ned and shown to
be an element of Bn \ rge(�i!1). Then set

�n := �i!1
�(tni )�1(�n�1)

�:
This is well-de�ned, as by equation (1) we have that Bn\ rge(�i!1) � rge(tni ),
so that �n := (tni )�1(�n�1) is de�ned. Also �n = �i!1(�n) 2 �i!1 00(dom(tni ) \
On) � Bn+1, by the de�nition of Bn+1. Thus the inductive de�nition goes
through.
We claim that 8n 2 ! ��n+1 < �n�. First, note that �0 = �i!1(�i) < � =
t0i (�i), so that (t01)�1(�0) < �i. This implies that

�1 = �i!1
�(t0i )�1(�0)

� < �i!1(�i) = �0:
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��i
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...��2 := �i!1((t2i )�1(�1))
��1 := �i!1((t1i )�1(�0))
��0 := �i!1(�i)
�� = t0i (�i)
��

�i!1 33

ss

t0i
g g g h h i i i j j j k k l l l

m

22ffffffffffffffffffffffffffffffffffffffffff

ss

t1i
f g g g h h h i i j j j k k l l l

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

rr

t2i
f f g g g h h h i i j j j k k k l

�i!1
22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

//

Figure 7.7: To construct an in�nite descending sequence of ordinals, start
with � in N!1 , take its pre-image under t0i to go to N i, then use �i!1 to
return to N!1 and start over again, using t1i next.

Inductively, if �n < �n�1, n > 0, then
�n+1 = �i!1

�(tn+1i )�1(�n)�
< �i!1

�(tn+1i )�1(�n�1)�; since �n�12rge(tni ) � rge(tn+1i ),
= �i!1

�(tni )�1(�n�1)
�; since tni � tn+1i ,

= �n by the de�nition of �n.

This is a contradiction. Thus Alice wins the game. But Bob was playing
according to a winning strategy � . Contradiction yet again! Thus our initial
assumption that � (�) 6< h ��i j i < !1i must have been wrong, and the claim
is proved. �(Claim 12)
Now the argument for Claim 11 shows that, for any � < �!1 , Bob has a
winning strategy � 2 �H such that � (�) is a thread for � in N!1 . Thus if we
let

b� := the 4 -minimum of f� (�) j � is a winning strategy for Bobg;
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then b� is a thread for � in N!1 , de�ned inside �H: The set of possible threads
� (�) consists only of threads greater or equal than the canonical thread for
�, by Claim 12, and it contains one which is eventually equal to this thread.
But this proves Claim 9, and with it the theorem. �(Claim 9)

�
As we already noted at the end of Chapter 6, our original goal was to prove
that the existence of an irregular ultra�lter entailed the existence of an inner
model for a strong cardinal. Under the present circumstances, the Gitik Game
is not strictly necessary: all measures involved are ultra�lters, no recourse
to extenders is needed, and ultra�lters are reconstructible in an !-closed
model after an !-long iteration, just from their Prikry-sequence. However, we
considered the Gitik Game interesting enough to merit a detailed exposition,
and it also serves to locate the exact point where the proof breaks down for
higher orders of measurability, namely Lemma 6.2.
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