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ZusammenfassungDie vorliegende Diplomarbeit bes
h�aftigt si
h mit zwei unver�o�entli
hten Ar-tikeln von Professor Howard S. Be
ker von der University of South Carolina inColumbia. Ausgangspunkt ist folgende klassis
he Charakterisierung von BorelMengen in polnis
hen R�aumen dur
h Topologieverfeinerungen:Eine Teilmenge eines polnis
hen Raumes ist genau dann eine Borel-Menge, wenn eine polnis
he Topologie auf dieser Teilmenge existiert,die die Teilraumtopologie verfeinert.Professor Be
ker diskutiert in seinen Aufzei
hnungen \Finer topologies on point-sets in Polish spa
es" vom M�arz 1991 und \Playing around with �ner topolo-gies" vom Januar 1992 m�ogli
he Verallgemeinerungen dieser Charakterisierungf�ur komplexere Teilmengen polnis
her R�aume, insbesondere f�ur projektive Men-gen in polnis
hen R�aumen. In dieser Diplomarbeit werden seine Resultate mitausf�uhrli
hen Beweisen und der Bereitstellung aller Grundlagen pr�asentiert.Die Diplomarbeit gliedert si
h in zwei Teile. Im ersten Teil werden allef�ur diese Arbeit notwendigen De�nitionen und Resultate aus der deskriptivenMengenlehre eingef�uhrt. Der zweite Teil befa�t si
h dann mit dem eigentli
henThema dieser Arbeit, der Charakterisierung projektiver Mengen dur
h Topolo-gieverfeinerungen.Die klassis
he deskriptive Mengenlehre bes
h�aftigt si
h mit \de�nierbarenTeilmengen" der reellen Zahlen und deren Eigens
haften. Die reellen Zahlensind ein topologis
her Raum, dessen Topologie von einer vollst�andigen Metrikinduziert wird. Desweiteren liefert die abz�ahlbar di
hte Teilmenge der ratio-nalen Zahlen eine abz�ahlbare Basis f�ur diese Topologie. Sol
he topologis
henR�aume nennt man polnis
he R�aume. Man kann zeigen, dass die De�nierbar-keitshierar
hien auf den reellen Zahlen topologis
hen Hierar
hien entspre
hen.Deswegen bes
h�aftigt si
h die deskriptive Mengenlehre heutzutage oft allge-meiner mit de�nierbaren Teilmengen von polnis
hen R�aumen.Wir beginnen deshalb in Teil 1 dieser Arbeit mit einem kurzen Kapitel�uber polnis
he R�aume. Es werden die grundlegenden De�nitionen wiederholtund es wird gezeigt, dass Summen und Produkte (in der Kategorie der topolo-gis
hen R�aume) von polnis
hen R�aumen wieder polnis
he R�aume sind. Weitererw�ahnen wir, dass genau die GÆ-Mengen (d.h. abz�ahlbare S
hnitte o�enerMengen) versehen mit der Teilraumtopologie wieder polnis
he R�aume sind.1



Zusammenfassung 2Als wi
htigstes Beispiel eines polnis
hen Raumes (neben R) f�uhren wir denBaire-Raum !! ein. Als topologis
her Raum ist dies das topologis
he Produktder Mengen ! versehen mit der diskreten Topologie. Mit Hilfe von B�aumenk�onnen wir eine Basis der Topologie des Baire-Raumes angeben. B�aume spie-len in dieser Arbeit eine herausragende Rolle und werden zusammen mit einigendamit verwandten Begri�en in Kapitel 2 eingef�uhrt. Ein Baum auf ! bestehtaus endli
hen Folgen nat�urli
her Zahlen, so dass jedes Anfangsst�u
k sol
h einerFolge au
h ein Element des Baumes ist. Besonders wi
htig f�ur den Baire-Raumsind unendli
he �Aste dur
h einen sol
hen Baum auf !. Ein unendli
her Astdur
h einen Baum auf ! ist eine abz�ahlbare Folge von nat�urli
hen Zahlen,also ein Element von !!, so dass alle endli
hen Teilfolgen im Baum sind. Eineinfa
hes aber wi
htiges Resultat in diesem Zusammenhang ist die Charak-terisierung einer abgs
hlossenen Teilmenge des Baire-Raumes als Menge derunendli
hen �Aste dur
h einen Baum auf !. In einem Unterkapitel von Kapitel2 wird die Wi
htigkeit des Baire-Raumes deutli
h, da wir f�ur jeden polnis
henRaum eine stetige Surjektion des Baire-Raumes in den polnis
hen Raum �nden.Von ents
heidender Bedeutung f�ur die deskriptive Mengenlehre und ins-besonders f�ur unsere Arbeit hier ist eine weitere Darstellung von Teilmengendes Baire-Raumes dur
h B�aume. Wir de�nieren B�aume auf dem Produkt von !mit einer Ordinalzahl � und nennen die Mengen, wel
he si
h dur
h eine Projek-tion der Menge der unendli
hen �Aste auf !! darstellen lassen �-Suslin-Mengen.Dies wird die ents
heidende De�nition in Kapitel zwei sein und wir diskutierendie �-Suslin-Mengen entspre
hend. Eng verkn�upft damit ist das Konzept einerSkala. Daf�ur betra
hten wir eine Folge von Normen (dies sind Abbildungenvon Teilmengen des Baire-Raumes in die Ordinalzahlen) mit gewissen Eigen-s
haften. Sind alle Normen einer Skala Abbildungen, deren Bilder bes
hr�anktsind dur
h eine Ordinalzahl �, so spre
hen wir von �-Skalen und wir zeigen,dass Teilmengen des Baire-Raumes genau dann eine �-Skala besitzen, wenn dieMengen �-Suslin sind. Wir s
hlie�en Kapitel 2 mit der De�nition von Borel-,und in Verallgemeinerung �-Borel-Mengen. Au
h hier wird der Zusammenhangmit �-Suslin-Mengen diskutiert werden.In Kapitel 3 f�uhren wir die Borel-Hierar
hie und die projektive Hierar
hieein. Die deskriptive Mengenlehre klassi�ziert Teilmengen polnis
her R�aume inHierar
hien in Bezug auf die Komplexit�at der Menge. Zum Beispiel bestehtdie unterste Ebene der Borel-Hierar
hie aus den o�enen und abges
hlosse-nen Teilmengen. Die n�a
hste Ebene enth�alt nun abz�ahlbare Vereinigungenabges
hlossener Mengen (F�-Mengen) und abz�ahlbare S
hnitte o�ener Mengen(GÆ-Mengen). Um zur n�a
hsten Ebene zu kommen betra
htet man wiederumabz�ahlbare Vereinigungen von GÆ-Mengen bzw. abz�ahlbare S
hnitte von F�-Mengen und so weiter. Die Vereinigung aller Ebenen dieser Hierar
hie liefertdie Klasse aller Borel-Mengen. Borel-Mengen sind abges
hlossen unter Komple-mentbildung und abz�ahlbaren Vereinigungen und S
hnitten. Allerdings ni
htunter Projektionen. Wir nutzen diese Tatsa
he zur De�nition der projektivenHierar
hie. Wir nennen Projektionen von Borel-Mengen analytis
he oder �11-Mengen und zusammen mit ihren Komplementen (den �11-Mengen) bilden sie



Zusammenfassung 3die erste Stufe der projektiven Hierar
hie. Projektionen von Komplementen vonanalytis
hen Mengen bilden dann (zusammen wieder mit deren Komplementen)die n�a
hste Stufe der projektiven Hierar
hie (die �12- bzw. �12-Mengen). Diesl�asst si
h so abz�ahlbar oft fortsetzen, d.h. wir erhalten die Klassen �1n und �1nf�ur n 2 !. Die Mengen dieser Hierar
hie nennt man projektive Mengen undf�ur diese Mengen geben wir in Teil zwei dieser Diplomarbeit eine topologis
heCharakterisierung.Im Kapitel 4 kommen wir dann zu einem moderneren Gebiet der deskrip-tiven Mengenlehre, n�amli
h zu Spielen und der Determiniertheit von Spie-len. Als Prototyp f�ur die Spiele, die wir betra
hten, dient folgendes Spiel aufden nat�urli
hen Zahlen. Es wird zun�a
hst eine Teilmenge des Baire-Raumesals Gewinnmenge festgelegt. Zwei Spieler I und II w�ahlen nun abwe
hselndabz�ahlbar oft nat�urli
he Zahlen. Das Ergebnis dieses Spiels ist dann also eineabz�ahlbare Folge nat�urli
her Zahlen und somit ein Element des Baire-Raumes.Wir sagen, dass Spieler I das Spiel gewinnt, falls die Folge in der Gewinnmengeliegt. Anderenfalls hat Spieler II gewonnen. Mit Hilfe von B�aumen de�nierenwir Strategien f�ur die einzelnen Spieler, die dem Spieler in jedem Zug mitteilen,mit wel
her nat�urli
hen Zahl er auf eine bis dahin gespielte Folge antwortensoll. Eine sol
he Strategie hei�t Gewinnstrategie, falls der entspre
hende Spielerjeden Spielverlauf gewinnt, indem er der Strategie folgt. Es ist klar, dass dieExistenz einer Gewinnstrategie immer von der Gewinnmenge abh�angt und es istau
h klar, dass es Gewinnmengen gibt, f�ur die man sehr einfa
h Gewinnstrate-gien f�ur einen der Spieler angeben kann. Eine Gewinnmenge nennt man de-terminiert, falls f�ur einen der Spieler eine Gewinnstrategie existiert. Es ist eins
hwieriges und interessantes Problem, wel
he Klassen von Teilmengen deter-miniert sind; wir bes
h�aftigen uns hier allerdings ni
ht damit, sondern f�uhrenneue Axiome ein, die die Determiniertheit von Mengen postulieren. Das Axiomder projektiven Determiniertheit PD garantiert die Determiniertheit aller pro-jektiven Mengen des Baire-Raumes. Das st�arkere Axiom der DeterminiertheitAD besagt, da� alle Teilmengen des Baire-Raumes determiniert sind. Sp�aterwerden wir dann sogar das Axiom ADR voraussetzen. Hierzu werden Spieleauf Elementen des Baire-Raumes betra
htet. Die Gewinnmenge ist dann eineTeilmenge von (!!)! und es werden abwe
hselnd Elemente von !! gespielt.Ansonsten werden die obigen De�nitionen in o�ensi
htli
her Weise auf dieseSpiele �ubertragen und ADR ist dann das Axiom, wel
hes besagt, dass f�ur alleGewinnmengen sol
her Spiele eine Gewinnstrategie f�ur einen der Spieler ex-istiert.Wir s
hlie�en in Kapitel 4 mit einer Charakterisierung der polnis
hen R�aumedur
h starke Choquet-Spiele. Dies sind Spiele f�ur zwei Personen in obigemSinn, nur werden diesmal ni
htleere o�ene Mengen eines polnis
hen Raumesgespielt, so dass eine absteigende Folge von ineinander enthaltenen o�enenMengen entsteht und Spieler II gewinnt dieses Choquet-Spiel, wenn der S
hnittaller o�enen gespielten Mengen ni
htleer ist. Im starken Choquet-Spiel wirdzus�atzli
h von Spieler I jeweils ein Punkt in seiner o�enen Menge gespielt undSpieler zwei muss dann eine o�ene Umgebung um diesen Punkt spielen, wel
he



Zusammenfassung 4in der o�enen Menge von I enthalten ist. Au
h hier gewinnt II, wenn derS
hnitt aller o�enen Mengen ni
ht leer ist. Ein topologis
her Raum hei�t starkerChoquet-Raum, falls Spieler II eine Gewinnstrategie im starken Choquet-Spielhat. Beispiele f�ur sol
he starken Choquet-R�aume sind unter anderem die pol-nis
hen R�aume. Insbesondere sind polnis
he R�aume regul�are starke Choquet-R�aume mit abz�ahlbarer Basis und es gilt die Hausdor� Trennungseigens
haft.Diese Eigens
haften von polnis
hen R�aumen benutzen wir f�ur unsere Charak-terisierung der projektiven Mengen.Die ersten vier Kapitel benutzen als Voraussetzung nur die Theorie ZF+DCund an einigen wenigen Stellen zus�atzli
h das volle Auswahlaxiom AC. DieseTheorien sind ni
ht geeignet f�ur die vollst�andige topologis
he Charakterisierungder projektiven Mengen. Aus diesem Grunde haben wir in Kapitel 4 die Ax-iome der Determiniertheit eingef�uhrt. In Kapitel 5 zeigen wir einige Resultateunter Annahme dieser Axiome. Ents
heidend f�ur die Beweise der Theoreme�uber die Charakterisierung der projektiven Mengen ist, dass die projektivenMengen �-Suslin sind. Dies gilt unter PD und wird in Kapitel 5 bewiesen. DieOrdinalzahl � h�angt eng mit den L�angen von bestimmten Normen zusammen.Jeder Norm l�a�t si
h n�amli
h eine fundierte Relation zuordnen, deren L�angedur
h das Bild einer zugeh�origen Norm (der Rangfunktion) de�niert ist. Wirde�nieren f�ur n 2 ! die projektiven Ordinalzahlen Æ1n als das Supremum allerL�angen von sol
h fundierten Relation, die zus�atzli
h no
h in �1n und�1n liegen.Die projektiven Ordinalzahlen untersu
hen wir im Rahmen diese Kapitels unterder Annahme AD genauer. Damit ist dann der erste Teil dieser Diplomarbeitabges
hlossen.Der zweite Teil behandelt nun die eigentli
he Charakterisierung der projek-tiven Mengen dur
h feinere Topologien. In Kapitel 6 beweisen wir zuerst dasoben angegebene Resultat �uber die Borel-Mengen. Darauf folgt die Charkter-isierung der analytis
hen Mengen, die folgenderma�en lautet:Eine Teilmenge eines polnis
hen Raumes ist genau dann analytis
h,wenn es eine starke Choquet-Topologie mit abz�ahlbarer Basis aufder Teilmenge gibt, wel
he die Teilraumtopologie verfeinert.Das letzte Kapitel, Kapitel 7, gibt eine Charakterisierung dieser Art dann f�urjede �1n-Menge.Eine Teilmenge eines polnis
hen Raumes ist genau dann in�1n, wennes eine starke Choquet-Topologie mit Basis der L�ange kleiner als Æ1nauf dieser Teilmenge gibt, wel
he die Teilraumtopologie verfeinert.F�ur diese Charakterisierung arbeiten wir unter der Theorie ZF+DC+ADR.Damit haben wir, wenn au
h unter der sehr starken Annahme von ADR, einevollst�andige Charakterisierung der projektiven Mengen dur
h Topologiever-feinerungen errei
ht.



Introdu
tionA 
hara
terization of Borel sets by �ner topologies is the starting point for thiswork. The following is a fundamental fa
t about Borel sets in Polish spa
es:For every Borel set in a Polish spa
e exists a �ner Polish topologyfor the spa
e, su
h that the Borel set is open and 
losed with respe
tto this �ner topology.This fa
t implies very easily a remarkable result for one of the 
lassi
al, if notthe 
lassi
al, problem in early set theory, the Continuum Hypothesis (CH) byCantor. Cantors 
onje
ture was that every subset of the reals (that he 
alled the
ontinuum) is either at most 
ountable or has the 
ardinality of the 
ontinuum(
f. [Cant78℄).Of 
ourse, nowadays we know that this problem 
an not be de
ided inZermelo Fraenkel set theory. But Cantor tried very hard to �nd a proof forhis 
onje
ture and one of the most promising attempts for him was the proofof the perfe
t set property for 
losed subsets of the reals (see [Cant84℄). Thisfa
t is known today under the name Cantor-Bendixson Theorem and assertsthat every un
ountable 
losed subset of the reals 
ontains a perfe
t subset,that is, a nonempty 
losed subset with no isolated points. Perfe
t subsetshave the 
ardinality of the 
ontinuum. So by the Cantor-Bendixson theoremthe Continuum Hypothesis is true for 
losed subsets of the reals. Cantor was
onvin
ed that he 
an expand the result for all sets. Of 
ourse he 
ould notsu

eed, but about 30 years later Felix Hausdor�, who was Professor here at theUniversity of Bonn from 1910 until 1932, 
ould prove the Continuum Hypothesisfor Borel sets in [Haus16℄:\Jede Borels
he Menge ist entweder endli
h oder abz�ahlbar odervon der M�a
htigkeit des Kontinuums"Hausdor�'s proof 
an be des
ribed as \going down the Borel hierar
hy". Roughlyhis idea is the following. An un
ountable Borel set is in some �0� for an or-dinal �. Sin
e this is a 
ountable union of sets from lower stages of the Borelhierar
hy one of these sets from the union is un
ountable. This set is again a
ountable union of sets from lower stages of the Borel hierar
hy and so on. So�nally he arrives at 
losed sets there the result is known by Cantor's result.With the above fa
t about Borel sets in Polish spa
es (and an immediategeneralization of the Cantor-Bendixson Theorem to Polish spa
es) the proofthat un
ountable Borel sets are of 
ardinality of the 
ontinuum is trivial. Be-
ause then un
ountable Borel sets are 
losed sets in a Polish spa
e and have5



Introdu
tion 6therefore by the Cantor-Bendixson Theorem the 
ardinality of the 
ontinuum.Another ni
e appli
ation of the fa
t about Borel sets is that we 
an 
hara
-terize analyti
 sets as 
ontinuous images of the Baire spa
e. We will prove thisin Proposition 6.1.6 in this thesis.So this result about Borel sets is really an interesting one. By a well-knownTheorem from Lusin that the image of a Borel set under an inje
tive 
ontinuousmapping is again Borel we 
an prove the 
onverse of this result by applying it tothe identity mapping from the Polish spa
e with the �ner topology to the Polishspa
e with its original Polish topology. So we get indeed a 
hara
terization ofBorel sets by �ner topologies. We 
an state this 
hara
terization as follows:A subset of a Polish spa
e is a Borel set i� there exists a Polish topol-ogy on this subset that is �ner than the restri
tion of the topologyof the Polish spa
e to the subset.One 
ould ask if we get su
h 
hara
terizations for other 
lasses of sets thanthe Borel sets. Or, seen from another point of view, one 
an ask what 
lass ofsubsets do we get by dropping some properties of the �ner topology. ProfessorHoward S. Be
ker from the University of South Carolina in Columbia dis
ussedthis question in two unpublished notes. The goal of this thesis is to presentthe results from Professor Be
ker. In \Finer topologies of pointsets in Polishspa
es" from Mar
h 1991 he found a 
hara
terization for �11 sets in the theoryZF + DC and more general for all sets from the proje
tive hierar
hy in hisnotes \Playing around with �ner topologies" from January 1992 under the ax-ioms ZF + DC + ADR.This thesis is divided now in two parts. In the �rst part we introdu
e allnotions and results ne
essary for the proofs of the main theorems. It starts witha short 
hapter about Polish spa
es. In the se
ond 
hapter we dis
uss the basi

on
epts of trees and �-Suslin sets that are fundamental for the 
hara
terizationof the proje
tive sets. In this 
onne
tion we examine the relation of the �-Suslinsets with �-s
ales and �-Borel sets. Chapter 3 re
alls the 
on
epts of the Boreland the proje
tive hierar
hy and its main properties. Sin
e the 
hara
terizationfor pointsets of higher 
lasses of the proje
tive hierar
hy requires the axiom ofdetermina
y of the reals we introdu
e games and the 
on
ept of determina
yin 
hapter four. This 
hapter also in
ludes a 
hara
terization of Polish spa
esas strong Choquet spa
es.For this we need the notion of a strong Choquet game, that is, a two persongame in whi
h the players take turns in playing nonempty open sets of thetopologi
al spa
e, su
h that ea
h set is 
ontained in the sets played before. Inaddition player I has to play a point in his open set and player II is obliged toplay an open set su
h that it 
ontains also this point played by player I. PlayerII wins this game if the interse
tion of all open sets is nonempty.A topologi
al spa
e is 
alled strong Choquet spa
e if player II has a winningstrategy in the strong Choquet spa
e. We prove that Polish spa
es are se
ond



Introdu
tion 7
ountable, regular, strong Choquet spa
es with the Hausdor� property and usethis properties in Part 2 for the 
hara
terization of the proje
tive sets by �nertopologies. But before we 
ome to this part we 
lose Part 1 with a 
hapter aboutthe s
ale property and about proje
tive ordinals under the axioms PD andAD.In Part 2 we give proofs for all results about the 
hara
terization of theproje
tive sets. We start in Chapter 6 with the proof of the above 
hara
ter-ization of the Borel sets. The theory ZF + DC is suÆ
ient to prove then a
orresponding result for the analyti
 sets:A subset of a Polish spa
e is analyti
 i� there exists a se
ond 
ount-able, strong Choquet topology on this subset that is �ner than therestri
tion of the topology of the Polish spa
e to the subset.A 
onstru
tion of su
h a �ner topology for all �1n sets is immediate if we workunder the additional axiom PD. This is proved in the beginning of Chapter7. Cru
ial for this is that �1n sets are �-Suslin for a 
ardinal � less than theproje
tive ordinal Æ1n as an ordinal. We thus 
onstru
t �ner strong Choquettopolgies on su
h sets with a basis of lenth less than the asso
iated proje
tiveordinals. The prove of the 
onverse is a lot more diÆ
ult. We have to introdu
esome new notions about reliable ordinals and honest subsets of reliable ordinalsbefore we �nish in Chapter 7 with the following theorem:A subset of a Polish spa
e is �1n i� there exists a strong Choquettopology with a basis of length less than Æ1n on this subset that is�ner than the restri
tion of the topology of the Polish spa
e to thesubset.The proof of this theorem requires the very strong axiom ADR. But assum-ing this we have in fa
t found a topologi
al 
hara
terization of all proje
tive sets.Our notation is 
lose to the notation in [Ke
h95℄ and [Mos
80℄. The basi
theory for this paper is the Zermelo-Fraenkel set theory together with the axiomof dependent 
hoi
e DC.



Part IFa
ts from des
riptive settheory
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Introdu
tion to Part I 9In this �rst part we will introdu
e all of the basi
 
on
epts that will bene
essary for the 
hara
terization of the proje
tive sets and the proofs for it.The topologi
al spa
es we 
onsider are the Polish spa
es. So in the �rst 
hapterwe de�ne the Polish spa
es and will take a look at sums and produ
ts as wellas 
ertain subsets of Polish spa
es.By far the most important Polish spa
e for our approa
h is theBaire spa
e,i.e., the spa
e !! seen as the topologi
al produ
t of the dis
rete topologi
alspa
es !. In the forth
oming we will 
all elements of ! integers and elementsof the Baire spa
e reals. To examine the Baire spa
e, the 
on
ept of a tree is ofhelp. Trees are a fundamental tool for des
riptive set theory and in parti
ularin our work here. In Chapter 2 we thus introdu
e the notion of trees and many
on
epts related to it. A tree on ! 
onsists of �nite sequen
es of integers su
hthat ea
h initial segment of su
h a �nite sequen
e is again in the tree. By anin�nite bran
h through su
h a tree we understand an un
ountable sequen
eof integers, an element of the Baire spa
e, su
h that all �nite inital segmentsof this sequen
e are also in the tree. Closed subsets of the Baire spa
e are
hara
terised by the set of all in�nite bran
hes of a tree on !. This easy butimportant result is the starting point for the 
onsideration of representationsof subsets from the Baire spa
e by trees. This leads in parti
ular to the proofthat for ea
h Polish spa
e exists a 
ontinuous mapping from the Baire spa
eonto the 
onsidered Polish spa
e. This explains the spe
ial role the Baire spa
eplays in the 
ategory of Polish spa
es.Another tree representation is the main de�nition in Chapter 2. We 
onsidertrees on the produ
t of ! and an ordinal �. Subsets of the Baire spa
e that 
anbe 
hara
terized as the proje
tion of the in�nite bran
hes of su
h a tree to theBaire spa
e are 
alled �-Suslin sets. The existen
e of su
h a representationwill turn out to be 
ru
ial for our topologi
al 
hara
terisation of proje
tive sets.So in the rest of Chapter 2 we dis
uss these sets. In parti
ular we examine the
onne
tion between �-s
ales and �-Suslin sets. A �-s
ale on a subset of theBaire spa
e is a sequen
e of �-norms, i.e., a sequen
e of mappings from thesubset to �, with additional properties. We will prove that ea
h subset thatadmits a �-s
ale is �-Suslin. We �nish Chapter 2 by introdu
ing Borel and �-Borel sets and dis
ussing the relation between these sets and the �-Suslin sets.Chapter 3 gives a short overview about the Borel and the proje
tive hi-erar
hy. We will de�ne these hierar
hies and state the main properties. In these
ond part of this 
hapter we introdu
e the e�e
tive analogs of these hierar-
hies together with their main properties.In Chapter 4 we turn to the 
on
ept of games and determina
y. We
onsider two person games for example on the integers. For a subset of theBaire spa
e, 
alled the payo� set, su
h a game works as follows. The two play-ers I and II take turns in playing integers. After ! moves, the out
ome ofsu
h a game is an un
ountable sequen
e of integers, therefore an element ofthe Baire spa
e. We say, player I has won the game if the out
ome of thisrun of the game is in the payo� set. Otherwise II has won. A strategy for



Introdu
tion to Part I 10one of the players tells the player whi
h move to make in every round of thegame depending on the �nite sequen
e played so far. Su
h a strategy is 
alleda winning strategy if the player wins all runs of the game by following hisstrategy. We 
all a subset of the Baire spa
e determined, if in the asso
iatedgame with this subset as the payo� set one of the players has a winning strategy.It is an interesting problem whi
h pointsets of the Baire spa
e are deter-mined. We are here not interested in this problem but rather postulate thedetermina
y of 
ertain pointsets. We introdu
e the axiom PD (whi
h assertsthat all proje
tive pointsets are determined) and the axiom AD (whi
h assertsthat all pointsets of the Baire spa
e are determined). Furthermore we will needthe axiom ADR that asserts that in a game on the reals (on the Baire spa
e)every pointset is determined. We will work under the assumption of these axiomto prove the 
hara
terization of the proje
tive sets.As des
ribed in the introdu
tion we will also 
onsider the strong Choquetgame and prove the 
hara
terization of Polish spa
es as strong Choquet spa
esin the se
ond part of Chapter 4.In Chapter 5 we will show that the proje
tive sets admit 
ertain s
ales ifwe work under determina
y axioms as des
ribed in Chapter 4. Therefore we
on
lude that the proje
tive sets are �-Suslin sets. The ordinal � will be 
loselyrelated to the proje
tive ordinals, whi
h are de�ned as the supremum of allthe lengths of norms on the Baire spa
e whi
h are in �1n. Chapter 5 ends withan analysis of these proje
tive ordinals under AD.The basi
 theory for this 
hapter is the Zermelo-Fraenkel set theory togetherwith the Prin
iple of dependent 
hoi
es (DC):(DC) For every binary relation R � X �X on a nonempty set Xthe following holds:8x 2 X 9y 2 X (x; y) 2 R ) 9f : ! �! X 8n((f(n); f(n+ 1)) 2 ROften we need just the weaker Axiom of Countable Choi
e (AC!):(AC!) Every 
ountable set 
onsisting of nonempty sets has a 
hoi
efun
tion.The axiom DC impliesAC!, for a proof see for example [Rohd01, Lemma 1.7℄.If one of our results needs additional assumptions it will be spe
i�ed.



Chapter 1Polish spa
esWe want to start o� with the de�nition and some basi
 fa
ts about Polish spa
es.We assume familiarity with the basi
 
on
epts of topologi
al and metri
 spa
esbut repeat �rst a few properties of it and introdu
e notation.De�nition 1.1. Let (X;T ) be a topologi
al spa
e.1. (X;T ) is separable if there exists a 
ountable dense subset of X, thatis, a subset that has a nonempty interse
tion with every nonempty openset.2. A basis B for T is a 
olle
tion B � T su
h that every nonempty set in T
an be written as a union of sets from B. The length of a basis B forT is the 
ardinality of B.3. (X;T ) is se
ond 
ountable if (X;T ) has a 
ountable basis.4. (X;T ) is 
alled a T1 spa
e if for every two distin
t points x; y 2 X thereexists an open set U of X su
h that x 2 U and y 62 U .5. (X;T ) is 
alled a Hausdor� spa
e if for every two distin
t points x; y 2X there exist open neighborhoods U of x and V of y su
h that U \V = ;.6. (X;T ) is 
alled regular if for every point x 2 X and every open neighbor-hood U of x there is an open neighborhood V of x su
h that the 
losureof V is 
ontained in U . We denote the 
losure of a subsets V of X by
lT (V ).Polish spa
es are topologi
al spa
es (X;T ) where the topology is indu
ed bya metri
 d on X. That means the open balls B(x; ") = fy 2 X j d(x; y) < "g forall x 2 X and all radius " � 0 serve as a basis for the topology. A topologi
alspa
e (X;T ) is 
alledmetrizable if there exists a metri
 d on X su
h that T isthe topology indu
ed by the metri
 d. The spa
e (X;T ) is 
alled 
ompletelymetrizable if the topology T is indu
ed by a 
omplete metri
 d. In generalthis metri
 d is not unique. We say a (
omplete)metri
 d is 
ompatible for a(
ompletely) metrizable topologi
al spa
e (X;T ) if this d indu
es the topology.11



Chapter 1. Polish spa
es 12Lemma 1.2 (AC!). Every se
ond 
ountable topologi
al spa
e X is separa-ble. Every metrizable, separable topologi
al spa
e X is se
ond 
ountable. Inparti
ular, for metrizable spa
es separable is equivalent to se
ond 
ountable.Proof. Let X be a topologi
al spa
e with a 
ountable basis fBi j i 2 !g. ByAC! we 
an 
hoose a point in ea
h basi
 set. The set of all these points is
ountable and dense in X.Let X be a separable spa
e where the topology 
omes from a metri
 d. LetD be a 
ountable dense subset of X. We 
laim that a basis for this topologyis given by the open balls with 
enter the points of D and rational radius (andby AC! this basis is 
ountable). To see this, let U be an open set in X. Letx 2 U . Sin
e U is open there exists an open ball around x whi
h is 
ompletelyin U . Let B(x; ") be su
h a ball. Sin
e D is dense in X there is a point y 2 Dand a rational Æ with d(x; y) < Æ < "2 . Then x 2 B(y; Æ) and B(y; Æ) � B(x; "),sin
e for z 2 B(y; Æ) we have d(x; z) � d(x; y) + d(y; z) < 2Æ < ". So we 
an�nd for ea
h point in U a neigborhood that has the form B(y; Æ) with y 2 Dand Æ rational and lies 
ompletely in U . So U is the union of all these balls,whi
h proves what we 
laimed.Lemma 1.3. Every metrizable spa
e is a regular Hausdor� spa
e. So in par-ti
ular a T1 spa
e.Proof. Let (X;T ) be a metrizable spa
e and d be a 
ompatible metri
 for(X;T ). First we want to prove the Hausdor� property. For this let x; y betwo distin
t points in X with d(x; y) = " > 0. Then B(x; "4) and B(y; "4) areopen sets that separate these two points, i.e., the interse
tion of these two opensets is empty.To prove the regularity let U be an open neighborhood of a point x. Thenthere is an open ballB(x; ") 
ontained in U andB(x; "2) is an open neighborhoodof x with 
lT (B(x; "2 )) � B(x; ") � U .De�nition 1.4. A topologi
al spa
e (X;T ) is 
alled a Polish spa
e if (X;T )is a separable, 
ompletely metrizable spa
e.Example 1.5. (i) R with the usual metri
 is a Polish spa
es.(ii) Any set X with the dis
rete topology is a 
ompletely metrizable spa
e. A
ompatible metri
 is given for example by the dis
rete metri
 Æ, de�ned byÆ(x; y) = 1 if x 6= y and Æ(x; y) = 0 if x = yThe set X together with the dis
rete topology is a Polish spa
e i� X is 
ount-able.In the 
ategory of topologi
al spa
es exists produ
ts and sums (
oprodu
ts).It turns out that the produ
t in the 
ategory of topologi
al spa
es of two Polishspa
es is again Polish and also the sum of two Polish spa
es is again Polish.We want to prove this next. It is ne
essary for the proof that the 
ompatiblemetri
 d of a Polish spa
e X is bounded by 1, i.e., d(x; y) � 1 for all x; y 2 X.We already noted that the 
ompatible metri
 is not unique and we show �rst,



Chapter 1. Polish spa
es 13that there is indeed always a metri
 bounded by 1 that is 
ompatible for thePolish spa
e.Two metri
s d and d0 on a set X are 
alled equivalent if they indu
e thesame topology. Sin
e in a metri
 spa
e the 
losed sets are exa
tly those setsin whi
h the limit point of a 
onvergent sequen
e in the set is again in the set,it suÆ
es to show that two metri
s d and d0 on X indu
e the same notion of
onvergen
e in X, i.e., for every x 2 X and every sequen
e (xi)i2! in X the
onditions limi!! d(x; xi) = 0 and limi!! d0(x; xi) = 0 are equivalent, to provethat d and d0 are equivalent. We use this fa
t to show that in a metrizablespa
e we 
an 
hoose the metri
 that indu
es the topology to be bounded by 1.Lemma 1.6. In every metri
 spa
e (X; d) the metri
 d0 = d1+d is equivalent tod.Proof. Let (X; d) be a metri
 spa
e. First we have to 
he
k that d0 really isa metri
. It is obvious that d0(x; y) = 0 i� x = y and that d0(x; y) = d0(y; x).To prove the triangle inequality 
onsider the following equivalen
e in whi
h Iomitted the easy 
al
ulations. Let x; y; z be in X.d0(x; z) � d0(x; y) + d0(y; z), d(xy) + d(y; z)� d(x; z) + 2d(x; y)d(y; z) + d(x; y)d(x; z)d(y; z) � 0But the se
ond line is true sin
e d(x; y) + d(y; z) � d(x; z) � 0 by the triangleinequality for d. So d0 is a metri
 and it is now trivial that d and d0 indu
e thesame notion of 
onvergen
e.Proposition 1.7. i) The produ
t of a 
ountable sequen
e of Polish spa
es isPolish.ii) The sum of a sequen
e of Polish spa
es is Polish.Proof. (i) Let (Xn)n2! be a sequen
e of metrizable spa
es. For all n 2 ! let dnbe a 
ompatible metri
 for Xn with dn bounded by 1. A metri
 on Q!n=0Xn isgiven by d(x; y) = !Xn=0 12n+1dn(xn; yn)where x = (xn); y = (yn). This is obviously a metri
.(1) The topology indu
ed from d on Q!n=0Xn is the same as the produ
t topol-ogy.Proof: The produ
t topology is the smallest topology on Q!n=0Xn su
hthat all proje
tions pi : Q!n=0Xn ! Xi are 
ontinuous. So if all proje
tions piare 
ontinuous with respe
t to the topology indu
ed by the metri
 d we knowthat this topology is �ner than the produ
t topology. But pi : (Q!n=0Xn; d)!(Xi; di) is in fa
t 
ontinuous for all i: Let x = (xn) 2 Q!n=0Xn, let " > 0.Then d(x; y) < "2i+1 implies di(pi(x); pi(y)) = di(xi; yi) < ". Thus the pi's are
ontinuous.Let 
onversely B(x; ") be an open ball around x = (xn) 2Q!n=0Xn with respe
tto the metri
 d. Let i be a natural number su
h that P1n=i 12n+1 = 12i < ".



Chapter 1. Polish spa
es 14Consider for n < i the balls Bn = B(xn; "2) with respe
t to the metri
 dn. ThenTin=0 p�1n (Bn) is by de�nition of the produ
t topology open and 
ontains x. Lety = (yn) 2 Tin=0 p�1n (Bn). Thend(x; y) = i�1Xn=0 12n+1 dn(xn; yn) + !Xn=i 12n+1 dn(xn; yn)< "2 + "2 = "So y 2 B(x; "). Therefore Tin=0 p�1n (Bn) � B(x; ") and (1) is proved. q.e.d.(1)A basis for the produ
t topology is given by produ
tsQn Un where Un = Xnex
ept for �nitely many i for whi
h Ui is a basi
 set of Xi. So if all Xn's areseparable the produ
t spa
e Q!n=0Xn is separable.The last we have to 
he
k is that if all dn are 
omplete metri
s then dis a 
omplete metri
. For this let (xi) be a Cau
hy sequen
e in X. Then(pn(xi))i = (xin)i is a Cau
hy sequen
e in Xn for all n. Sin
e all the Xn's are
omplete spa
es the sequen
e (xin)i 
onverges against a xn 2 Xn for all n. Thusx = (xn) 2 Q!n=0Xn and it is easy to see that the sequen
e (xi) 
onverges tothe point x.(ii) Let (Xn)n2! be a sequen
e of metrizable spa
es. For any n let dn be a
ompatible metri
 on Xn bounded by 1. We may assume that the sets Xn arepairwise disjoint. Now de�ne a metri
 on X =L1n=0Xn byd(x; y) = (di(x; y) if x; y 2 Xi for some i 2 !1 otherwiseThe only thing to 
he
k that this is indeed a metri
 is the triangle inequality.Let x; y; z 2 X. If x; z 2 Xi for some i then if y is also in Xi we have d(x; z) =di(x; z) � di(x; y) + di(y; z) = d(x; y) + d(y; z) by the triangle inequality for di,otherwise d(x; z) = di(x; z) < 1 < 2 = d(x; y) + d(y; z). If x 2 Xi; z 2 Xj fori 6= j we have d(x; z) = 1. But if y 2 Xi we have d(x; z) = 1 � d(x; y) + 1,if y 2 Xj we have d(x; z) = 1 � 1 + d(y; z), and otherwise d(x; z) = 1 < 2 =d(x; y) + d(y; z).To show that the topology indu
ed by d is the same as the sum topology,note that an open ball in Xi around an x 2 Xi with radius " < 1 with respe
tto di is equal to an open ball in X around x with radius " with respe
t to d.With this in mind everything that remains to show is obvious.If all the Xn are separable spa
es the sum is separable sin
e the union of allthe bases of the Xn is a basis for X.If all dn are 
omplete then d is 
omplete sin
e a Cau
hy sequen
e in X withrespe
t to d will �nally be in one Xi and we have the 
onvergen
e there.Example 1.8. (i) Rn ; n 2 ! and R! with the usual metri
 are Polish spa
es.(ii) Let X be any set viewed as a topologi
al spa
e with the dis
rete topology.We already mentioned that this is a 
ompletely metrizable spa
e and it is aPolish spa
e i� X is 
ountable. By the above Theorem 1.7(i) the produ
t spa
eX! of 
ountable many 
opies of the dis
rete topologi
al spa
e X is again a
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ompletely metrizable spa
e. In the next 
hapter, having the notion of a tree,we will de�ne a 
omplete 
ompatible metri
 for su
h spa
es. If X is 
ountable,X! is Polish. For example is !! a Polish spa
e and this spa
e is 
alled theBaire spa
e. It is of great importan
e for our work here and we will 
ome ba
kto this spa
e at various points.De�nition 1.9. The spa
e !! viewed as the produ
t spa
e of 
ountable many
opies of the dis
rete topologi
al spa
e ! is 
alled Baire spa
e and is denotedby N .Remark 1.10. It is 
ommon use in des
riptive set theory to 
all the elementsof the Baire spa
e reals. This is justi�ed by the fa
t that the Baire spa
e ishomeomorphi
 to the set of irrationals with the relative topology (for a de�ni-tion of relative topology see below). Sin
e the set of the rationals is 
ountable,meager and from Lebesgue measure zero, the di�eren
e between the reals andthe irrational plays no important role for many results in des
riptive set theory.We are now interested in subspa
es of Polish spa
es that are again Polish.We de�ne the topology on a subspa
e Y of a topologi
al spa
e (X;T ) by therelative topology T jY = fU \ Y j U 2 T g. It is easy to see that 
losedsubsets of Polish spa
es are again Polish with respe
t to the relative topologyby taking the restri
tion of the 
omplete metri
 to the 
losed subset. It is alsopossible to prove that open subsets of Polish spa
es are again Polish but morediÆ
ult to �nd the 
orre
t metri
. We do not want to prove this here but stateinstead a more general Theorem that tells us that the subsets of a Polish spa
ewith the relativized topology that are also Polish are exa
tly the GÆ sets.De�nition 1.11. Let (X;T ) be a topologi
al spa
e.G � X is 
alled an GÆ set if G is an interse
tion of 
ountable many open subsetsof X. F � X is 
alled an F� set if F is a union of 
ountable many 
losed setsof X.Example 1.12. The open sets of a topologi
al spa
e are GÆ sets, the 
losedsets of a topologi
al spa
e are F� sets.In Polish spa
es the 
losed sets are GÆ sets.To prove that a 
losed set in a Polish spa
e is a GÆ set we have to introdu
ethe distan
e of a point from a subset in a metri
 spa
e (X; d). We de�nefor a point x 2 X and a subset A � X the distan
e of x from A byd(x;A) = inffd(x; y) j y 2 AgLemma 1.13. Let X be a metrizable spa
e. Then every 
losed subset of X isGÆ.Proof. Let d be a 
ompatible metri
 for X. Let A be a 
losed set in X. Weshow that for " > 0 the "-ball around A, B(A; ") = fx 2 X j d(x;A) < "g,is open. To see this let y 2 B(A; "). Then d(y;A) < ", say d(y;A) = " < ".The ball B(y; " � ") is 
ontained in B(A; "), sin
e for z 2 B(y; � � �) we haved(z;A) � d(z; y) + d(y;A) < ("� ") + " = ".But now we 
an write A = TnB(A; 1n+1) and thus A is a GÆ set.



Chapter 1. Polish spa
es 16We state now the Theorem about the subsets whi
h are Polish with respe
tto the relative topology we mentioned above. For a proof see [Ke
h95, Ch.1 x3,Theorem 3.11℄.Theorem 1.14. A subspa
e of a Polish spa
e with its relativized topology isPolish i� it is GÆ.So in parti
ular the open subsets of a Polish spa
e and by Lemma 1.13 the
losed subsets of a Polish spa
e are again Polish.



Chapter 2TreesA basi
 tool in des
riptive set theory and for a better understanding of theBaire spa
e is the notion of a tree. We begin with some notations.Let X be a set. Xn is the set of all �nite sequen
es s = (s0; : : : ; sn�1) inXof length n. For n = 0 let X0 = f;g, where ; denotes the empty sequen
e. Fors = (s0; : : : ; sm�1) 2 Xm and t = (t0; : : : ; tn�1) 2 Xn we de�ne the 
on
ate-nation of s and t to be the �nite sequen
e s_t = (s0; : : : sm�1; t0; : : : ; tn�1) 2Xn+m. In abuse of notation we write for t = (x), a sequen
e of length 1, s_xinstead of s_(x). A �nite sequen
e s is an initial segment of the sequen
et, s � t, if m = length(s) � length(t) = n and s = tjm = (t0; : : : ; tm�1). Twosu
h �nite sequen
es are 
alled 
ompatible if one is an initial segment of theother. Otherwise we will 
all them in
ompatible and denote this by s ? t. Ifx = (xn)n2! 2 X! is an in�nite sequen
e, we say a �nite sequen
e s is aninitial segment of x if there is an m 2 ! su
h that s = xjm = (x0; : : : ; xm�1).We denote this also by s � x. Finally X<! = Sn2!Xn is the set of all �nitesequen
es.De�nition 2.1. A tree T on X is a set of �nite sequen
es in X 
losed underinitial segments, i.e., T � X�! and if t 2 T and s � t then s 2 T .An in�nite bran
h of T is an in�nite sequen
e x 2 X! su
h that for alln 2 ! the sequen
e xjn = (x0; : : : xn�1) 2 T . The set of all in�nite bran
hes ofT is denoted by [T ℄, so [T ℄ = fx 2 X! j 8n xjn 2 Tg.2.1 The topology of the Baire spa
eWe will now de�ne a metri
 that indu
es the topology of the Baire spa
e andalso leads to a de�nition of a 
ountable basis. Instead of just working with theBaire spa
e we 
onsider the more general 
ontext of metrizable spa
es of theformX! seen as the produ
t of 
ountable many 
opies of the dis
rete topologi
alspa
e X.Lemma 2.1.1. Let X be a set. X! viewed as the produ
t spa
e of 
ountablemany 
opies of the dis
rete topologi
al spa
e X is metrizable with the 
omplete17



Chapter 2. The topology of the Baire spa
e 18metri
 d(x; y) = (2�(minfn2! j xjn6=yjng+1) if x 6= y0 otherwiseA basis for the topology of X! is then given by the setsNs = fx 2 X! j s � xg ; s 2 X<!Proof. It is easy to see that d is a metri
.A basi
 for the produ
t topology of X! is given by sets of the form Qi2! Uiwhere Ui = X ex
ept for �nitely many i for whi
h Ui = fxig for an xi 2 X. Thetopology on X! indu
ed by the metri
 d has by de�nition a basis 
onsisting ofsets Ns; s 2 X<!. Note that for s � t we have Ns \ Nt = Nt, and if s ? t wehave Ns \Nt = ;. It suÆ
es to show, that these two topologies are the same.For this it is enough that ea
h set of the basis of the one topology is open withrespe
t to the other topology.Let U =Qi2! Ui with Ui0 = fx0g; : : : ; Uin�1 = fxn�1g; i0 < : : : in�1 and allother Ui = X. Then U = SfNs j length(s) = in�1 and si0 = x0; : : : ; sin = xng.Conversely, is s = (s0; : : : ; sn�1), then Ns = Qi2! Ui with Ui = fsig fori � n� 1, Ui = X otherwise.To see, that d is 
omplete 
onsider �rst the following equivalen
e:(1) Let (xn)n2! be a sequen
e in X!. Then xn ! x i� 8i (xn(i)! x(i)).Proof: \)" Let i 2 !. Let " < 12i+1 . Sin
e xn ! x there exists a N 2 !su
h that d(xn; x) < " for all n > N . Butd(xn; x) = 12(minfk2! j xnjk 6=xjkg+1) < " < 12i+1implies xn(i) = x(i) for n > N . So xn(i)! x(i).\(" Let " > 0. Let i 2 ! su
h that 12i+1 < ". For j � i exists anNj 2 ! su
hthat xn(j) = x(j) for n > Nj by the assumption. Let N = maxfNj j j � ig.So for any n > N we have minfj 2 ! j xn(j) 6= x(j)g > i. Therefored(xn; x) = 12(minfk2! j xnjk 6=xjkg+1) � 12i+1 < "for every n > N . q.e.d (1)Let now (xn)n2! be a Cau
hy sequen
e in X!. Let i 2 ! and �x " > 0 with" < 12i+1 . Then there exists an N 2 ! su
h that d(xn; xm) < " for n;m > N .By the 
hoi
e of " we have xn(i) = xm(i) for all n;m > N . So in parti
ularÆ(xn(i); xm(i)) = 0 for n;m > N and therefore (xn)n2! is a Cau
hy seqen
e.This sequen
e be
omes eventually 
onstant and 
onverges against this 
onstantpoint. Sin
e i was arbitrary, we are done by (1).By Proposition 1.7 the produ
ts (X!)n, n 2 !, and (X!)! are again metriz-able spa
es. But the next lemma tells that these are not really new spa
es sin
ethey are all homeomorphi
 to X!.
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e 19Lemma 2.1.2. (i) For every n 2 ! the produ
t spa
e (X!)n is homeomorphi
to X!.(ii) (X!)! is homeomorphi
 to X!.Proof. (i) Let n 2 !. Letf : X! �! (X!)nx 7�! (x0; : : : ; nn�1) with xi(j) = x(nj + i) for i < nThis f is 
learly a bije
tion. It is 
ontinuous, sin
e for Ns0 � : : : � Nsn�1 abasi
 open set in (X!)n we have f�1(Ns0 ; : : : � Nsn�1) = SfNs j s(nj + i) =si(j) if j � length(si)g. f is open, sin
e f(Ns) = SfNs0 � : : : ; Nsn�1 j si(j) =s(nj + i) if de�nedg.(ii) Fix a bije
tion h ; i : !2 �! !. Letf : X! �! (X!)!x 7�! (xi)i with xi(j) = x(hi; ji)This is 
learly a bije
tion. Let Qi Ui be a basi
 open set in (X!)!, sayUi0 = Ns0 ; : : : ; Uim = Nsm�1 and all other Ui = X!. Then f�1(Qi Ui) =SfNs j s(hik; ji) = sik(j) if j � length(sik) and k � m � 1g. Thus f is 
on-tinuous. On the other hand let s = (s0; : : : ; sm�1) and let ik; jk su
h thathik; jki = k for k � m�1. Then f(Ns) =Qi Ui with all Ui = X! ex
ept for Uikwith Uik = SfNsik j sik = sk if de�ned g for k � m� 1. Thus f is open.An example for the importan
e of the trees in des
ribing the metrizablespa
es of the form X! is the following propositions that in�nite bran
hes of atree on X are exa
tly the 
losed sets.Proposition 2.1.3. A set C � X! is 
losed i� there is a tree on X su
h thatC = [T ℄.Proof. Let C be a 
losed set in X!. Consider the tree TC = fxjm j x 2C ^m 2 !g. Clearly this is a tree and C � [TC ℄. If y 62 C, there exists an openneighborhood of y not in C. So by Lemma 2.1.1 there exists an m 2 ! su
hthat Nyjm \C = ;. Therefore y 62 [TC ℄. Hen
e C = [TC ℄.Now let T be a tree on X and x 62 [T ℄. Then there exists an m 2 ! su
hthat xjm 62 T . Therefore Nxjm \ [T ℄ = ; and X! n [T ℄ is open.There is also a 
onne
tion between \ni
e" maps between trees on two setsand 
ontinuous fun
tions on the produ
t spa
es of these sets.De�nition 2.1.4. Let S be a tree on a set A, T be a tree on a set B. A map' : S �! T is 
alled monotone if s � t in S implies '(s) � '(t).For su
h ' let D(') = fx 2 [S℄ j limn2! length('(xjn)) = 1g. For x 2 D(')let f'(x) = Sn2! '(xjn). ' is 
alled proper, if D(') = [S℄.Proposition 2.1.5. Let ' : S �! T be a monotone map on trees S; T on setsA;B. The the set D(') is GÆ and f' : D(') �! [T ℄ is 
ontinuous.
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es as surje
tive images of N 20Proof. (1) D(') is GÆ:We have x 2 D(') , 8n9m (length('(xjm)) � n). So D(') = Tn2! Unwith Un = fx 2 [S℄ j 9m length('(xjm)) � ng. But these sets are open, sin
e,if y 2 Un, there is an m 2 ! with length('(yjm)) � n. Therefore Nyjm � Un.(2) f is 
ontinuous:Let Vt = Nt \ [T ℄ be a set from the basis of the topology of [T ℄. Thenf�1' (Vt) = fx 2 D(') j f'(x) 2 Nt \ [T ℄g= fx 2 D(') j f'(x) � tg= fx 2 D(' j [n2!'(xjn) � tg= fx 2 D(') j 9s 2 S; s � x; '(s) � tg= [fNs \D(') j s 2 S; '(s) � tgDe�nition 2.1.6. Let (X; �) be a topologi
al spa
e. A 
losed set F � X is aretra
t of X if there is a 
ontinuous surje
tion f : X �! F su
h that f(x) = xfor x 2 F .Proposition 2.1.7. Let A be a 
ountable set. Let F � H be two 
losed subsetsof A!. Then F is a retra
t of H.Proof. Sin
e F;H are 
losed in A! there are trees S; T on A su
h that F =[S℄;H = [T ℄. Without loss of generality we 
an assume that these trees arepruned, that is, every sequen
e s in ea
h tree has a proper extension t � s.(Cutting o� all �nite bran
hes without proper extension in S; T leads to thesame [S℄; [T ℄.) We will de�ne a monotone proper ' : T �! S with '(s) = sfor s 2 S. Then the 
ontinuous map f' is a witness for F being a retra
t ofH. We de�ne '(t) by indu
tion on length(t). Let '(;) = ;. Now let t 2 T and'(t) be given. Let a 2 A su
h that t_a 2 T . If t_a 2 S, let '(t_a) = t_a.If t_a 62 S, let '(t_a) be some '(t)_b 2 S, and this exists sin
e S is pruned.[Under the assumption of the Axiom of Choi
e this result holds for any set A,not only for 
ountable ones.℄2.2 Polish spa
es as surje
tive images of the Bairespa
eThe Baire spa
e N plays a spe
ial role in the 
ategory of Polish spa
es, sin
efor every Polish spa
e there exists always a 
ontinuous surje
tion of the Bairespa
e in the Polish spa
e. For a proof we �rst de�ne the 
on
ept of a Lusins
heme.De�nition 2.2.1. A Lusin s
heme on a set X is a family (As)s2!<! of subsetsof X su
h that(i) As_i \As_j = ; for s 2 !<!; i 6= j 2 !
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es as surje
tive images of N 21(ii) As_i � As for s 2 !<!; i 2 !.By (ii) in the de�ntion of a Lusin s
heme the subsets As get smaller thanthe length of the sequen
e gets longer. In appli
ations of the Lusin s
heme weoften 
onstru
t subsets that get arbitrarily small. For this we use the notion ofthe diameter of a subset. In a metri
 spa
e (X; d) we de�ne the diameter ofa subset A of X by diam(A) = supfd(x; y) j x; y 2 AgProposition 2.2.2. Let (As)s2!<! be a Lusin s
heme on a metri
 spa
e (X; d)with limn!! diam(Axjn) = 0 for all x 2 N . Let D = fx 2 N j Tn2! Axjn 6= ;gand de�ne f : D �! X by ff(x)g = Tn2! Axjn. Then f is inje
tive and
ontinuous. If (X; d) is 
omplete and ea
h As is 
losed, then D is 
losed.Proof. Note �rst that f is wellde�ned: Let x 2 D. Sin
e Tn2! Axjn 6= ;, thereis a z 2 Tn2! Axjn. Let z0 6= z. Sin
e X is a metri
 spa
e, d(z; z0) > 0,say d(z; z0) = ". But limn2! diam(Axjn) = 0, so there is an m 2 ! su
h thatz 2 Axjm and diam(Axjm) < ". Therefore z0 62 Axjm � Tn2! Axjn.(1) f is inje
tive:Let x 6= y 2 D, Then there is an initial segment s (possibly the empty se-quen
e) of x and y and i 6= j 2 !, su
h that s_i � x; s_i * y; s_j � y; s_j *x. Then As_i \As_j = ;, thus Tn2! Axjn \Tn2! Ayjn = ;. So f(x) 6= f(y).(2) f is 
ontinuous:Let dN be the metri
 from Lemma 2.1.1. Let x 2 D. We have to show thatfor all " > 0 exists an Æ > 0 su
h that dN (x; y) < Æ implies d(f(x); f(y)) < ".Let " > 0 be given. We have to �nd a proper Æ. Sin
e limn!! diam(Axjn) = 0,there is an N 2 ! su
h that diam(Axjm) < " for all m � N . Take nowÆ = 12N+2 . Now let y 2 D su
h that dN (x; y) < Æ. Then xjN = yjN . Thereforef(x); f(y) 2 AxjN . Thus d(f(x); f(y)) � diam(AxjN ) < ".(3) Now let d be a 
ompatible 
omplete metri
 on X and let ea
h As be 
losed.Let (xn)n2! be a sequen
e in D with xn ! x. We want to show �rst that(f(xn))n2! is a Cau
hy sequen
e. Let for this " > 0. Then there is a N 2 ! withdiam(AxjN ) < ". Sin
e xn ! x, there is an M 2 ! su
h that xmjN = xjN forall m > M . So f(xm); f(xn) 2 AxjN for n;m > M , hen
e d(f(xm); f(xn)) < "for n;m > M . So (f(xn))n2! 
onverges against an z 2 X. We have alreadyseen that the sequen
e (f(xn))n2! is eventually in every AxjN for N 2 !. Sin
ethese sets are 
losed, z 2 AxjN for all N 2 !. Thus z 2 TN2! AxjN , so we havex 2 D. Thus D is 
losed.Theorem 2.2.3. Let (X;T ) be a Polish spa
e. Then there is a 
losed setF � N and a 
ontinuous bije
tion f : F �! X. If X is nonempty, f 
an beextended to a 
ontinuous surje
tion g : N �! X.Proof. If we have su
h an f , the se
ond assumption follows from Proposition2.1.7.
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es as surje
tive images of N 22Fix a 
ompatible 
omplete metri
 d � 1 on X. We will 
onstru
t a Lusins
heme (Fs)s2!<! on X su
h that(i) F; = X(ii) Fs is an F� set, i.e., a 
ountable union of 
losed sets(iii) Fs = Si Fs_i = Si 
lT (Fs_i(iv) diam(Fs) � 2�length(s).If we have de�ned su
h a s
heme, 
onsider the asso
iated 
ontinuous mapf : D �! X as in the above Proposition 2.2.2.(1) f(D) = XProof: Let z 2 X. We use indu
tion to �nd a unique x 2 N su
h thatf(x) = z. Sin
e X is the disjoint union of the F(i)'s, there is exa
tly one j 2 !with z 2 F(j). Let x(0) = x0 = j.If s = (x0; : : : ; xn�1) is the only sequen
e of length n su
h that z 2 Fs, andFs is the disjoint union of the Fs_i, then there is exa
tly one k 2 ! su
h thatz 2 Fs_k; z 62 Fs_i for i 6= k. Let x(n) = k. This 
onstru
tion obviously leadsto an x 2 N su
h that f(x) = z. q.e.d. (1)(2) D is 
losedProof: Let (xn)n2! be a sequen
e inD, xn ! x. We show that (f(xn))n2! isa Cau
hy sequen
e and thus 
onverges in X, say limn2! f(xn) = y. To see this,let " > 0. Let N 2 ! su
h that diam(FxjN ) < ". Sin
e xn ! x there is anM 2 !su
h that xmjN = xjN for all m > M . Therefore f(xm); f(xn) 2 FxjN form;n > M and d(f(xm); f(xn)) < " for n;m > M . In parti
ular, the sequen
e(f(xn))n2! is eventually in FxjN , thus y 2 
lT (FxjN ). N was 
hosen arbitrarily,thus y 2 TN2! 
lT (FxjN ). But sin
e FxjN = Si2! FxjN_i = Si 
lT (FxjN_i) andthere is an j 2 ! su
h that xjN +1 = xjN_j, we also have y 2 SN2! FxjN . Sox 2 D and f(x) = y. q.e.d. (2)To 
onstru
t now the Lusin s
heme (Fs) it is enough to show that for everyF� set F � X and every " > 0 we 
an write F = Si2! Fi, where the Fi arepairwise disjoint F� sets of diameter < ", su
h that 
lT (Fi) � F . For notationalsimpli
ity we denote the 
omplement of a subset D in X by � D. Note �rst,that if C;D are 
losed sets, then C nD is F� sin
eC nD = C\ � D= C\ � \n2!B(D; 1n)= C \ [n2! � B(D; 1n)= [n2!C\ � B(D; 1n)with B(D; 1n) the open balls around D (
f. the proof of Proposition 1.13). Nowlet F = Si2! Ci; Ci 
losed, be an F� set. We 
an assume that Ci � Ci+1 for
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ales 23every i 2 !, sin
e we 
an write F = Si2! C�i with C�i = Sin=0Cn the 
losed sets.Then F 
an be written as a disjoint union of F� sets, F = Si2! CinCi�1; C�1 =;. Now let fUi j i 2 !g be a basis for the topology of X. It is 
lear that we
an assume that all Ui have diameter < ". Then X = Si2! Ui and also X =Si2! 
lT (Ui). Let U�0 = 
lT (U0); U�i+1 = 
lT (Ui+1)nSij=0 
lT (Uj). These are allpairwise disjoint F� sets of diameter< " andSi2! U�i = X. So we 
an write F asa union of pairwise disjoint F� sets of diameter < ", F = Si;j2!(Ci nCi�1)\U�j ,and 
lT ((Ci n Ci�1) \ U�j ) � 
lT (Ci n Ci�1) � Ci � F .2.3 �-Suslin sets and �-s
alesWe are often interested in trees on produ
ts of two (or more) sets A and B.Let T be a tree on A�B. The elements of [T ℄ are then elements of (A�B)!.But by using the 
anoni
al bije
tion(A�B)! �! A! �B!((a0; b0); (a1; b1); : : :) 7�! ((a0; a1; : : :); (b0; b1; : : :))we 
an view elements of [T ℄ as elements of A! � B!. We sometimes alsowrite �nite sequen
e of T as ((a0; a1; : : : ; an�1); (b0; b1; : : : ; bn�1)) instead of((a0; b0); (a1; b1); : : : ; (an�1; bn�1)). It makes now sense to apply the proje
tionon A! to the set of the in�nite sequen
es. We de�nep[T ℄ = fx 2 A! j 9y 2 B! (x; y) 2 [T ℄gFor example the proje
tion of a 
losed set C � N � N , that is given by thein�nite sequen
es [T ℄ of a tree T on ! � !, to its �rst 
omponent is given byprojN [C℄ = fx 2 N j 9y 2 N (x; y) 2 Cg = p[T ℄ = fx 2 N j 9y 2 N (x; y) 2 [T ℄gWe 
all proje
tions of 
losed sets of N �N analyti
 sets of the Baire spa
eand they are exa
tly the sets that have the form p[T ℄ for some tree T on !�!following Proposition 2.1.3. We will 
ome ba
k to the analyti
 sets in the nextse
tion.It will turn out that having sets as a proje
tion of (the in�nite bran
hesof) a tree is fundamental for proving our main theorem and also in many otherareas of des
riptive set theory. In parti
ular trees on wellfounded sets will be ofspe
ial interest. The important de�nition in this 
ontext is thus the following.De�nition 2.3.1. Let � be an in�nite ordinal. A � N k is 
alled a �-Suslinset if there is a tree T on !k � � su
h that A = p[T ℄.In this notation the analyti
 sets are exa
tly the !-Suslin sets. So far theseare the only examples we have for �-Suslin sets. We will show below that allsets that admit �-s
ales are �-Suslin sets. Before we introdu
e the s
ales wewill show that �-Suslin sets are 
losed under proje
tions in the following sense.
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ales 24Proposition 2.3.2. Let A � N k+1 for k � 1 be a �-Suslin set. Then p[A℄ =f(x1; : : : ; xk) j 9xk+1 (x1; : : : ; xk) 2 Ag is also �-Suslin.Proof. Let A � N k+1 be �-Suslin witnessed by a tree T on !k+1 � �, i.e.,A = p[T ℄. Fix a bije
tion f : ! � � �! �This leads to a bije
tion f� : (! � �)<! �! �<!We de�ne a tree T 0 on !k � � by(s1; : : : ; sk; �) 2 T 0 :, (s1; : : : ; sk; f��1(�)) 2 TClaim p[T 0℄ = p[A℄Proof:(x1; : : : ; xk) 2 p[T 0℄ , 9u 2 �! (x1; : : : ; xk; u) 2 [T 0℄, 9u 2 �! 8n(x1jn; ; : : : ; xkjn; ujn) 2 T 0, 9u 2 �! 8n(x1jn; : : : ; xyjn; f��1(ujn)) 2 T, 9u 2 �!9xk+1 2 N 8n(x1jn; : : : ; xk+1jn; ujn) 2 T, 9u 2 �!9xk+1 2 N (x1; : : : ; xk+1; u) 2 T, 9xk+1 2 N (x1; : : : ; xk+1) 2 p[T ℄ = A, (x1; : : : ; xk) 2 p[A℄Proposition 2.3.2 will be important later.Given a �-Suslin set A � N k note that using a bije
tion between the ordinal� and its 
ardinality � = � we get a tree T 0 on !k � � su
h that A = p[T 0℄and thus A is �-Suslin. So, often one 
onsiders just �-Suslin sets where � is a
ardinal. It seems more natural for the up
oming de�nition to introdu
e herethe more general notion.Before we start de�ning �-s
ales and prove that there is a 
lose relation be-tween sets that admit �-s
ales and sets that are �-Suslin we have to introdu
ethe notion of norms and prewellorderings.We �rst re
all the 
on
ept of wellfounded relations. Let � be a binaryrelation on a set X. The stri
t part � of the relation � is de�ned byx � y , x � y ^ : (y � x):We 
all the relation � a wellfounded relation if ea
h nonempty subset A ofX has a �-minimal element, that is, there exists an element x 2 A su
h that:y � x for all other y 2 A. Under DC this is equivalent to the fa
t that noin�nite des
ending 
hain with respe
t to � exists, i.e., there exists no in�nitesequen
e x0 � x1 � x2 : : :
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ales 25One 
an apply the 
on
epts of indu
tion and re
ursion to wellfounded relations(see for example [BuKo96, Ch.5.5℄). In parti
ular one 
an de�ne the length ofa wellfounded relation by de�ning a 
anoni
al rank fun
tion on X. A rankfun
tion on X with respe
t to the wellfounded relation � is a fun
tion � :X �! Ord su
h that if x � y for x; y 2 X then f(x) < f(y). A 
anoni
alrank fun
tion �� for X with respe
t to a wellfounded relation � is de�ned byre
ursion in the following way:�� : X �! Ordx 7�! supf�(y) + 1 j y � xgOne 
an prove that su
h a 
anoni
al rank fun
tion exists (see for example[Je
h97, Part I, Ch.2, Theorem 5℄). The range of this 
anoni
al rank fun
tion�� is an ordinal and this ordinal is 
alled the length of the wellfoundedrelation � and is denoted by j�j.A prewellordering is now just a wellfounded relation with additional prop-erties. The 
on
ept of a norm is 
losely related to prewellorderings, sin
e it willbe pretty obvious how to get a prewellordering out of a norm.De�nition 2.3.3. Let X be a set. A norm on X is a map ' : X �! Ord.A norm is 
alled regular if '[X℄ is an ordinal, that is, ' maps X onto someordinal �.A prewellordering on a set X is a wellfounded relation � on X whi
h isre
exive, transitive and 
onne
ted, whi
h means for every x; y 2 X we havex � y or y � x.It is very easy to see that for ea
h norm ' on a set X the relation �' de�nedby x �' y , '(x) � '(y)is a prewellordering. Conversely, one 
an de�ne the 
anoni
al rank fun
tionon ea
h prewellordering and gets a norm. So the 
on
epts of a norm and of aprewellordering 
oin
ide. The following proposition states this fa
t.Proposition 2.3.4. Let X be a set. If ' : X �! Ord is a norm, then �'de�ned by x �' y :, '(x) � '(y) is a prewellordering on X. If � is aprewellordering of X, then there exists a unique regular norm ' on X with�=�'.Proof. If ' is a norm onX one proves easily that the relation�' is a prewellorder-ing on X.If a prewellordering � of X is given one de�nes by re
ursion on the well-founded relation � the 
anoni
al rank fun
tion � by �(x) = sup(f��(y)+1 j y �xg. The rank fun
tion is a surje
tion on some ordinal and it is easy to see thatwe get ba
k our prewellordering � as ��. So it remains to show that this norm� is unique. Assume there is a distin
t surje
tion � from X onto some ordinalsu
h that �=�� . Let x be minimal with respe
t to � su
h that �(x) 6= �(x)and without loss of generality let � = �(x) < �(x). Sin
e � is surje
tive there
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ales 26exists an y 2 X su
h that �(y) = � < �(x). Therefore we have y � x. Butthen we have �(y) = �(y) = � and thus x �� y, so x � y. This 
ontradi
tsy � x.We 
all two norms '; on a set X equivalent if �'=� . Clearly everynorm is equivalent to a unique regular norm (
onsider the asso
iated prewellorder-ing and the 
anoni
al rank fun
tion of this prewellordering). The length of aprewellordering � is the range of the asso
iated regular norm, denoted byj�j.Of 
ourse there exist a lot of trivial norms for a set. The 
on
ept be
omesinteresting if we put de�nability 
onditions on a norm. We will 
ome ba
k tothis in Chapter 5.A (semi-)s
ale is now a sequen
e of norms in the following in sense:De�nition 2.3.5. (a) A semi-s
ale on a subset A of a Polish spa
e X is asequen
e of norms ('n)n2! on A, su
h that for every sequen
e (xi)i2! in A forwhi
h the following holds1. limi!! xi = x2. for all n there is a �n 2 Ord su
h that 'n(xi) = �n for all i large enoughwe have x 2 A.It is a s
ale if in addition 'n(x) � �n for all n.(b) A (semi-)s
ale ('n)n2! is a �-(semi-)s
ale if for all n 2 ! the length of 'nis less or equal �.Similar to the norms the 
on
ept of s
ales be
omes more interesting thenwe put de�nablity 
onditions on it. This will play a 
ru
ial role in proving ourmain theorem and we will also 
ome ba
k to it in Chapter 5. But subsets ofthe Baire spa
e that admit �-semi-s
ales are of interest in there own sense sin
ethey are �-Suslin sets. The next theorem assures that the 
onverse is also true,i.e., �-Suslin sets admit �-semi-s
ales. We introdu
e one more notion for theproof of it.De�nition 2.3.6. Let T be a tree on a set A. For a �nite sequen
e s 2 A<!we de�neTs = ft 2 T j t is 
ompatible with sg = ft 2 T j t � s _ s � tgTheorem 2.3.7. A subset A of the Baire spa
e N is �-Suslin i� A admits a�-semi-s
ale.Proof. Let �rst A � N be �-Suslin. Fix a tree T on !� � su
h that A = p[T ℄.For x 2 A we want to pi
k now one bran
h (x; f) 2 T without using any
hoi
e. For this we need the notion of a leftmost bran
h of a tree. We de�nethe leftmost bran
h (x; fx) of [T ℄ by re
ursion as follows:First let � be a wellordering on ! � � de�ned by(k; �) � (`; �), � < � _ (� = � ^ k < `)



Chapter 2. Wellfounded trees 27If ((x(0); : : : ; x(n�1)); (fx(0); : : : ; fx(n�1)) is already de�ned (possibly theempty sequen
e), let (x(n); fx(n)) be the �-least element (k; �) of ! � � su
hthat [Txjn_k;fxjn_�℄ 6= ;.Now let for x 2 A the leftmost bran
h of T be given by (x; fx). Let 'n(x) =fx(n) for n 2 !. So 'n is a �-norm on A. To prove it is a semi-s
ale let (xi)i2!be a sequen
e in A su
h that xi ! x and 'n(xi) = �n for i large enough andfor all n. We have therefore(xi; fxi) = (xi; ('n(xi))n2!) 2 [T ℄and (xi; ('n(xi))n2!)! (x; (�n)n2!)Sin
e [T ℄ is 
losed (x; (�n)n2!) 2 [T ℄, thus x 2 p[T ℄ = A. This proves that thenorms 'n form indeed a semi-s
ale.Let now 
onversely ('n)n2! be a �-semi-s
ale on A � N . The tree T on! � � asso
iated to this semi-s
ale is given by:((k0; : : : ; kn); (�0; : : : ; �n)) 2 T :,9x 2 A su
h that x(i) = ki and 'i(x) = �i for all i � n(1) A = p[T ℄Proof: \�" Let x be in A. Then obviously (x; ('i(x))i) 2 [T ℄.\�" Let x 2 p[T ℄. Thenx 2 p[T ℄ , 9u 2 �! (x; u) 2 [T ℄, 9u 2 �! 8i 2 ! (xji; uji) 2 T, 9u 2 �! 8i 2 ! 9yi 2 A su
h that for all n � iyi(n) = x(n) ^ 'n(yi) = u(n)So (xji; uji) = (yiji; ('0(yi); : : : ; 'i�1(yi)) for all i < !. Thus the sequen
e ofthe yi 
onverges against x and 'n(yi) = u(n) for all i > n. Sin
e ('n) is a�-semi-s
ale we have x 2 A.2.4 Wellfounded treesWe 
all a tree T on some set X wellfounded if [T ℄ = ;. This 
omes from thefa
t that for su
h a tree the relation � of proper extension of �nite sequen
esis wellfounded. A rank fun
tion for a tree T on X is any mapping� : X<! �! Ordsu
h that � is�-< orderpreserving, i.e., if s; t are in T and t � s then �(t) < �(s).So if we have a wellfounded tree T we 
an thus de�ne a 
anoni
al rankfun
tion as on any wellfounded relation by:�T : X<! �! Ords 7�! supf�(s_x) + 1 j s_x 2 Tg



Chapter 2. �-Borel sets 28there we adopt the usefull 
onvention that sup(;) = 0. If X is of 
ardinality �one 
an show that �T (s) < �+ for all s 2 X<!.On the other hand it is 
lear that if we have some rank fun
tion � on T ,the tree is wellfounded. This is be
ause sin
e under DC being wellfounded isequivalent to the nonexisten
e of in�nite des
ending 
hains. So if an in�nitebran
h f = (x0; x1; x2; : : :) would exist in T we would get an in�nite des
ending
hain of ordinals �(x0) > �(x0; x1) > �(x0; x1; x2) : : :Sin
e these results are so very helpful in its appli
ation we put them down as atheorem. See [Mos
80, 2D.1℄.Theorem 2.4.1. A tree T on a set X is wellfounded if and only if it admits arank fun
tion. If 
ard(X) = � and T is wellfounded then �T is a rank fun
tionwith range in �+.We introdu
e one more notation. For a tree T on ! � � and x 2 !! de�ne:T (x) = f(�0; �1; : : : ; �n�1) j (xjn; (�0; �1; : : : ; �n�1)) 2 TgWith this the following lemma is trivial:Lemma 2.4.2. Let A � N be �-Suslin as witnessed by a tree T . Then x 2 Ai� T (x) is not wellfounded.2.5 �-Borel setsIn the next 
hapter we will introdu
e the Borel hierar
hy. But we de�ne theBorel sets and in generalization the �-Borel sets here sin
e we will see that�-Suslin sets, where � is a 
ardinal, are �++-Borel sets of the Baire spa
e.De�nition 2.5.1. Let (X;T ) be a topologi
al spa
e. A subsets A of X is
alled a Borel set if A is an element of the smallest 
lass of subsets of X whi
h
ontains all open sets and is 
losed under 
omplements and 
ountable unions.We denote the 
lass of Borel sets of X by B(X;T ) or just B(X) if it is 
learwhi
h topology of the spa
e we 
onsider.A subset A of X is 
alled a �-Borel set if A is an element of the smallest 
lassof subsets of X whi
h 
ontain all open sets and is 
losed under 
omplements and(wellordered) unions of length less than �. We denote the 
lass of the �-Borelsets of X by B�(X).Remark 2.5.2. With the above notion the Borel sets of a topologi
al spa
eX are exa
tly the !1-Borel sets of X. Obviously the open, 
losed, GÆ and F�subsets of X are Borel sets.Before we prove the result about the �-Suslin sets we state a generalizationof the famous Lusin Separation Theorem. In modern literature the LusinSeparation Theorem is stated in the following form:



Chapter 2. �-Borel sets 29Theorem 2.5.3. Let (X;T ) be a Polish spa
e and A;A0 be two disjoint analyti
sets. Then there exists a Borel set B that separates A from A0, i.e., A � B andA0 \B = ;.A proof 
an for example be found in [Ke
h95, Theorem 14.7℄. We have seenin the dis
ussion of De�nition 2.3.1 that the analyti
 sets of the Baire spa
e areexa
tly the !-Suslin sets and Borel sets are by de�nition !1-Borel sets. So we
an read the Lusin Separation Theorem for the Baire spa
e as follows:Two disjoint !-Suslin sets 
an be separated by an !1-Borel set.We state now a generalization of this. A proof by 
ontradi
tion as well as a
onstru
tive one for this Strong Separation Theorem 
an be found in [Mos
80,2.E.1℄.Theorem 2.5.4. Let � be an in�nite 
ardinal. Let A;B � N be �-Suslin andA\B = ;. Then there exists a �+-Borel set C whi
h separates A from B, i.e.,A � C and B \C = ;.The following 
orollary is now trivial.Corollary 2.5.5. If A � N and N n A are �-Suslin, then A 2 B�+(N ).Proof. Sin
e A is the only set that separates A from N n A we are done withthe above Theorem 2.5.4In general this result is not true if just the subset A is �-Suslin but not its
omplement. But we 
an then prove that A is �++-Borel.Theorem 2.5.6. If A � N is �-Suslin, then A 2 B�++(N ).Proof. Let T be a tree on !�� su
h that A = p[T ℄. For ea
h � < �+ and ea
hs 2 �<! de�ne now A�s = fx 2 !! j �T (x)(s) � �gWe prove by indu
tion over � that ea
h of these sets are �+-Borel.� = 0 : A0s = T�<�fx j (xjn+ 1; s^�) 62 Tg = T�<�S(xjn+1;s^�)62T Nxjn+1if s is of length n. Then A0s is the interse
tion of less than �+ many �nite unionsof open sets, therefore �+-Borel.Proof: x 2 A0s , �T (x)(s) = 0, 8� < � s^� 62 T (x), 8� < � (xjn+ 1; s^�) 62 T� > 0 : A�s = T�<�S�<�A�s^�Proof: x 2 A�s , supf�T (x)(s) + 1 j s^� 2 T (x)g � �, 8� < �9� < � [s^� 2 T (x) ( �T (x)(s^�) � �℄, 8� < �9� < � [�T (x)(s^�) � �℄, 8� < �9� < � (x 2 A�s^�), x 2 \�<�[�<�A�s^�



Chapter 2. �-Borel sets 30Claim: N n A = S�<�+ A�;Proof: x 62 A , T (x) is wellfounded, �T (x)(;) is de�ned, �T (x)(;) < �+, 9� < �+�T (x) � �, 9� < �+x 2 A�;, x 2 [�<�+A�;So A is as a 
omplement of an �++-Borel set in B�++We 
an strengthen the statement from the above Theorem if � is a 
ardinalof 
o�nality greater than !. First we repeat the notion of 
o�nality and notionsrelated to it.De�nition 2.5.7. Let � be a limit ordinal. A subset S � � is unbounded or
o�nal in � if for every � < � exists an � 2 S su
h that � < �. We de�ne the
o�nality of � by 
f(�) = minfS j S is 
o�nal in �gA fun
tion f : � �! � for � � � is 
alled a 
o�nal fun
tion if the set f [�℄ is
o�nal in �.A 
ardinal � is regular if 
f(�) = �.Theorem 2.5.8. If A � N is �-Suslin with � a 
ardinal of 
o�nality greater!, then A 2 B�+.Proof. Let T be a tree on ! � � su
h that A = p[T ℄. For � < � and x 2 N letT �(x) = fs 2 T (x) j 8� 2 s � < �g(1) T (x) is not wellfounded , 9� < � (T �(x) is not wellfounded)Proof: \)" Sin
e T (x) is not wellfounded there exists f 2 �! su
h that for alln 2 ! f jn 2 T (x). Assume now that for all � < � the tree T �(x) is wellfounded.In parti
ullar for all � < � the in�nite bran
h f is not in [T �(x)℄. That meansthat for all � < � there exists n < ! su
h that f(n) � �. But then f [!℄ is a
o�nal set of length ! in � and that 
ontradi
ts the assumption 
f(�) > !.\ (" If there is a f 2 [T �(x)℄ then f 2 [T (x)℄ q.e.d. (1)Now let for � < � A� = p[T �℄. Sin
e � < � we know that all A� are ��-Suslin with �� < �. Therefore ��++ � �+ and from Theorem 2.5.6 we get thatA� 2 B��++ � B�+ .By the above we havex 2 A, T (x) not wellfounded, 9� < � (T �(x) not wellfounded)and therefore A = S�<�A� 2 B�+ .



Chapter 3The Borel and the proje
tivehierar
hyIn this 
hapter we will re
all very brie
y some of the basi
 de�nitions andproperties of the Borel and the proje
tive hierar
hy together with its e�e
tiveanalogs. Proofs and more details 
an be found in an intro
tuary book onde
riptive set theory, for example in [Mos
80℄ or [Ke
h95℄.3.1 The Borel and the proje
tive hierar
hyWe will �rst introdu
e the notions of point
lasses.De�nition 3.1.1. We 
all � a point
lass if � is a 
olle
tion of subsets ofPolish spa
es. A pointset is then just a set of this 
lass. For a pointset A of apoint
lass � we write A 2 � or say A is a � set. If X is a Polish spa
e and � apoint
lass we denote by �(X) the pointsets of � whi
h are subsets of X.The dual point
lass �� for a point
lass � is de�ned by �� = fA j X n A 2�(X) for some Polish spa
e Xg.For ea
h point
lass � the ambiguous part of � is the 
lass � = � \ ��.We denote for example the 
lass of Borel sets in Polish spa
es (as introdu
edit in 2.5.1) by B and this stands for the 
lassB = fA j A � X for some Polish spa
e X and A is a Borel set in Xg:For some Polish spa
e X the set B(X) 
onsists of the Borel sets of X (forexample B(N ) is the 
olle
tion of all Borel sets of the Baire spa
e N ). So thepoint
lass B is the union of all B(X) for X a Polish spa
e. We 
ould de�nepoint
lasses for other 
ategories too, for example for the 
ategory of metrizablespa
es, but we are here just interested in Polish spa
es.We de�ne now the point
lasses of the Borel hierar
hy by re
ursion on theordinals.
31



Chapter 3. The Borel and the proje
tive hierar
hy 32De�nition 3.1.2. Let A be a subset of some Polish spa
e X. The Borelhierar
hy of X is de�ned as follows.A 2 �01(X) , A is open in XA 2 �01(X) , A is 
losed in XA 2 �0�(X) , A = [n2!An where An 2�0�n(X) for some �n < �A 2 �0�(X) , A is the 
omplement of an �0�(X) set in XA 2�0�(X) , A 2 �0�(X) \�0�(X)For a Polish spa
e X this forms indeed a hierar
hy, that means, �0�(X) ��0�+1(X) and similar for �0�(X) for � 2 On. We state this and other mainproperties in the next theorem. For proofs see for example [Ke
h95, II.11.B℄ or[Mos
80, 1.B; 1.F℄.Theorem 3.1.3. Let X be a Polish spa
e. Then we have we following pi
tureof in
lusions:�01(X) �02(X)� � � � ��01(X) �02(X) �03(X) : : :� � � � ��01(X) �02(X)The union of all �0�(X) is the 
olle
tion of all Borel sets of X, so B(X) =S�2Ord�0�(X). If X is an un
ountable Polish spa
e �0�(X) 6� �0�(X) for all� < !1, so we have proper in
lusions in the above pi
ture.Furthermore, using AC implies �0!1(X) = S�<!1 �0�(X) and for � > !1we have �0�(X) = �0!1(X). From this it follows immediately that under ACwe get B(X) = �0!1(X).This last theorem thus justi�es the name Borel hierar
hy. We write boldfa
eletters for this point
lasses to distinguish them from the arithmeti
al hierar
hywe de�ne in the next se
tion. Sometimes, point
lasses 
losed under 
ontinouspreimages are 
alled boldfa
e point
lasses (
f. for example [Andr??℄). Thejust de�ned �0� point
lasses are indeed 
losed under 
ontinuous preimages. Thefollowing theorem states the most interesting 
losure properties, see [Mos
80,1C.2℄.Theorem 3.1.4. For a Polish spa
e X the 
lass �0�(X) is 
losed under 
ount-able unions and �nite interse
tions for all �. The point
lass �0� is 
losed under
ontinuous preimages for all �, i.e., the 
ontinuous preimage of an �0� set isagain an �0� set.The 
lass �0�(X) is 
losed under �nite interse
tions and 
ountable unions forall �. The point
lass �0� is 
losed under 
ontinuous preimages.The ambiguous point
lass �0� is 
losed under �nite unions and interse
tions,under 
ontinuous preimages and under 
omplements.Before we de�ne now the proje
tive hierar
hy we will take a 
loser look atthe analyti
 sets sin
e they form the �rst level of the proje
tive hierar
hy. We



Chapter 3. The Borel and the proje
tive hierar
hy 33introdu
ed analyti
 sets of the Baire spa
e as proje
tions of 
losed sets of N�Nand were able to 
hara
terize them as the !-Suslin sets in the last se
tion.Histori
ally these sets were dis
overed by Suslin who found a mistake in apaper of Lebesgue [Lebe05℄. Lebesgue 
laimed that a proje
tion of a Boreelset is again a Borel set. Suslin found out that the 
lass of proje
tions of Borelsets is stri
tly larger than the 
lass of Borel sets. The following theorem givesa 
hara
terization of the analyti
 sets.Proposition 3.1.5. Let (X;T ) be a Polish spa
e, A � X. Then the followingare equivalent:(1) A is the 
ontinuous image of a fun
tion f : N �! X.(2) A = projX [C℄ where C � X �N ; C 
losed.(3) A = projX [B℄ where B � X � Y is a Borel set, Y is a Polish spa
e.(4) A is the 
ontinuous image of a Borel set of a Polish spa
e .Proof. (1) ) (2): Let A = f [N ℄ where f : N �! X is 
ontinuous. Thengraph(f) := f(f(x); x) j x 2 Ng is 
losed in X �N and A = projX [graph(f)℄.(2) ) (3): trivial.(3) ) (4): projX is a 
ontinuous mapping.(4) ) (1): see 6.1.6.We postpone the last part of the proof until we have the 
hara
terization ofBorel sets by a �ner topology sin
e we 
an then prove the missing part of thistheorem very easily. Finally we write down the de�nition of the analyti
 setsin Polish spa
es.De�nition 3.1.6. A set A in a Polish spa
e X is 
alled an analyti
 set if Ais the proje
tion of a Borel set in a Polish spa
e X � Y , where Y is a Polishspa
e.We already mentioned that the analyti
 subsets of the Baire spa
e are ex-a
tly the !-Suslin sets. This follows immediately from the above Proposition3.1.5 and Proposition 2.1.3. Sin
e this is so important we put this down as atheorem.Theorem 3.1.7. A subset A of the Baire spa
e N is analyti
 i� A is !-Suslin.Following Suslin, the analyti
 sets form a larger 
lass of sets then the Borelsets. We will give a proof later (see 3.1.11 and 3.1.14). From the above 
har-a
terization one 
an easily prove that the proje
tion of an analyti
 set is againan analyti
 set. But if we take the dual 
lass of the 
lass of the analyti
 setsand apply proje
tion we get a larger 
lass than the 
lass of the analyti
 sets.Iterating this pro
ess we get the proje
tive hierar
hy.



Chapter 3. The Borel and the proje
tive hierar
hy 34De�nition 3.1.8. Let A be a subset of some Polish spa
e X. We de�ne theproje
tive hierar
hy of X by re
ursion on !:A 2 �10(X) , A 2 �01(X)A 2 �10(X) , A 2�01(X)A 2 �1n+1(X) , A = projX [B℄ where B 2 �1n(X �N )A 2 �1n+1(X) , X nA 2 �1n+1(X)A 2�1n(X) , A 2 �1n(X) \�1n(X)We 
all a subset P of some Polish spa
e a proje
tive set if P 2 �1n for somen 2 !.So with this notation the analyti
 sets are the �11 sets. In analogy to theTheorems 3.1.3 and 3.1.4 we state now theorems about the hierar
hy that formthe proje
tive sets and the main 
losure properties of the proje
tive sets.Theorem 3.1.9. Let X be a Polish spa
e. Then the following pi
ture of in
lu-sions hold: �11(X) �12(X)� � � � ��11(X) �12(X) �13(X) : : :� � � � ��11(X) �12(X)Note that we de�ned the proje
tive sets just for integers and that by de�ni-tion the union of all�1n sets is 
alled the 
lass of proje
tive sets. For un
ountablePolish spa
es we have as with the sets of the Borel hierar
hy proper in
lusionsin the above pi
ture. To prove this, one uses the 
on
ept of universal sets. We
ome ba
k to this after we state the 
losure properties.Theorem 3.1.10. For all n 2 ! the 
lass �1n is 
losed under 
ountable inter-se
tions and unions, under 
ontinuous preimages and 
ontinuous images. The
lass �1n is 
losed under 
ountable unions and interse
tions and under 
ontinu-ous preimages. The 
lass�1n is 
losed under 
ountable unions and interse
tions,under 
ontinuous preimages and under 
omplents.It remains now to prove that for un
ountable Polish spa
es we have indeed aproper hierar
hy and that the 
lass of analyti
 sets is really larger than the 
lassof Borel sets. For the latter we �rst prove that for a Polish spa
e X we haveB(X) =�11(X). We are done if we show afterwards that �1n(X) 6� �1n(X) forn 2 ! if X is un
ountable. Be
ause then we have in parti
ular that �11(X) isa proper extension of �11(X) = B(X). And we also proved the fa
t about theproper hierar
hy with this.Theorem 3.1.11. Let X be a Polish spa
e. Then B(X) =�11(X).Proof. Let �rst A � X be a Borel set. Taking the identity mapping between Xwe 
ould see A as the 
ontinuous image of a Borel set. Therefore A 2 �11(X).Sin
e Borel sets are 
losed under 
omplements X n A is also a Borel set andtherefore also in �11(X). This implies A 2�11(X) and therefore A 2�11(X).



Chapter 3. The e�e
tive hierar
hies 35For the 
onverse we use again the Lusin Separation Theorem 2.5.3. Let Abe in �11(X). Then both A and its 
omplement X nA are analyti
 sets. So byTheorem 2.5.3 A and X nA are separated by a Borel set and the only possibleset that 
an separate A and X nA is the set A. Therefore A is a Borel set.We now introdu
e the notion of universal sets to prove that the proje
tivehierar
hy for un
ountable Polish spa
es is proper.De�nition 3.1.12. Let � be a point
lass of Polish spa
es and let X be a Polishspa
e. For Y another Polish spa
e we 
all U � Y �X a Y -universal set for�(X) if� U 2 �(Y �X)� fUy j y 2 Y g = �(X), where Uy = fx j (y; x) 2 UgUniversal sets exist for the 
lasses of the proje
tive hierar
hy and also forthe 
lasses of the Borel hierar
hy. For a proof see [Mos
80, 1D.2, 1E.3℄. Westate the result here only for the proje
tive 
lasses.Theorem 3.1.13. For every Polish spa
e X and every un
ountable Polish spa
eY exists an Y -universal set for �1n(X) and similar for �1n(X) for all n 2 !.With this theorem it is now easy to prove that the proje
tive hierar
hy isa proper hierar
hy. The same proof applies for the 
lasses �0� of the Borelhierar
hy for � < !1.Proposition 3.1.14. Let X be an un
ountable Polish spa
e. Then �1n(X) 6=�1n(X) for all n 2 !. In parti
ular this implies that �1n(X) � �1n(X) for alln 2 !.Proof. Assume towards a 
ontradi
tion that �1n(X) = �1n(X). Let U be anX-universal set for �1n(X). Therefore U 2 �1n(X �X). The fun
tionf : X �! X �Xx 7�! (x; x)is obviously 
ontinuous. Sin
e the 
lass�1n is 
losed under 
ontinuous preimagesthe set fx j (x; x) 2 Ug = f�1[U ℄is in �1n(X). By our assumption this set is also in �1n(X). So its 
omplementfx j (x; x) 62 Ug is in �1n(X). But sin
e U is an X-universal set there exists anxo 2 X su
h that fx j (x; x) 62 Ug = fx j (x; x0) 2 UgConsidering x = x0 leads now to a 
ontradi
tion.
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tive hierar
hies 363.2 The e�e
tive hierar
hiesConsidering the Borel and the proje
tive hierar
hy it seems reasonable thatif we 
ompare two levels of a hierar
hy we say that the sets from the higherlevel of the hierar
hy have greater 
omplexity than the sets of the lower levelsin
e we had to apply operations like taking unions or interse
tions or evenproje
tions. In the language of set theory taking interse
tions is nothing elsethan applying the 8-quanti�er. So a natural way for a di�erent approa
h tode
ide the 
omplexity of a subset (for example of the Baire spa
e or also fromthe dis
rete topologi
al spa
e !) is to 
onsider the 
omplexity of the formulain the language of set theory that de�nes the set (and we want to de
ide the
omplexity of a formula by the number of quanti�ers). We do this now byde�ning the arithmeti
al and analyti
al hierar
hy. The study of the 
lassesfrom these hierar
hies is 
alled the e�e
tive des
riptive set theory. Classi
allythis e�e
tive theory has its origins in re
ursion theory. We do not want to goin this area here, see for example [Mos
80, Ch 3℄ or [MaKe80, Ch 6℄.It is not obvious that these new to de�ne hierar
hies have something todo with the Borel or the proje
tive hierar
hy but there is indeed a very 
loserelation. So 
an the 
lasses of the analyti
al hierar
hy together with its rela-tivized versions (we will introdu
e this in the up
oming se
tion) be seen as arami�
ation of the 
orresponding 
lasses of the proje
tive hierar
hy. A similarresult applies for the arithmeti
al hierar
hy and the point
lasses from the Borelhierar
hy of �nite order.For the e�e
tive theory we restri
t ourselves to produ
t spa
es of the form!r�(!!)k and follow here the outline in [Kana97, se
. 12℄. A di�erent approa
h(by re
ursion theory) and in a more general 
ontext 
an be found in [Mos
80,Ch3℄.Let A = (!; !!; ap;+; �; exp; <; 0; 1) be the stru
ture with two domains !and !!. ap is the fun
tionap : !! � ! �! !(x;m) 7�! x(m)+; � are the usual arithmeti
 operations on !, exp stands for the exponentationon !. To distinguish the variables for the two domains our language 
ontainsvariables v00 ; v01 ; v02 ; : : : whi
h stand for elements of ! and variables v10 ; v11 ; v12 ; : : :whi
h stand for elements of !!. In addition we have the number quanti�ers90;80 for the v0i and the fun
tion quanti�ers 91;81 for the variables v1i . Termsand formulas of our language are de�ned in the obvious way. By terms for num-bers we understand the smallest 
lass of words whi
h 
ontains 0; 1; v00 ; v01 ; v02 ; : : :and is 
losed under +; �; exp and ap. For any su
h term � and any formula ' wewrite (90v0i < �)' for 90v0i (v0i < � ^') and (80v0i < �)' for 80v0i (v0i < � ! ').These are the bounded quanti�ers.We 
onsider now subsets A of !r � (!!)k and will also see this A as arelation, that means we write inter
hangebly (m0; : : : ;mr�1; x0; : : : ; xk�1) 2 Aor A(m0; : : : ;mr�1; x0; : : : ; xk�1).



Chapter 3. The e�e
tive hierar
hies 37A set A � !r � (!!)k is de�nable in A by a formula ' i�(m0; : : : ;mr�1; x0; : : : ; xk�1) 2 A, A j= '[m0; : : : ;mr�1; x0; : : : ; xk�1℄.A is �00 in A i� A is de�nable by a formula whose only quanti�ers are bounded.We 
an now de�ne the arithmeti
al hierar
hy.De�nition 3.2.1. Let A be a subset from some !r � (!!)k. For n 2 ! setA 2 �0n , 8w(w 2 A$ 90m180m2 : : : QmnR(m1; : : : ;mn;w))A 2 �0n , 8w(w 2 A$ 80m190m2 : : : QmnR(m1; : : : ;mn;w))where R � !r+n� (!!)k is �00 and Q is 90 if n is odd and 80 if n is even for the�0n 
ase and vi
e versa for the �0n 
ase. A is 
alled arithmeti
al if A 2 Sn�0n.The ambiguous point
lasses are de�ned as before by �0n = �0n \ �0n. A set Ain �01 is 
alled re
ursive.It 
an be shown that A is arithmeti
al i� A is de�nable by a formula withoutfun
tion quanti�ers. A proof for this and proofs for the following are 
arriedout in full detail in [Stei98℄.Proposition 3.2.2. (a)For all n 2 ! the following holds:The 
omplement of a �0n set is a �0n set. The 
lasses �0n and �0n are 
losedunder �nite unions and interse
tions. For a set of the form !r � (!!)k thereexist only 
ountable many subsets in �0n and only 
ountable many in �0n.(b) The �1n and �1n sets form a hierar
hy, we get the following pi
ture of in
lu-sions: �01 �02� � � � ��01 �02 �03 : : :� � � � ��01 �02Example 3.2.3. The basi
 sets of the Baire spa
e are �01 sets sin
e for a �nitesequen
e s = (s0; s1; : : : ; sn�1) of integers the set Ns is de�ned by the followingformula:x 2 Ns , ap(x; 0) = s0 ^ ap(x; 1) = s1 ^ : : : ap(x; n� 1) = sn�1We 
all the 
olle
tion of all the sets de�nable in A the 
lass of analyti
alsets. By shifting quanti�ers and using various 
oding maps we 
an 
lassify theanalyti
al sets in the analyti
al hierar
hy:De�nition 3.2.4. Let �10 = �01 and �10 = �01. For n > 0 de�neA 2 �1n , 8w(w 2 A$ 91x181x2 : : : QxnR(w; x1; : : : ; xn))A 2 �1n , 8w(w 2 A$ 81x191x2 : : : QxnR(w; x1; : : : ; xn))for some arithmeti
al R � !r � (!!)k+n and Q is 91 if n is odd and 81 if n iseven in the �1n 
ase and vi
e versa in the �1n 
ase.De�ne also �1n = �1n \�1n.
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tive hierar
hies 38We 
olle
t some main properties in the next proposition.Proposition 3.2.5. (a)For all n 2 ! the following holds:The 
omplement of a �1n set is a �1n set. The 
lasses �1n and �1n are 
losedunder �nite unions and interse
tions. For a set of the form !r � (!!)k thereexist only 
ountable many subsets in �1n and only 
ountable many in �1n.(b) The �1n and �1n sets form a hierar
hy, we get the following pi
ture of in
lu-sions: �11 �12� � � � ��11 �12 �13 : : :� � � � ��11 �12(
) A set A is analyti
al i� A is in some �1n.We already mentioned that there is a deep 
onne
tion between the justde�ned \lightfa
e" hierar
hies and the \boldfa
e" hierar
hies before. For thiswe have to 
onsider the lightfa
e 
lasses relativized to some parameter a of !!.For a 2 !! 
onsider the stru
tureA(a) = (!; !!; ap;+; �; exp; <; 0; 1; a)A set A � !r � (!!)k is �00(a) if it 
an be de�ned by a formula in A(a).Starting with this de�nition we 
an obtain in the same way as before the 
lasses�0n(a);�0n(a);�0n(a);�1n(a);�1n(a);�1n(a). For A 2 �01(a) \ �01(a) we say A isre
ursive in a and so on. Most results, as for example the above fa
ts aboutthe hierar
hies hold for the relativized version by relativizing everything to itsparameter.It is 
lear that �0n � �0n(a);�0n � �0n(a);�1n � �1n(a) and �1n � �1n(a) for alla 2 !! and all n 2 ! sin
e a set de�nable in the stru
ture A by a formula ' isalso de�nable in the stru
ture A(a) by the same formula ' where the parametera just does not o

ur. Furthermore it is 
lear that for a set !r � (!!)k only
ountable many subsets are in �1n(a) sin
e our language for the stru
ture A(a)is �nite, thus there are only 
ountable many formulas. Analogous results holdfor the 
lasses �0n(a);�0n(a) and �1n(a).We have seen that the boldfa
e hierar
hies were proper hierar
hies. This isalso true for the lightfa
e hierar
hies de�ned here and the relativized versionsof it. Proofs 
an be obtained easily if we have the existen
e of universal sets.It is quite similar to the proof of Proposition 3.1.14 but note that the lightfa
e
lasses are not 
losed under 
ontinuous preimages. But they are still 
losedunder preimages of re
ursive fun
tions and this is enough to �nish the proofas before. For the notion of re
ursive fun
tions and the proof of the followingproposition see [Mos
80, 3.F℄.Proposition 3.2.6. For ea
h set X of the form !r� (!!)k and for ea
h n 2 !exists a Y universal set for �1n(X) with Y a produ
t of multiples of ! and !!.The same holds for �0n;�0n and �1n and the relativized 
lasses.This implies that the arithmeti
al and analyti
al hierar
hies (and its rela-tivized versions) are hierar
hies of proper in
lusions.
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tive hierar
hies 39The 
onne
tion between the arithmeti
al hierar
hy and the Borel hierar
hyof �nite order as well as between the proje
tive hierar
hy and the analyti
alhierqar
hy is now the following:Proposition 3.2.7. Let A � (!!)k and 0 < n 2 !. Then(a) A 2 �0n i� A 2 �0n(a) for some a 2 !!(b) A 2 �1n i� A 2 �1n(a) for some a 2 !!Analogous results for �0n and �1n.By this Proposition 3.2.7 the analyti
 sets are the union of the 
lasses �11(a).The analyti
 sets of the Baire spa
e were exa
tly the !-Suslin sets. One 
ouldask if we 
an distinguish whi
h trees lead to a representation of an �11(a) set,a 2 !!, of the Baire spa
e. The answer is yes but for this we 
an not avoidto introdu
e some of the 
oding fun
tions ne
essary for a \normal form" of the�1n sets. To 
ode �nite sequen
es of natural numbers 
onsider the followingfun
tion h i : !<! �! !s = (s(0); : : : ; s(n� 1)) 7�! hsi = ps(0)+10 : : : ps(n�1)+1n�1where pi is the ith prime number.If we are interested in just an initial segment of an x 2 !! this 
an also be
oded by a natural number using the above fun
tion:�: !! � ! �! !(x;m) 7�! x(m) = hxjmi = hx(0); : : : ; x(m� 1)iThis fun
tion is �00. For w = (m0; : : : ;mr�1; x0; : : : ; xk�1) 2 !r � (!!)k andn 2 ! set w(n) = (m0 : : : ;mr�1; x0(n); : : : ; xk�1(n)).Proposition 3.2.8. Let A � !r � (!!)k be a �1n(a) set for a 2 !!. Let0 < n 2 !.For n even there exists an �00(a) set R � !r+k+n+1, su
h thatw 2 A, 91x1 : : : 81xn90mR(m;w(m); x1(m); : : : ; xn(m)):For n odd there exists an �00(a) set R � !r+k+n+1 su
h thatw 2 A, 91x1 : : : 91xn80mR(m;w(m); x1(m); : : : ; xn(m)):Similar results 
an be obtained for �1n(a) sets by negation.It turns out that A � !! is a �1n(a) set for a 2 !! if an only if A is !-Suslinwith trees T re
ursive in a. By this we understand that the set of the 
odes ofthe sequen
es of T is re
ursive in a. To be exa
t we de�ne:De�nition 3.2.9. A tree T on ! � ! is 
alled re
ursive in a if the sethT i = f(hsi; hti) j (s; t) 2 Tg is re
ursive in a.
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tive hierar
hies 40So the result for the tree representation of �11(a) sets is the following.Proposition 3.2.10. Let A � !!; a 2 !!. A is �11(a) i� there is a tree T on! � ! re
ursive in a su
h that A = p[T ℄.Proof. Assume we have su
h a tree representation of A. Thenx 2 A , x 2 p[T ℄, 91y(x; y) 2 [T ℄, 91y80n(xjn; yjn) 2 T, 91y80nhT i(hxjni; hyjni)So A is �11(a).Let now A be a �11(a) set. By Proposition 3.2.8 there exists an �00(a) set R � !3su
h that x 2 A, 91y80mR(m;x(m); y(m))We de�ne now a tree re
ursive in a by(s; t) 2 T , 80p < length(s)R(p; hs(0); : : : ; s(p)i; ht(o); : : : ; t(p)i), 90n(n = length(s))80p < nR(p; hs(0); : : : ; s(p)i; ht(o); : : : ; t(p)i), 80n(n = length(s))80p < nR(p; hs(0); : : : ; s(p)i; ht(o); : : : ; t(p)i)The proje
tion of the in�nite sequen
es of this tree is indeed the set A:x 2 p[T ℄ , 91y(x; y) 2 [T ℄, 91y80n(xjn; yjn) 2 T, 91y80n80p < nR(p; x(p); y(p)), 91y80pR(p; x(p); y(p))



Chapter 4Games and (Axioms of)Determina
yFor the 
hara
terization of the �1n sets for n > 1 by �ner topologies the theoryZF + DC is not strong enough. Even taking the full axiom of 
hoi
e willnot be of help. So we will 
onsider other additional axioms, namely the axiomof proje
tive determina
y (PD) where we 
onsider games on integers and themu
h stronger axiom of determina
y of games on reals (ADR). The axiom ofdetermina
y (AD) will also be of importan
e. Even thoughAD 
ontradi
ts theaxiom of 
hoi
e it is quite 
ommon in des
riptive set theory sin
e it implies a lotof ni
e properties of the reals and one 
an draw interesting 
on
lusions out ofit sometimes even for a model of set theory in whi
h AC holds. Philipp Rohdegives in his Diplomarbeit an overview also about other determina
y axioms, see[Rohd01℄.The foundation for these axioms is the notion of a two person game thatwe will introdu
e in the �rst se
tion. The prototype of su
h a game is a gameon integers. But we will also 
onsider games on reals and ordinals. Also Polishspa
es 
an be 
hara
terized by games. We will introdu
e this in the se
ondse
tion here. The game will then be a game on open subsets of some Polishspa
e.4.1 Games and determina
yWe inrodu
e �rst games on integers and the notion of a strategy.De�nition 4.1.1. (a) For a subset A � N , 
alled the payo� set, the twoperson game GA is de�ned in the following way: The two players take turnsin playing integers I n0 n2 : : :II n1 n3 : : :After ! moves the game is over and player I wins if the sequen
e x = (ni)i2!is in A. Otherwise II wins.(b) A strategy for player I is a tree � on ! whi
h tells player I whi
h move to41



Chapter 4. Games and determina
y 42make in every round of the game. That is, � is a subtree of the full tree on !with the following properties:(i) � is nonempty(ii) if (n0; n1; : : : ; n2k) 2 �; k 2 !, then (n0; n1; : : : ; n2k;m) 2 � for all m 2 !(iii) if (n0; n1; : : : ; n2k�1) 2 �; k 2 ! (for k = 0 this is the empty sequen
e),there exists a unique m 2 ! su
h that (n0; n1; : : : ; n2k�1;m) 2 �.Player I follows the strategy � if he plays in his 2k-th move the uniqueinteger su
h that the �nite sequen
e played so far is a member of the tree �.We denote this unique integer by � � s if s 2 !2k�1 is the sequen
e of all theintegers played before.The strategy � is 
alled a winning strategy for player I if he wins everyrun of the game by following �. Similarly, one de�nes the notion of a strategyand winning strategy for player II.(
) The game GA is determined if one of the players has a winning strategy.Closely related to the subje
t of strategies is the 
on
ept of quasi-strategies.A quasi-strategy for player I is a tree as it is for a strategy but instead of givingplayer I a unique element to play following the strategy it gives him a set ofpossible answers in every stage of the game. So the de�nition is the following:De�nition 4.1.2. Let A be a subset of N and GA be a game as in the de�-nition above. A quasi-strategy for player I is a tree on ! with the followingproperties:(i) � is nonempty(ii) if (n0; n1; : : : ; n2k) 2 �; k 2 !, then (n0; n1; : : : ; n2k;m) 2 � for all m 2 !(iii) if (n0; n1; : : : ; n2k�1) 2 �; k 2 ! (for k = 0 this is the empty sequen
e),there exist integers m 2 ! su
h that (n0; n1; : : : ; n2k�1;m) 2 �.Player I follows the quasi-strategy � if he plays in his 2k-th move an integersu
h that the �nite sequen
e played so far is a member of the tree �.A quasi-strategy � is a winning quasi-strategy for player I if player Iwins every run of the game by following �. Similarly, one de�nes the notion ofa quasi-strategy or a winning quasi-strategy for player II.The game GA is is quasi-determined if one of the players has a winningquasi-strategy.Obviously it depends on the subset A of N if a game is (quasi-)determinedor not. So one says that a subset A � N is (quasi-)determined if one meansthat the asso
iated game GA determined. Furthermore, it is also obvious thatdetermined games exist.For example taking A as the whole set N or just taking away �nitely manypoints will lead easily to a winning strategy for player I. The question is nowwhether pointsets from 
ertain point
lasses are determined. David Gale and



Chapter 4. Polish spa
es as strong Choquet spa
es 43Frank Stewart proved in [GaSt53℄ that all open and all 
losed sets are deter-mined. The proof uses DC but one 
an show in ZF that all open and 
losedsets of the Baire spa
e are quasi-determined. It is pretty obvious that underDC we 
an always redu
e a quasi-strategy for games of length ! to a strategy.So under ZF + DC the open and 
losed sets are determined. It was provenshortly after the Gale-Stewart Theorem that also �02 and �02 sets are deter-mined (
f. [Wolf55℄). Using ZF+ AC Donald Martin even proved in [Mart75℄that all sets of the Borel hierar
hy are determined.But not all pointsets are determined. Already in their 1953 paper, Galeand Stewart mentioned that under AC nondetermined subsets of the Bairespa
e exist. Despite this fa
t (and knowing it will 
ontradi
t AC) the Polishmathemati
ians Jan My
ielski and Hugo Steinhaus suggested in [MySt62℄ theAxiom of determina
y that asserts that all subsets of the Baire spa
e aredetermined.De�nition 4.1.3. [Axiom of determina
y (AD)℄ For all A � N the gameGA is determined.In the next 
hapter we will introdu
e the s
ale property and the proje
tiveordinals. We will prove some results about it under the Axiom AD. Sin
e weare mainly interested in point
lasses of the proje
tive hierar
hy it suÆ
es forsome of these results to work under the weaker assumption that just sets of theproje
tive hierar
hy of the Baire spa
e are determined. The axiom that assertsthis property is the Axiom of proje
tive determina
y:De�nition 4.1.4. [Axiom of proje
tive determina
y (PD)℄ For all A 2�1n(N ); n 2 !; the game GA is determined.It is straightforward how to des
ribe two person games of length ! on arbi-trary sets X. For a subset A of X! we de�ne games GXA as above but instead ofplaying elements from ! the two players pi
k elements from X. The strategieswill then be trees on X and winning strategies as well as determined sets of X!are des
ribed as above. Important for us will be games on reals. In su
h a gameea
h player has to play elements of the Baire spa
e and the payo� sets will thenbe subsets of N!. The axiom that all payo�s sets of N! are determined forgames of reals is mu
h stronger than AD and it is denoted by ADR:De�nition 4.1.5. [ADR℄ For all A � N! the game GRA is determined.The axiom ADR implies the axiom AD. This is an easy result, see [Rohd01,3.1℄.A slightly di�erent game on open subsets of a topologi
al spa
e will beintrodu
ed in the next 
hapter when we 
hara
terize Polish spa
es by strongChoquet games.4.2 Polish spa
es as strong Choquet spa
esWe start by de�ning the Choquet game.



Chapter 4. Polish spa
es as strong Choquet spa
es 44De�nition 4.2.1. Let X be a nonempty topologi
al spa
e. The Choquetgame GCh(X;T ) on X is de�ned as follows: Players I and II take turns inplaying nonempty open subsets of XI U0 U1 : : :II V0 V1 : : : ,su
h that U0 � V0 � U1 � V1 � : : :We say II wins this run of the game if Tn Vn = Tn Un 6= ;. Otherwise Iwins.Strategies and winning strategies for Choquet games are de�ned now astrees on open subsets of the Polish spa
e as before. For our purpose, the strongChoquet game is more important. It is similar to the Choquet game but inaddition to the Choquet game player I is required to play a point xn 2 Unon every turn and then player II must play Vn � Un with xn 2 Vn. So thede�nition is the following.De�nition 4.2.2. Let X be a nonempty topologi
al spa
e. The strong Cho-quet game GsCh(X;T ) on X is de�ned as follows: Players I and II take turnsin playing nonempty open subsets of X and player I in addition a point in hisopen subset I U0; x0 U1; x1 : : :II V0 V1 : : : ,su
h that U0 � V0 � : : : ; xn 2 Un; xn 2 Vn for n 2 !. We say II wins this runof the game if Tn Vn = Tn Un 6= ;. Otherwise I wins.An appropriate tree on the produ
t set of open subsets of the Polish spa
eX and points in X 
an be viewed as a strategy where the information of theextra point for player II is of no interest.The Choquet game on a topologi
al spa
e X is determined if one of theplayers has a winning strategy. If player II has a winning strategy we will 
allthe topologi
al spa
e a Choquet spa
e:De�nition 4.2.3. A topologi
al spa
e X is 
alled a (strong) Choquet spa
eif player II has a winning strategy for the asso
iated (strong) Choquet gameGCh(X;T ); (GsCh(X;T )).An example for strong Choquet spa
es are the 
ompletely metrizable spa
es.Proposition 4.2.4. A nonempty, 
ompletely metrizable spa
e is a strong Cho-quet spa
e.Proof. Let (X;T ) be a nonempty 
ompletely metrizable spa
e, d a 
ompatible
omplete metri
 on X. We de�ne a winning strategy � for player II by indu
-tion. If (U0; x0; V0; : : : ; Un; xn) is a legal round in the game GsCh(X;T ), then
hoose an open ball Vn from fB 1n+i+1 (xn) j i 2 !g su
h that 
lT (Vn) � Un (forexample the least i su
h that this holds). Then Tn Un = T 
lT (Vn). For every
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es as strong Choquet spa
es 45n the sequen
e (xn; xn+1; : : :) lies 
ompletely in 
lT (Vn) and, sin
e the diame-ter of the Vn gets arbitrarily small, is a Cau
hy sequen
e. Thus this sequen
e
onverges in X and the limit point is in 
lT (Vn) sin
e this is a 
losed set. Sin
elimk2! xk = limk2! xn+k for every n, we have this limit point in every 
lT (Vn).Thus limk2! xk 2 Tn 
lT (Vn).Putting together this result with Lemma 1.3, a Polish spa
e has the followingproperties.Proposition 4.2.5. Every Polish spa
e is a se
ond 
ountable, regular, strongChoquet spa
e whi
h is Hausdor�.We will prove now that, if we assume in addition AC, the 
onverse is alsotrue. For this we show �rst the 
onverse of Proposition 4.2.4 under AC thatevery separable, metrizable, strong Choquet spa
e is 
omplete. This will leadto a 
hara
terization of Polish spa
es as strong Choquet spa
es.First we give two general lemmas, the �rst one about trees, the se
ond apurely topologi
al one.De�nition 4.2.6. Let T be a tree on a set A. T is 
alled �nite splitting iffor every s 2 T there are at most �nitely many a 2 A with s_a 2 T .Lemma 4.2.7 (K�onig's Lemma). Let T be a �nite splitting tree on a set A.Then [T ℄ 6= ; i� T is in�nite.Proof. If [T ℄ 6= ; the tree 
annot be �nite.Now let 
onversely T be in�nite. We will indu
tively pi
k xi at every levelof the tree, su
h that the in�nite sequen
e (xi) is in [T ℄. Pi
k �rst an xo 2 Asu
h that the tree Tx0 = fs 2 T j s � x0g is in�nite. This is possible sin
ewe have only �nitely many sequen
es of length 1, but the full tree is in�nite.With the same argument we pi
k x1 su
h that (x0; x1) 2 Tx0 and T(x0;x1) =fs 2 Tx0 j s � (x0; x1)g is in�nite. By iterating these pro
ess, we get an in�nitebran
h in T .Lemma 4.2.8. Let (Y; d) be a separable metri
 spa
e. Let U be a family ofnonempty open sets in Y . Then U has a point-�nite re�nement V, i.e., Vis a family of nonempty open sets with SU = SV;8V 2 V9U 2 U (V � U)and 8y 2 Y (fV 2 V j y 2 V g is �nite). More over, given " > 0 we 
an alsoassume that diam(V ) < " for all V 2 V.Proof. Denote the indu
ed topology of Y by T . Sin
e Y is se
ond 
ountable,let (Un) be a sequen
e of open sets su
h that Sn Un = SU and forall n existsan U 2 U(Un � U). Furthermore, given " > 0 we 
an always assume thatdiam(Un) < ". For example, �x a 
ountable dense subset D of Y and take theUn's to be the open balls around the points of SU \D whi
h lie in some U ofU and have rational radius smaller ". (
f. the proof of Lemma 1.2).Let next Un = Sp2!U (p)n with U (p)n open, U (p)n � U (p+1)n and 
lT (U (p)n ) � Unfor every p 2 !. PutVm = Um n [n<m 
lT (U (m)n ) = Um\ � [n<m 
lT (U (m)n ) = Um \ \n<m � 
lT (U (m)n )
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es as strong Choquet spa
es 46open, where � A denotes the 
omplement of a set A in Y .(1) Sn Vn = Sn Un:Cleary for every m we have Vm � Um. Let x 2 Sn2! Un and m the leastinteger with x 2 Um. Then x 2 Um nSn<m 
lT U (m)n = Vm by the 
hoi
e of m.(2) For all y 2 Y there are only �nitely many Vm whi
h 
ontain y:Let x 2 U = SU . Then x 2 Un for an n and then x 2 U (p)n for some p. Sox 62 Vm if m > p; n.Let V = fVn j Vn 6= ;g.Theorem 4.2.9 (AC). Let X be a nonempty separable metrizable strong Cho-quet spa
e, X̂ a Polish spa
e and X a subspa
e of X̂. Then X is GÆ in X̂.Proof. Fix a 
ompatible 
omplete metri
 d for X̂ and a winning strategy � forplayer II in the strong Choquet game GsCh(X).Claim: There exists a tree S on X � P(X) � P(X̂) with the followingproperties: If ((xo; V0; V̂0); : : : ; (xn; Vn; V̂n)) 2 S, then for 0 � i � n we have Vi isopen inX, V̂i is open in X̂ , xi 2 V̂i�1 (V̂�1 = X̂) ,xi 2 Vi, V̂i\X � Vi, V̂i � V̂i�1and (X;x0); V0; (V̂0 \X;x1); V1; : : : (V̂n�1; xn); Vn; V̂n is a legal run of the gamewhere II follows �. Additionallay, if s = ((x0; V0; V̂0); : : : ; (xn�1; Vn�1; V̂n�1)) 2S, V̂s = fV̂n j s_(xn; Vn; V̂n) 2 Sg, then X \ V̂n�1 � S V̂s,diamV̂n < 2�n for allV̂n 2 V̂s and for every x̂ 2 X̂ there are at most �nitely many (xn; Vn; V̂n) withs_(xn; VnV̂n) 2 S su
h that x̂ 2 V̂n.Proof: We 
onstru
t a tree by indu
tion on the length of the sequen
es.Let s = ((x0; V0; V̂0); : : : ; (xn�1; Vn�1; V̂n�1)) be in S su
h that all propertieshold (s may be the empty sequen
e). Let V̂s = fV̂ j V̂ is open in X̂ and V̂ �V̂n�1 and 9xn 2 V̂n�1\X su
h that V̂ \X � ��(x0;X; V0; : : : ; x�n; V̂n�1\X)g.Let V̂�s be a point-�nite re�nement su
h that diam(V̂ �) < 2�n for every V̂ � 2 V̂�s .By the axiom of 
hoi
e 
hoose now for every V̂ � an xn(V̂ �) 2 V̂n�1 \ X su
hthat V̂ � \ X � � � (x0;X; : : : ; xn(V̂ �); V̂n�1 \ X). Then put s_(xn(V̂ �); � �(xo;X; : : : ; xn(V̂ �); V̂n�1 \X); V̂ �)) in S for all V̂ � 2 V̂�s . One 
an easily provethat the so 
onstru
ted tree has all the properties. For example to see thatX\V̂n�1 � S V̂�s , note that we put in neighborhoods for every point ofX\V̂n�1.q.e.d. ClaimFix a tree with all these 
onditions and letWn =[fV̂n j ((x0; V0; V̂0); : : : ; (xn; Vn; V̂n)) 2 Sg:Then Wn is open and, using X \ V̂n�1 � S V̂s, one 
an prove by an easyindu
tion that X �Wn. It remains to show that TnWn � X.Let x̂ 2 TnWn. Consider the subtree Sx̂ of S 
onsisting of all sequen
es((x0; V0; V̂0); : : : ; (xn; Vn; V̂n)) 2 S for whi
h x̂ 2 V̂n. This is a tree sin
e x̂ 2V̂n � V̂i for all i < n. Sin
e x̂ 2 TnWn, Sx̂ is in�nite. By the pre
eding
onditions on S it is also �nite splitting. So, by K�onig's Lemma, [Sx̂℄ 6= ;.Say ((x0; V0; V̂0); (x1; V1; V̂1); (x2; V2; V̂2); : : :) 2 [Sx̂℄. Then (X;x0); V0; x1; (V̂0 \
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es as strong Choquet spa
es 47X;x1); V1; (V̂1; x2); V2; : : :is a run of GsX 
ompatible with �, so Tn V̂n \X 6= ;.In parti
ular there is a point of X in Tn V̂n and by 
onstru
tion x̂ 2 Tn V̂n. Butthese two points must 
oin
ide with ea
h other sin
e diam(V̂n) < 2�n. Thusx̂ 2 X.Given a se
ond 
ountable metrizable spa
e X we 
an 
onsider the 
omple-tion X̂, that is, a se
ond 
ountable 
omplete metrizable spa
e X̂ su
h that Xis a subspa
e of X̂ and X is dense in X̂ . Su
h a 
ompletion exists for everymetrizable spa
e.Theorem 4.2.10. Let (X; d) be a metri
 spa
e. Then there exists a unique,up to isometry, 
ompletion (X̂; d̂) of (X; d). If X is separable, the 
ompletionX̂ is also separable. In parti
ular, a 
ompletion of a separable metri
 spa
e isa Polish spa
e.A proof for this theorem 
an be found in [Kura66, Ch. III, x 33, VII℄ wherethis theorem is 
alled Hausdor� Theorem sin
e Hausdor� proved it in [Haus65,p. 135℄. We have already seen in Theorem 1.14 that GÆ subsets of Polish spa
esare again Polish. So X in the above Theorem 4.2.9 is a Polish spa
e. Togetherwith the Hausdor� Theorem 4.2.10 we thus know that a separable metrizablestrong Choquet spa
e is a Polish spa
e.Furthermore by Lemma 1.3 a metrizable spa
e is a regular T1 spa
e. Toget the di�erent 
hara
terization of a Polish spa
e we will state now Urysohn'sMetrization Theorem that asserts the 
onverse for se
ond 
ountable topologi
alspa
es.Theorem 4.2.11 (Urysohn Metrization Theorem). Let X be a se
ond
ountable topologi
al spa
e. Then X is metrizable i� X is T1 and regular.A proof for this theorem 
an, for example, be found in the books of the Pol-ish topologists R. Engelking [Enge68, Ch.4 x2, Theorem 4℄ or K. Kuratowski[Kura66, Ch.2, x22, II, Theorem 1℄.If we put now together all these results, we get, by using AC, the following
hara
terisation of a Polish spa
e. Note, that we did not use AC to prove thata Polish spa
e is strong Choquet, T1 and regular. This is only required for the
onverse.Theorem 4.2.12 (AC). [Choquet℄ A nonempty, se
ond 
ountable topologi
alspa
e is Polish i� it is T1, regular and strong Choquet.This is the 
hara
terization of Polish spa
es we will mainly use for our
hara
terization of the proje
tive sets.



Chapter 5The s
ale property andproje
tive ordinalsIn Se
tion 2.3 we introdu
ed norms and s
ales and mentioned that these 
on-
epts get more interesting if we examine norms (and s
ales) of a 
ertain 
om-plexity, that is, roughly speaking, the asso
iated prewellorderings should be in
ertain point
lasses (for the exa
t de�ntion see De�nitions 5.1.1 and 5.1.10).The point
lasses we 
onsider will be the point
lasses that o

ur in the proje
-tive hierar
hy. So we will de�ne �-norms and �-s
ales for point
lasses � fromthe proje
tive hierar
hy and state properties of these notions mainly under theaxiom PD. The reason for 
onsidering PD here is that one of the great assetsof PD is that one 
an show that a lot of pointsets in the proje
tive hierar
hyadmit �-s
ales. We also introdu
e a bound for the length of su
h a �-norm.This will be the proje
tive ordinals Æ1n.We proved in Theorem 2.3.7 that the pointsets of the Baire spa
e that admit�-s
ales are �-Suslin sets. So the results under PD lead to a lot of examples of�-Suslin sets where � is an ordinal related to the proje
tive ordinals. The goalof the �rst se
tion is to prove that �1n sets are su
h �-Suslin sets.In the se
ond se
tion we will take a 
loser look at the proje
tive ordinals.It will turn out that these ordinals are under the axiom AD in fa
t regularsu

essor 
ardinals.5.1 The prewellordering and s
ale properties underPDDe�nition 5.1.1. Let � be a point
lass. Let X be a Polish spa
e and A � X.A norm ' : A �! Ord is 
alled a �-norm if there are relations ��';���'� X�Xin �; �� respe
tively su
h that for every y we havey 2 A) 8x[x 2 A ^ '(x) � '(y), x ��' y , x ���' y℄A point
lass � has the prewellordering property (or is normed) if eyerypointset in � admits a �-norm. 48



Chapter 5. The s
ale-property 49Sin
e we are here only interested in proje
tive sets we will only 
onsiderpoint
lasses � that o

ur in the proje
tive hierar
hy. For this reason we de-noted in the above de�nition and will denote in the following all point
lasseswith boldfa
e letters. Of 
ourse in general this de�nition applies not only forboldfa
e point
lasses if we understand by this point
lasses 
losed under 
ontin-uous preimages.Noti
e that for a set A 2 � (where � is �1n or �1n) the de�ning prop-erty for a norm ' being a �-norm is stronger than requiring that the asso
i-ated prewellordering �' is in � but weaker than insisting that �' is in �.On the other hand the de�nition implies that a �-norm ' on A 2 � is al-ready a �-norm, sin
e interse
ting the two relations ��';���' with A gives theprewellordering �' and this is therefore in� and 
an serve as ��';���'. Despitethe simpli
ity of this argument we put this down as a Proposition sin
e we willuse this fa
t more often.Proposition 5.1.2. Let � be �1n or �1n. Every �-norm on a pointset A 2 �is a �-norm.Proof. Let ' be a �-norm on a� set A � X and let ��';���' be two relations in�; �� respe
tively with the de�ning properties for ' being a �-norm. We wantto show that �'=��' \A�A =���' \A�A and has also the de�ning property.We �rst prove that ��' \A�A =�'=���' \A�A:\�" Let (x; y) 2��' \A � A. Then (x; y) 2 A � A and '(x) � '(y). Thus(x; y) 2�'.\ �"Let (x; y) 2�'. Then x 2 A; y 2 A and '(x) � '(y). Therefore (x; y) 2��'\A�A.The proof for ���' is exa
tly the same. So �'2�.Next we show that �' has indeed the de�ning property. For this let y 2A; x 2 X. We have to showx 2 A ^ '(x) � '(y) , (x; y) 2��' \A�A\)" x 2 A ^ '(x) � '(y) ) (x; y)n 2��' ^(x; y) 2 A�A) (x; y) 2��' \A�A\(" (x; y) 2��' \A�A ) x 2 A ^ '(x) � '(y)Analogous for ���'.So �'2� and has the de�ning property for ' being a �-norm.Even if in general it is not true that a �-norm on a pointset A 2 � is in �,this holds for initial segments of the asso
iated prewellordering:Lemma 5.1.3. Let � be �1n or �1n and let ' : A �! j�'j be a regular �-normon some pointset A 2 �. Then for � < j�'j the sets A� = fx j '(x) � �g andA<� = fx j '(x) < �g, initial segments of the prewellordering �', are in �.In parti
ular, A = S�<j�'jA� with ea
h A� in �.



Chapter 5. The s
ale-property 50Proof. The norm ' on A is a surje
tive mapping. Choose for � < j�'j some yin A su
h that '(y) = �. Thenx 2 A� , x ��' y, x ���' ySimilar for A<�: x 2 A<� , x ��' y ^ :y ���' x, x ���' y ^ :y ��' xThere are two other relations asso
iated to a norm ' on a subset A of somePolish spa
e X that will be of spe
ial interest. We extend the prewellordering�' to a relation to all of X by putting all points from X nA above all the pointsfrom A. This gives us the relations ��'; <�' de�ned by:x ��' y , x 2 A ^ [y 62 A _ '(x) � '(y)℄x <�' y , x 2 A ^ [y 62 A _ '(x) < '(y)℄Proposition 5.1.4. Let � be �1n or �1n and let ' be a norm on some A in �.Then ' is a �-norm i� the relations ��'; <�' are both in �.Proof. Let ' be a �-norm on A. Let ��';���' be two relations with the de�ning
onditions for ' being a �-norm.(1) x ��' y , x 2 A ^ [x ��' y _ : y ���' x℄Proof: \) \ Let x ��' y. Then x 2 A. If y 2 A then '(x) � '(y), sox ��' y. If y 62 A we want to show that : y ���' x. But y ���' x implies y 2 A.So this would lead to a 
ontradi
tion.\(" Let x 2 A and x ��' y _ : y ���' x.Case 1: y 2 A. If x ��' y then '(x) � '(y) and we are done. If : y ���' y ,: y 2 A _ :'(y) � '(x). Sin
e we have y 2 A we must have :'(y) � '(x).Sin
e ' is a norm on A it must be that '(y) > '(x), thus x ��' y.Case 2: y 62 A implies by de�nition of ��' that x ��' y. q.e.d.(1)(1) proves that ��' is indeed a relation in �. The up
oming (2) proves it forthe relation <�'.(2) x <�' y , x 2 A ^ : y ���' xProof: \ )" Let x <�' y. Then x 2 A. If y 62 A and would have y ���' xthis would lead to a 
ontradi
tion sin
e y ���' x implies y 2 A. If y 2 A and'(x) < '(y) we have x <��', so 6= y ���' x.\(" Same as in the proof of (1). q.e.d.(2)Let for the 
onverse ��'; <�' be in �. De�ne the relations ��';���' byx ��' y , x ��' yx ���' y , : y <�' x



Chapter 5. The s
ale-property 51By this de�nition ��' is in � and ���' is in ��. Let y 2 A. Thenx ��' y , x ��' y , x 2 A ^ '(x) � '(y)Thus ��' has the wanted property.Now for ���'. Let y 2 A. If x 2 A and '(x) � '(y), then x ��' y, so: y <�' x. Suppose for the 
onverse that we have : y <�' x. Assume x 62 A,then y <�' x sin
e y 2 A. A 
ontradi
tion. So x 2 A. Therfore x ��' y andthis implies '(x) � '(y). This proves that ���' has the de�ning property for 'being a �-norm.Of 
ourse we are now interested in point
lasses of the proje
tive hierar
hywhi
h are normed. It is known that �11 and �12 are normed 
lasses (
f.[Mos
80,4B.2, 4B.3℄). One of the great assets of PD is that under PD for ea
h of theproje
tive 
lasses, the 
lass has or does not have the prewellordering property.This result is due to Mos
hovakis and proved by his \First Periodi
ity Theorem"[Mos
80, 6B.1℄.Theorem 5.1.5 (PD). For all n � 0 the following holds: �12n+1 and �12n+2have the prewellordering property and �12n+1 and �12n+2 do not have the pre-wellordering property.Next we will de�ne the proje
tive ordinals. They serve as an upper boundfor the length of a �-norm on a set in �. It will turn out later that they willbe the length of the basis for the topology we de�ne on the �1n sets.De�nition 5.1.6. For all n � 1 the proje
tive ordinals Æ1n are de�ned as:Æ1n = supf� j � is the length of a �1n prewellordering of NgWe will give �rst some basi
 fa
ts about the proje
tive ordinals.Proposition 5.1.7. Let � be �1n or �1n for n � 1.(a) Æ1n is a limit ordinal that is not attained by a �1n prewellordering of N .(b) Every �1n-norm on a �1n set has length less than Æ1n.(
) Every �-norm on a � set has length less or equal Æ1n.(d) For every � < Æ1n there exists a �1n prewellordering of N of length �.(e) 
f(Æ1n) > !Proof. (a) Assume Æ1n is a su

essor ordinal. This implies in parti
ular thatthere is a prewellordering � of N of length Æ1n. Let ' be the asso
iated rankfun
tion. Sin
e Æ1n � ! (for example x � y , x(0) � y(0) is a�11 prewellorder-ing of length !) we have the following bije
tionf : Æ1n �! Æ1n + 1� 7�! 8><>:Æ1n if � = 0�� 1 if 0 < � < !� if � � !



Chapter 5. The s
ale-property 52Now f Æ' : N �! Æ1n+1 is a regular norm. Pi
k an a 2 N su
h that '(a) = 0.Then the prewellordrering �fÆ' is given byx �fÆ' y , (x � y ^ y � x)_ (y � a ^ a � y)_ :(x � a ^ a � x ^ y � a ^ a � y) ! x � ySo we just de�ned a �1n prewellordering of N of length Æ1n + 1. This 
ontra-di
ts our assumption and tells us furthermore that Æ1n is not attained by a �1nprewellordering of N .(b) We show �rst that by Theorem 2.2.3 it is enough to 
onsider a �1nsubset of N . Let X be a Polish spa
e and A � X be a �1n subset of X togetherwith a �1n norm '. There exists by 2.2.3 a 
ontinuous bije
tion b between a
losed subset of N and the Polish X and we 
an use this bije
tion to pull ba
kthe �1n prewellordering �' of A to a �1n prewellordering of the same lenght ofthe �1n subset b�1[A℄ of N sin
e the point
lass �1n is 
losed under 
ontinuouspreimages.So let ' : A �! � be a �1n-norm on A � N . If A = N we are donewith (a). Otherwise 
onsider the �1n prewellordering �' of A. De�ne then aprewellordering � of N byx � y , x �' y _ y 62 AThis prewellordering is �1n and has length �+ 1. Thus � < Æ1n by (a).(
) Let A be a � set and ' be a regular �-norm. By Lemma 5.1.3 the setsA� for � < j'j are in�1n. Interse
ting �' with A� gives us a �1n-norm on A�.Thus by (b), � has to be less than Æ1n. Sin
e j'j = sup�<j'j � we have j'j � Æ1n.(d)Let � < Æ1n. Then there exists an ordinal � > � and a�1n prewellorderingon N of length � (by the de�nition of the proje
tive ordinals). De�ne now aprewellordering �� on N byx �� y , (x; y) 2� \N<� �N<� _ :x 2 N<�there N<� = fx j '(x) < �g.From Lemma 5.1.3 we know thatN<� is in�1n. Thus�� is a�1n prewellorder-ing with regular asso
iated norm'� : N �! �x 7�! (0 if x 62 N<�'(x) otherwiseThus the length of �� equals �.(e) Let (�i)i2! be a sequen
e of ordinals< Æ1n. Let �i be a�1n prewellorder-ing of N with j�ij = �i. Consider the following two homeomorphisms�i : N �! N(i)x 7�! (i)_x



Chapter 5. The s
ale-property 53and � : N �! Xi2! N(i)x 7�! xwhere we understand byPi2! N(i) the topologi
al sum of the Polish spa
es N(i)whi
h are disjoint by de�nition. The mapping �i 
arries the prewellordering �ito the prewellordering ��ii of N(i). Putting together these prewellorderings ofall the N(i) we get a prewellordering of PiN(i) byx � y , x 2 N(i) ^ y 2 N(i) ^ x ��ii y_ (x 2 N(i) ^ y 2 N(j) ^ i < j)This is a prewellordering of length Pi2! �i. Also � is in �1n sin
e�= [i2! ��ii [[i<jN(i) �N(j)Pulling ba
k this prewellordering � to N with the homeomorphism � gives usthen a �1n prewellordering of N of length Pi2! �i. Thus sup�i � Pi2! �i <Æ1n. The results from this last Proposition 5.1.7 are pretty mu
h all we knowabout the proje
tive ordinals under the axioms ZF + DC. And even if wework in addition under the assumption of PD we are not able to prove a lotmore. This looks di�erent if we assume the theory ZF + DC + AD and wewill 
ome ba
k to this in the next se
tion.Under 
lassi
al set theory the only result of interest left to prove is the
al
ulation of Æ11. For this we state now the Kunen-Martin Theorem, whi
h isfundamental for all of the rest of this 
hapter. A detailed proof using the notionof a good semis
ale 
an be found in [Mos
80, 2G.2℄.Theorem 5.1.8. Let � � N �N be a wellfounded relation. If � is �-Suslin,then j�j < �+.With this Theorem 5.1.8 it is now easy to prove that Æ11 = !1.Proposition 5.1.9. Æ11 = !1Proof. Let � be a �11 prewellordering of N . Then the relation � is in par-ti
ular in �11 and therefore !-Suslin by Theorem 3.1.7. So the length of theprewellordering is less than !1 by the Kunen-Martin Theorem 5.1.8. ThereforeÆ11 � !1. We proved on the other hand in Proposition 5.1.7(e) that Æ11 has
o�nality greater than !. Sin
e this is not possible for ordinals below !1 we
on
lude that Æ11 = !1.Similar to �-norms we de�ne now �-s
ales.



Chapter 5. The s
ale-property 54De�nition 5.1.10. For a point
lass � we 
all a s
ale ('n)n2! a �-s
ale if thefollowing two relations are in �:S(n; x; y) , x ��'n yT (n; x; y) , x <�'n yA point
lass � has the s
ale property or is s
aled if every pointset in �admits a �-s
ale.In parti
ular this de�nition implies that all norms in a �-s
ale are �-norms.So if for example a �1n-s
ale on a �1n set A � N exists, we thus know thatthis s
ale is a Æ1n-s
ale and by Theorem 2.3.7 the set A is Æ1n-Suslin. Similarresults hold for the point
lasses �1n and �1n. We give a result below. So we willget a whole 
lass of examples for Æ1n-Suslin sets if we know whi
h point
lassesare s
aled. The answer under PD gives us Mos
hovakis \Se
ond Periodi
ityTheorem", see [Mos
80, 6C℄.Theorem 5.1.11 (PD). The point
lasses �12n+1 and �12n+2 are s
aled for alln � 0.Using now Theorem 2.3.7 and Proposition 2.3.2 we 
an view �1n sets as�-Suslin sets:Theorem 5.1.12 (PD). For all n � 0 the following holds:(i) Every �12n+2 set is Æ12n+1-Suslin.(ii) Every �12n+1 set A is �2n+1(A)-Suslin for a 
ardinal �2n+1(A) < Æ12n+1.Proof. (i) By Proposition 2.3.2 it is enough to prove that ea
h �12n+1 set isÆ12n+1-Suslin sin
e the �12n+2 sets are by de�nition proje
tions of �12n+1 sets.But by the \Se
ond Periodi
tiy Theorem" 5.1.11 we know that ea
h �12n+1set has a �12n+1-s
ale. All the norms in this s
ale are �12n+1-norms and thushave length less or equal than Æ1n by Proposition 5.1.7(
). So all �12n+1 setsadmit Æ12n+1-s
ales and thus Theorem 2.3.7 implies that all �12n+1 sets areÆ12n+1-Suslin.(ii) Let A be a�12n+1 set andB 2 �12n su
h that A = p[B℄. Sin
eB 2�12n+1there exists by Theorem 5.1.11 a�12n+1-s
ale ('i)i2! on B. Ea
h 'i is a�12n+1-norm on B, so by Proposition 5.1.7(b) has length less than Æ12n+1. The lengthof the s
ale is supi2! j�'i j and sin
e 
f(Æ12n+1) > ! by Proposition 5.1.7(e)the sequen
e (j�'i j)i2! is bounded below Æ12n+1. Hen
e there is a 
ardinal�2n+1(A) < Æ12n+1 su
h that j�'i j � �2n+1(A) for all i 2 !. Thus ('i)i2! is a�2n+1(A)-s
ale on B. By Theorem 2.3.7 we thus know that B is �2n+1(A)-Suslinand therefore also A by Proposition 2.3.2.We 
lose this se
tion by stating a result about the length of a �1n normunder the assumption PD. In Proposition 5.1.7 we proved that the length ofsu
h a norm on a set in �1n is less or equal to Æ1n. In fa
t there are �1n setswith �1n-norms with length equal to Æ1n. These are the �1n-
omplete sets andwe de�ne this notion next.For the up
oming the point
lasses � should always stand for �1n(N ) or�1n(N ) for n � 1.
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tive ordinals under AD 55De�nition 5.1.13. Let A;B � N . A is 
alled (Wadge-)redu
ible to B,A �W B, if there exists a 
ontinuous fun
tion f : N �! N su
h that f�1[B℄ =A.We say A is �-
omplete if A 2 � and all B 2 � are redu
ible to A.The following theorem will turn out to be very helpful to us at various stagesin the rest of this paper. A proof 
an be found in [Mos
70, Theorem 8.1℄, usingfa
ts from re
ursion theory.Theorem 5.1.14 (PD). If ' is a �1n-norm on a �1n-
omplete set, then theprewellordering �' has length Æ1n.Of 
ourse it arises now the question if �-
omplete sets exist? Sin
e we willapply Theorem 5.1.14 mainly under the assumption of AD in the next se
tion,the following theorem implies a result of interest in the 
ontext of 
ompletesets.Theorem 5.1.15 (AD, Wadge's Lemma). Let A;B � N . Then eitherA �W B or B �W N nA.Proof. Consider the Wadge game WG(A;B)I x(0) x(1) : : :II y(0) y(1) : : :where I and II play integers and II wins if (x 2 A $ y 2 B). Sin
e we areworking under AD this game is determined.Assume II has a winning strategy � . If I plays x we denote the element playedby II following his strategy � by x � � . So we have x 2 A $ x � � 2 B. We
an obviously view � as a monotone mapping between the full trees on !. ByProposition 2.1.5 the fun
tionf� : N �! Nx 7�! x � �is 
ontinuous and by the property of � we have f�1� [B℄ = A. So A �W B.If I has a winning strategy � one 
an show with the same argument that B �WN n A.Corollary 5.1.16 (AD). Every set in � n� is �-
omplete.Proof. Let A 2 � n� and B 2 �. From Wadge's Lemma we have B �W Aor A �W N n B. But A �W N n B leads to a 
ontradi
tion sin
e then A isthe preimage of some ��-set and therefore also in �� (sin
e both �1n and �1n are
losed under 
ontinuous preimages).We 
on
lude from this Corollary 5.1.16 and Theorem 5.1.14 that under theassumption of AD all �1n-norms on a set in �1n n�1n has length Æ1n. One 
ouldexpe
t that a similar result is true for the 
omplete �1n sets, but we will showin Theorem 5.2.8 that this does not hold.
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tive ordinals under AD 565.2 Proje
tive ordinals under ADThe proje
tive ordinals turned out to be very important for the results of thelast se
tion. But even working under PD does not give us a lot of informationabout the proje
tive ordinals. The pi
ture looks 
ompletely di�erent if weassume AD. We will prove here that under AD the proje
tive ordinals areregular su

essor 
ardinals. Cru
ial for a proof of this is the very powerful\Coding Lemma" by Mos
hovakis that holds under AD and whi
h we willstate �rst.We mentioned before that AD 
ontradi
ts AC. The Coding Lemma allowsus now to use some sort of 
hoi
e for (a subset of) the powerset of any set Yif we have a fun
tion from an ordinal �, that 
an be 
oded by a wellfoundedrelation (or more exa
t by the asso
iated rank fun
tion), to the powerset ofY . Furthermore the Coding Lemma assures that if � is 
oded by an �1n well-founded relation the 
hoi
e set (or rather the 
odes for the 
hoi
e set, see theexa
t de�nition below) is also in �1n. The de�nition of su
h a 
hoi
e set is thefollowing:We 
an restri
t ourselves for our purpose to spa
es of the form !k � (!!)`.Let X be su
h a spa
e and < be a stri
t wellfounded relation on some subsetS of X. Let � : S � � be the asso
iated rank fun
tion. So the elementsof S 
an be seen as 
odes for ordinals below �. Let Y be another spa
e andf : �n �! P(Y ) be any fun
tion. A 
hoi
e set for f is a subset C of Xm�Ysu
h that the following holds(i) (x0; : : : ; xm�1; y) 2 C ) x0; : : : ; xm�1 2 S ^ y 2 f(�(x0); : : : ; �(xm�1))(ii) f(�0; : : : ; �m�1) 6= ; ) 9x0 : : : 9xm�19y[�(x0) = �0 ^ : : : �(xm�1) =xm�1 ^ y 2 f(x0; : : : ; xm�1) ^ (x0; : : : ; xm�1; y) 2 C℄Theorem 5.2.1 (Coding Lemma I). Assume AD. Let m;n 2 !. Let < �X � X be a stri
t wellfounded relation in �1n of length �. Then for everyf : �m �! P(Y ) there exists a 
hoi
e set in �1n.For a proof see [Mos
80, 7D.5℄. Important to us will be the following Corol-lary, whi
h Mos
hovakis 
alls \Coding Lemma II" (see [Mos
80, 7D.6℄). It tellsus that the set of 
odes of ea
h subset of an ordinal � whi
h is 
oded by an �1nprewellordering on the reals is also in �1n. So we 
onsider now more generallyprewellorderings �0; : : : ;�m�1 on subsets S0; : : : ; Sm�1 of spa
es X0; : : : ;Xm�1respe
tively with asso
iated regular norms �0 : S0 � �0; : : : ; �m�1 : Sm�1 ��m�1. For any A � �0 � : : : � �m�1 setCode(A;�0; : : : ;�m�1) = f(x0; : : : ; xm�1) j (�0(x0); : : : ; �n�1(xm�1)) 2 Ag:Corollary 5.2.2 (Coding Lemma II). Assume AD. Let m;n 2 !. Let �0; : : : ;�m�1 be prewellorderings with lengths �0; : : : ; �m�1 on S0 � X0; : : : ; Sn�1 �Xm�1 su
h that �0; : : : ;�m�12 �1n. Then for every A � �0 � : : : � �m�1 theset Code(A;�0; : : : ;�m�1) is in �1n.
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tive ordinals under AD 57Proof. Let � be the lexi
ographi
 ordering on X = X0� : : :�Xm�1 indu
ed bythe prewellorderings �0; : : : ;�m�1 and let < be its stri
t part. For simpli
itywe write now xi �i x0i for xi �i x0i ^ x0i �i xi for 0 � i � m� 1. So we have(x0; : : : ; xm�1) < (x00; : : : ; x0m�1),x0 <i x00_ (x0 �0 x00 ^ x1 <1 x01)_ (x0 �0 x00 ^ : : : xm�2 �m�2 x0m�2 ^ xm�1 <m�1 x0m�1)and therefore < 2�1n.Consider also the lexi
ographi
al ordering on �0 � : : : � �m�1 and let h i :�0 � : : : � �m�1 �! � be the isomorphism of this ordering to its order-type. Then the asso
iated regular norm � of < is given by �(x0; : : : ; xm�1) =h�1(x1); : : : ; �n(xm)i. Let nowf : � �! P(!)h�0; : : : ; �m�1i 7�! (f1g if (�0; : : : ; �m�1) 2 Af0g if (x0; : : : ; �m�1) 62 ALet C � X � ! be a 
hoi
e set for f in �1n. We 
laim(x0; : : : ; xm�1) 2 Code(A;�1; : : : ;�m�1), 9x00 : : : 9x0m�1[x0 �0 x00 ^ : : : ^ xm�1 �m�1 x0m�1 ^ (x00; : : : ; x0m�1; 1) 2 C℄Proof of 
laim:\)"(x0; : : : ; xm) 2 Code(A;�0; : : : ;�m�1),(�0(x0); : : : ; �m�1(xm�1)) 2 A,f(h�0(x0); : : : ; �m�1(xm�1)i) = f1g)9x00 : : : 9x0m�19yx0 �0 x00 ^ : : : ^ xm�1 �m�1 x0m�1^ y 2 f1g ^ (x0; : : : ; xm�1; y) 2 Csin
e h i is a bije
tion and by (ii) of the de�nition of a 
hoi
e set)9x00 : : : 9x0m�1x0 �0 x00 ^ : : : ^ xm�1 �m�1 x0m�1 ^ (x00; : : : ; x0m�1; 1) 2 Csin
e 1 is the only element in f1g\("9x00 : : : 9x0m�1x0 �0 x00 ^ : : : ^ xm�1 �m�1 x0m�1 ^ (x00; : : : ; x0m�1; 1) 2 C)1 2 f(h�0(x00); : : : ; �m�1(x0m�1)i) by (i) of the de�nition of a 
hoi
e set)f(h�0(x00); : : : ; �m�1(x0m�1)i) = f(h�0(x0); : : : ; �m�1(xm�1)i) = f1g)(x0; : : : ; xm�1) 2 Code(A;�0; : : : ;�m�1)This proves that Code(A;�0; : : : ;�m�1) 2 �1n. Similary we prove that the
omplement of Code(A;�0; : : : ;�m�1) is in �1n by showing(x0; : : : ; xm�1) 62 Code(A;�1; : : : ;�m�1), 9x00 : : : 9x0m�1[x0 �0 x00 ^ : : : ^ xm�1 �m�1 x0m�1 ^ (x00; : : : ; x0m�1; 0) 2 C℄This proves that Code(A;�0; : : : ;�m�1) is indeed in �1n.



Chapter 5. Proje
tive ordinals under AD 58Now we are able to prove that the proje
tive ordinals are 
ardinals.Theorem 5.2.3 (AD). For all n � 1 ; Æ1n is a 
ardinal.Proof. Assume this is not true. Then let � < Æ1n and � be a prewellordering ofN of length � and f : � �! Æ1n be a bije
tion. Let � be the asso
iated regularnorm for �. De�ne the following relation <� on � by� <� # , f(�) < f(#)Thus <� is a wellordering of � of ordertype Æ1n. From the above Corollary 5.2.2we have Code(<�;�;�) 2�1n.But Code(<�;�;�) = f(x1; x2) 2 N 2 j'(x1) <� '(x2)g= f(x1; x2) j f('(x1)) < f('(x2))gis a prewellordering of N of length Æ1n whi
h 
ontradi
ts 5.1.7(b).To prove now that the proje
tive ordinals are su

essor 
ardinals we haveto examine more 
losely the relations between pointsets from the proje
tivehierar
hy and �-Suslin sets (
f. Theorem 2.3.7 and Theorem 5.1.12) as well asbetween su
h pointsets and the �-Borel sets (
f. Se
tion 2.5) under the axiomAD. In parti
ular, we will prove a genaralization of Theorem 3.1.11 in whi
h weshow that �12n+1 = BÆ12n+1 . We proved in Theorem 3.1.11 that the �11 subsetsof N are exa
tly the Borel sets of the Baire spa
e. By de�nition we 
all Borelsets also !1-Borel sets and !1 = Æ11 by Proposition 5.1.9. So we 
an restateTheorem 3.1.11 as BÆ11 =�11:This statement remains true under AD if we repla
e the lower 1 by any oddinteger.Theorem 5.2.4 (AD). BÆ12n+1(N ) =�12n+1(N ) for n � 1.Proof. \�" Let A 2�12n+1. The N nA 2�12n+1 and by Theorem 5.1.12 thereis a 
ardinal � < Æ12n+1 su
h that A and N nA are �-Suslin. By Corollary 2.5.5A 2 B�+ � BÆ12n+1 .\�" It suÆ
es to show that �12n+1 is 
losed under unions of length stri
tlysmaller than Æ12n+1. Assume towards a 
ontradi
tion that there is a # < Æ12n+1minimal su
h that a sequen
e (A�)�<# with A� 2 �12n+1 for � < # exists andA = S�<#A� 62�12n+1. Sin
e �12n+1 is 
losed under 
ountable unions # has tobe un
ountable and obviously be a limit ordinal. Without loss of generality we
an assume that for all � < � < #, we have that A� � A� and A� = S�<�A� if� is a limit ordinal smaller than #.(1) A is in �12n+1.Proof: Let � be a �12n+1 prewellordering of N of length # and ' be theasso
iated regular norm. Consider now the following mapping:f : # �! P(N )� 7�! fz j z is a �12n+1-
ode for A�g
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tive ordinals under AD 59By a �12n+1-
ode we mean the following: Let W be a N -universal set for�12n+1(N ), let V be a N -universal set for �12n+1(N ) and let h i be a homeo-morphism between N and N �N . If hzi = (z1; z2) and Wz1 = Vz2 we denotethis set by Dz and say z is a 
ode for this �12n+1 set.Let C now be a 
hoi
e set for f in �12n+1 (that exists by the Coding Lemma5.2.1). Then x 2 A , 9y9z[(y; z) 2 C ^ x 2 Dz℄\)" Let x 2 A. Then there is an � < # su
h that x 2 A�. Sin
e W;V areuniversal sets there exists a 
ode z 2 N su
h that A� = Dz. So f(�) 6= ;.Thus there exists an y 2 N and z 2 N su
h that '(y) = � and z 2 f(�) and(y; z) 2 C by de�nition of the 
hoi
e set. But z 2 f(�) implies Dz = A�.\(" Now let y; z be su
h that (y; z) 2 C ^ x 2 Dz. By de�nition of a 
hoi
eset z 2 f('(y)) where '(y) is some ordinal less than #. By de�nition of f , z
odes then the set A'(y). So x 2 A'(y), in parti
ular, x 2 A.This proves that A is a �12n+1 set. q.e.d. (1)Sin
e A is not in �12n+1, we know by Corollary 5.1.16 that A is �12n+1-
omplete. We get now a 
ontradi
tion to the prewellordering Theorem 5.1.5 byde�ning a �12n+1-norm on A. Be
ause then we get a �12n+1 prewellordering forevery �12n+1 subset B of N by transfering the prewellordering of A to B witha 
ontinuous fun
tion witnessing B �W A.De�ne the norm  on A by : A �! #x 7�! the minimal � su
h that x 2 A�+1 nA�(2)  indu
es a �12n+1 prewellordering on A.Proof: We use the 
hara
terization of Proposition 5.1.4.x �� y , 9� < # [x 2 A�+1 nA� ^ y 62 A�℄x <� y , 9� < # [x 2 A�+1 nA� ^ y 62 A�+1℄Therefore �� and <� are unions of less than # many �12n+1 sets. With thesame argument as in (1) one shows that �� and <� are in �12n+1.We 
an now prove that the proje
tive ordinals are su

essor 
ardinals. Were
olle
t before the results from se
tion 2.6 about the relation between �-Suslinsets and �++-Borel sets as well as �+-Borel sets. We proved there that a �-Suslin subset of the Baire spa
e is �++-Borel and if � is of 
o�nality greaterthan ! then the �-Suslin set is even a �+-Borel set. First we show that the Æ1n'sare su

essor 
ardinals if n is odd.Theorem 5.2.5 (AD). For all n � 0, Æ12n+1 = �+2n+1 where �2n+1 is a 
ardinalof 
o�nality !.Proof. Let �2n+1 < Æ12n+1 be the smallest 
ardinal su
h that all �12n+1-sets are�2n+1-Suslin. (Su
h a �2n+1 exists, 
f. 5.1.12.)(1) �+2n+1 = Æ12n+1
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tive ordinals under AD 60Proof: Assume �++2n+1 � Æ12n+1. Sin
e every �12n+1-set is �12n+1-Suslin, usingTheorem 2.5.6 and Theorem 5.2.4 we get �12n+1 � B�++2n+1 � BÆ12n+1 = �12n+1,a 
ontradi
tion. q.e.d.(1)(2) 
f(�2n+1) = !Proof: Assume 
f(�2n+1) > !. Using theorem 2.5.8 we get �12n+1 �B�+2n+1 = BÆ12n+1 =�12n+1, a 
ontradi
tion. q.e.d.(2)An appli
ation of Theorem 5.1.14 and the Kunen-Martin Theorem 5.1.8 forthe 
onverse proves now that the Æ12n+2's are the su

essors of the Æ12n+1's.Theorem 5.2.6 (AD). For all n � 0, (Æ12n+1)+ = Æ12n+2.Proof. \�" Let ' be a �12n+1-norm on a �12n+1-
omplete set. By theorem5.1.14 the length of ' is Æ12n+1. Thus there exists a �12n+2 prewellordering ofN of length Æ12n+1(indu
ed by the prewellordering on the �12n+1-
omplete set).So we have Æ12n+1 < Æ12n+2 and sin
e the proje
tive ordinals are 
ardinals weget (Æ12n+1)+ � Æ12n+2\�" Let � be a prewellordering of R with � 2�12n+2 � �12n+2. It follows fromtheorem 5.1.12 that � is Æ12n+1-Suslin. By the Kunen-Martin theorem we havej�j < (Æ12n+1)+. Thus Æ12n+1 � (Æ12n+1)+.From this last Theorem 5.2.6 it is 
lear that for all odd integers n we haveÆ1n < Æ1n+1. For the even integers this follows from the fa
t that the proje
tiveordinals are of 
o�nality greater than ! and Theorem 5.2.5.Theorem 5.2.7 (AD). For all n � 1, Æ1n < Æ1n+1.Proof. For all odd integers this follows from Theorem 5.2.6. Let n = 2m beeven. Assume Æ12m = Æ12m+1. Using Theorem 5.2.5 and Theorem 5.2.6 we getÆ12m+1 = �+2m+1 = Æ12m = (Æ12m�1)+. Therefore we have Æ12m = �2m+1 but this
an not be true sin
e �2m+1 has 
o�nality ! and 
f(Æ12m) > ! by Proposition5.1.7.We already mentioned that we 
an not prove a result similar to Theorem5.1.14 for the point
lasses �1n. Under AD a simple appli
ation of the Kunen-Martin Theorem 5.1.8 even proves that all �1n prewellorderings or even �1nwellfounded relations have length less than Æ1n.Theorem 5.2.8. For all n � 1,Æ1n = f� j � is the length of a �1n wellfounded relation g:In parti
ular has any �1n wellfonded relation length less than Æ1n.Proof. Sin
e every �1n prewellordering is a �1n wellfounded relation there isnothing to prove for the \�"-dire
tion.So let � be a �1n wellfounded relation. For n even � is Æ1n�1-Suslin byTheorem 5.1.12 and therefore, by the Kunen-Martin Theorem, the length of �is less than (Æ1n�1)+ and this equals Æ1n by Theorem 5.2.6.For n odd � is �n-Suslin with �n < Æ1n (again by Theorem 5.1.12) and soj�j < �+n � Æ1n by Theorem 5.1.8
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tive ordinals under AD 61We �nish this 
hapter by showing that all proje
tive ordinals are regular
ardinals. For the proof we have again to rely on the Coding Lemma 5.2.1.Theorem 5.2.9 (AD). For all n � 1, Æ1n is regular.Proof. Assume towards a 
ontradi
tion that there is a 
o�nal mapping g : � �!Æ1n for some � < Æ1n. Let � be a �1n prewellordering on N of length � withasso
iated 
anoni
al norm '. Let U � N 3 be a universal set for �1n(N �N ).We will de�ne a �1n-wellfounded relation � on N 3 of length greater or equalÆ1n. But this 
ontradi
ts our last Theorem 5.2.8.Consider �rst the following fun
tion:f : � �! P(N )� 7�! fx j Ux is a �1n-wellfounded relation of length g(�)gNote that f is de�ned sin
e there exists for all � < � a �1n-prewellordering oflength f(�). Let C � N �N be a 
hoi
e set (su
h a 
hoi
e set exists Theorem5.2.1) for f in �1n and de�ne the relation � on N 3 by:(x; y; z) � (x0; y0; z0) , x = x0 ^ y = y0 ^ (x; y) 2 C ^ (z; z0) 2 UyObviously this relation is �1n. And � is also wellfounded, be
ause if we assumethat there is an in�nite des
ending 
hain (x0; y0; z0); (x1; y1; z1); : : : with respe
tto � we have x := x0 = x1 = : : : ; y := y0 = y1 = : : : and z0; z1; : : : is an in�nitedes
ending 
hain with respe
t to Uy, but sin
e (x; y) 2 C, i.e. y 2 f('(x)), weknow that Uy is a wellfounded relation and has therefore now in�nite des
ending
hains.For all � < � there exists now an embedding(N ; Uy) �! (N 3;�)z 7�! (x; y; z)with '(x) = � and (y; x) 2 C.Hen
e we have g(�) = jUyj � j � j for all � < �. Sin
e g was a 
o�nalmapping we have j � j � Æ1n and we arrived at the 
ontradi
tion.
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Introdu
tion to Part II 63In this se
ond part we 
ome now to the main obje
tive of this work, the
hara
terization of the proje
tive sets by �ner topologies.In Chapter 1 we will prove the 
lassi
al results about a 
hara
terization ofBorel sets in Polish spa
es.Theorem 1. Let (X;T ) be a Polish spa
e. A subset A of X is a Borel set i�there exists a �ner topology t on A (i.e., t � T jA) su
h that (A; t) is a Polishspa
e.This is the prototype of results we will prove here. For the whole Chapter 6the theory ZF+DC will be suÆ
ient. Re
all that we proved under these axiomsin Proposition 4.2.5 that every Polish spa
e is a se
ond 
ountable, regular,strong Choquet spa
e with the separation property T1. We pro
eed in Chapter6 by a 
hara
terization of the analyti
 sets:Theorem 2. Let (X;T ) be a Polish spa
e. A subset A of X is analyti
 i�there exists a �ner topology t on A su
h that (A; t) is a se
ond 
ountable, strongChoquet spa
e.Trivially, a �ner topology t of a Polish topology T remains Hausdor�, so inparti
ular T1. So the only property we have to drop is that the �ner topologyis not regular any more.For 
lasses of a higher level we have to drop additional properties. We startin 
hapter 2 by proving that we do not get anywhere by dropping the strongChoquet property. So the only property that remains to be 
onsidered is these
ond 
ountable property.This will lead to the general 
hara
terization of proje
tive sets. The idea isto imitate the proofs of Theorem 2.Cru
ial for a 
onstru
tion of the �ner topology in the analyti
 
ase is that�1n sets are !-Suslin. If we would have Suslin representations of �1n sets forn > 1 we 
ould pretty mu
h imidiately 
onstru
t a �ner topology for any �1nset by the same idea as in the 
ase of the analyti
 sets. By Theorem 5.1.12 theadditional axiom PD gives us the Suslin representation for ea
h �1n set. So the�rst main result in Chapter 7 will be under the theory ZF + DC + PD the
onstru
tion of a �ner topology for ea
h �1n set su
h that this �ner topologyhas a basis of length less than Æ1n and is strong Choquet.Theorem 3 (ZF+DC+PD). Let (X;T ) be a Polish spa
e. Then there existsfor every subset A of X a �ner topology t on A whi
h has a basis of length lessthan Æ1n and is strong Choquet.The 
onverse 
an not hold under ZF+DC+PD by a result from DonaldMartin and John Steel. They proved in [MaSt89℄ that in a ZFC model within�nitely many Woodin 
ardinals1 PD holds. By the usual methods of for
ing21For a de�nition of Woodin 
ardinals see for example [Kana97, p. 360℄. Woodin provedthat the Theory ZF + AD is equi
onsistent to the theory ZFC+ there are in�nitely manyWoodin 
ardinals. Sin
e we are working here under ZF + AD we may as well assume thatthere are models of ZFC with in�nitely many Woodin 
ardinals.2An introdu
tion to for
ing is given in [Kune80℄.



Introdu
tion to Part II 64we get a generi
 extension in whi
h the Continuum Hypothesis is true. JoelDavid Hamkins and Hugh Woodin showed in [HaWo00℄ that after small for
inga 
ardinal � is Woodin i� it was Woodin in the ground model. So the generi
extension of the Martin-Steel Model is a model of ZFC+CH+PD.In this model all proje
tive ordinals have the same 
ardinality !1. So if we
onstru
t for some n � 1 by the above result a �ner topology for a subset Ain �1n+1(N ) n�1n+1 (and su
h a set exists by Proposition 3.1.14) the 
onverseof Theorem 3 in su
h a Martin Steel Model would imply that A 2 �1n(N ) andtherefore in �1n+1(N ). But this 
ontradi
ts the assumption that A was not in�1n+1(N ).So for the 
onverse of Theorem 3 we have to assume that the proje
tive or-dinals are all ordinals of di�erent 
ardinality. This holds under ZF+DC+AD,so we 
ould hope to prove the 
onverse under this axioms. Unfortunately weare not able to give su
h a proof and have to assume the mu
h stronger axiomADR for the following 
hara
terization of proje
tive sets by �ner topologies:Theorem 4 (ZF+DC+ADR). Let (X;T ) be a Polish spa
e. A subsets A ofX is a �1n set i� there exists a �ner topology t on A su
h that t has a basis oflength less than Æ1n and t is strong Choquet.We a
tually need not really the determina
y of games on reals but ratherthe result that every set of reals has a s
ale. But, by a result of Woodin, this is,under the assumption ZF + DC, equivalent to ADR. (This result is quotedin [Kana97, Theorem 32.23℄.)



Chapter 6Chara
terization of Borel andanalyti
 sets by �nertopologies6.1 Borel setsWe start now by showing that a �ner Polish topology t on a Borel set in aPolish spa
e (X;T ) exists . In the �rst lemma we do this just for 
losed sets,so we enlarge for a 
losed set C of X the topology T to a Polish topology TCsu
h that C is open (and 
losed) with respe
t to this topology. The relativetopology TC jC is then a �ner Polish topology on C.Lemma 6.1.1. Let (X;T ) be a Polish spa
e, let C � X be 
losed. Let TC bethe topology generated by T [ fCg, that is, T [ fU \ C j U 2 T g is a basis ofTC . Then TC is a Polish topology, C is open and 
losed with respe
t to TC andB(X;TC) = B(X;T ).Proof. Consider the following mapping:id : (X;TC) �! (C;T jC)� (X n C;T j(X n C))x 7�! xBy Theorem 1.14 and Proposition 1.13 the 
losed set C and the open set X nCare Polish spa
es, and by Theorem 1.7 is the sum of this two spa
es again aPolish spa
e. To prove that TC is a Polish topology it is therefore enough toshow that id is an homeomorphism. id is obviously a bije
tion.(1) id is 
ontinuous.Proof: Let V be an open set in C� (X nC). By de�nition of the topologi
alsum V \ C is open in C with respe
t to T jC, i.e., there exists an open setU1 2 T su
h that C \ V = C \ U1. Thenid�1(V \ C) = C \ V = C \ U1 2 TC :On the other hand there must be a U2 2 T su
h that(X n C) \ V = (X n C) \ U2;65
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terization of Borel sets 66and sin
e X n C is open with respe
t to T we haveid�1((X n C) \ V ) = (X n C) \ V = (X n C) \ U2 2 T � TC :Thus id�1(V ) = (C \ U1) [ ((X n C) \ U2) 2 TC : q.e.d. (1)(2) id is open.Proof: Let U be an open set with respe
t to TC . SoU =[i Ui [[j (Uj \ C)for open sets Ui; Uj 2 T . Thenid(U) \ C =[i (Ui \ C) [[j (Uj \ C) = [k=i;jUk \ Cis open in C and by the same argument id(U)\ (X nC) is open in X nC. Thusid(U) is open. q.e.d (2)So, TC is a Polish topology on X. Now C is open and 
losed with respe
tto the new topology by de�nition of TC .It is 
lear that B(X;T ) � B(X;TC). To prove the 
onverse it suÆ
es toshow that C \ U is in B(X;T ) for every U 2 T . But every open set U is inB(X;T ) and C is as a 
omplement of an open set in B(X;T ), therefore C \Uis in B(X;T ) for every open set U 2 T .The next lemma asserts that if we have a sequen
e of �ner Polish topologiesTn on a Polish spa
e (X;T ), then the topology generated by the union of allthe open sets from the Tn is again a Polish topology on X.Lemma 6.1.2. Let (X;T ) be a Polish spa
e, (Tn)n2! be a sequen
e of Polishtopologies on X with T � Tn for all n 2 !. Then T1 is Polish where T1 is thetopology generated by Sn2! Tn. If Tn � B(X;T ), then B(X;T1) = B(X;T ).Proof. Let Xn = (X;Tn) for n 2 !. Consider the map' : X �! Yn2!Xnx 7�! (x; x; x; : : : )where Qn2!Xn stands for the topologi
al produ
t of the spa
es Xn.(1) '[X℄ is 
losed in Qn2!Xn.Proof: Let (xn)n2! 62 '[X℄. Then there exists an i < ! su
h that xi 6= xi+1.Let U be an open neighborhood of xi in X and V be an open neighborhood ofxi+1 in X with U \ V = ; (note that X is a Hausdor� spa
e). By our assump-tion is U 2 Ti; V 2 Ti+1. Therefore we have (xn)n2! 2QnWn �QnXn n '[X℄with Wi = U;Wi+1 = V and Wj = Xj for j 6= i; i + 1. Thus '[X℄ is 
losed inQn2!Xn. q.e.d. (1)
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terization of Borel sets 67(2) ' is an homeomorphism from (X;T1) to '[X℄.Proof: It is 
lear that ' is a bije
tion.The mapping ' is 
ontinuous, sin
e for Uik 2 Tik , 1 � k � n, the preimage ofQn2! Vn with Vik = Uik for 1 � k � n, Vn = Xn otherwise is the interse
tionof the Uik , so '�1 "Yn2! Vn# = n\j=1Uij 2 T1:' is open: Let fU (n)i j i 2 !g be a basis for Tn. Then fU (n)i j i 2 !; n 2 !g is asubbasis for T1. And so we get'24 k\j=1U (nj)ij 35 = Yn2! Vn \ '[X℄where Vn = U (nj)ij for n = nj, Vn = Xn otherwise. q.e.d. (2)By (1), (2) and Theorem 1.7 as well as Theorem 1.14 the spa
e (X;T1) isa Polish spa
e.The fa
t about the Borel sets is 
lear sin
e with Tn � B(X;T ) we haveT1 � B(X;T ) and therefore B(X;T1) � B(X;T ). The 
onverse in
lusionholds trivially.We 
an now put together this two lemmas to prove the existen
e of a �nerPolish topology on every Borel set in a Polish spa
e.Theorem 6.1.3. Let (X;T ) be a Polish spa
e, A � X be a Borel set. Thenthere exists a Polish topology TA � T su
h that A is open and 
losed with respe
tto TA and B(TA) = B(T ).Proof. Let S = fA � X j there exists a Polish topology TA � T su
h that A isopen and 
losed and B(TA) = B(T )g. It suÆ
es to show that S is 
losed un-der 
omplements and 
ountable unions if we show that T � S (sin
e thenB(X;T ) � S). But by 6.1.1, all open and all 
losed sets are in S, so T � S.(1) S is 
losed under 
omplements, sin
e for A 2 S the topology TA witnessesthat X nA is in S as well.(2) S is also 
losed under 
ountable unions. Let for this (An)n2! be asequen
e in S and let TAn = Tn;T1 like in the above Lemma 6.1.2. ThenA = Sn2! An is open with respe
t to T1. By 6.1.1 there exists an TA � T1 � TPolish su
h that A is open and 
losed and B(X;TA) = B(X;T1) = B(X;T ).Therefore Sn2! An 2 S.The following 
orollary states now the above Theorem 6.1.3 in the way weneed it for our 
har
terization of the Borel sets.Corollary 6.1.4. Let (X;T ) be a Polish spa
e. For every Borel set A � Xexists a �ner Polish topology t on A.
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terization of Borel sets 68Proof. Let A � X be a Borel set. By Theorem 6.1.3 there exists a �ner topologyTA on X su
h that (X;TA) is a Polish spa
e and A is 
losed and open withrespe
t to TA. So the restri
tion of TA to A is a Polish topology on A byTheorem 1.14.The following theorem is a ni
e appli
ation of Theorem 6.1.3 that readilyimplies the proof of the missing part of Proposition 3.1.5 about the di�erent
hara
terizations of analyti
 sets. It asserts that Borel sets in a Polish spa
e
an be seen as 
ontinuous images of the Baire spa
e.Theorem 6.1.5. Let (X;T ) be a Polish spa
e, A � X a Borel set. Then thereexists a 
losed subset F � N and a 
ontinuous bije
tion f : F �! A. If A 6= ;there is a 
ontinuous surje
tion G : N �! A extending f .Proof. Enlarge by Theorem 6.1.3 the topology T of X to a Polish topology TAin whi
h A is 
losed and open. Then there exists by Theorem 2.2.3 a 
losedF � N and a bije
tion f : F �! A 
ontinuous for TAjA. Sin
e T � TA wehave f : F �! A is 
ontinuous for T as well. The se
ond assertion follows from2.1.7.In Proposition 3.1.5 we 
hara
terized an analyti
 set as a 
ontinuous imageof the baire spa
e as well as a 
ontinous image of a Borel set. But we have notproved this yet. The proof is now easy. We �rst repeat the proposition.Proposition 6.1.6. Let (X;T ) be a Polish spa
e, A � X. Then the followingare equivalent:(1) A is the 
ontinuous image of a fun
tion f : N �! X.(2) A = projX [C℄ where C � X �N ; C 
losed.(3) A = projX [B℄ where B � X � Y is a Borel set, Y is a Polish spa
e.(4) A is the 
ontinuous image of a Borel set of a Polish spa
e.Proof. Comparison with the proof of Proposition 3.1.5 tells us that it remainsto show that (4) ) (1):Let h : Y �! X be a 
ontinuous mapping from a Polish spa
e Y to X and letB be a Borel set in Y su
h that h[B℄ = A. By Theorem 6.1.5 there exists a
ontinuous surje
tion g : N �! B. Then obviously the mapping g� : N �! Yde�ned by g�(x) = g(x) for x 2 N is a 
ontinuous mapping g�[N ℄ = B. Butnow the 
omposition h Æ g� is a 
ontinuos fun
tion from N to X su
h thath Æ g�[N ℄ = A.We proved by Theorem 3.1.11 and Theorem 3.1.14 that the 
lass of analyti
sets in an un
ountable Polish spa
e is larger than the 
lass of the Borel sets insu
h a spa
e. The above 
hara
terization of analyti
 sets thus implies that the
ontinuous image of a Borel set is in general not a Borel set. But we will provenow that the image of a Borel set of a 
ontinuous inje
tion is again a Borelset. This implies the 
onverse of Theorem 6.1.3. Be
ause given a Polish spa
e(X;T ) and a �ner topology t on X su
h that a set A is 
losed and open with
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terization of Borel sets 69respe
t to t we 
an 
onsider the identity mapping between (X; t) and (X;T ).This mapping is 
ontinuous sin
e t is �ner than T and the image of the Borelset A in (X; t) equals A in (X;T ) and is therefore also Borel with respe
t to T .To prove that the image of a Borel set under a 
ontinuous inje
tion is againBorel we 
onstru
t now a Lusin s
heme (
f. De�nition 2.2.1 and Proposition2.2.2). The 
onstru
tion makes again use of the 
lassi
al Lusin SeparationTheorem 2.5.3 for analyti
 sets.For the 
onstru
tion of the up
oming Lusin s
heme we need separation fora whole sequen
e of disjoint analyti
 sets. We get this by re
ursion out of theLusin Separation Theorem 2.5.3 and prove this in the following lemma.Lemma 6.1.7. Let (An)n2! be a sequen
e of pairwise disjoint analyti
 sets ina Polish spa
e. Then there are pairwise disjoint Borel sets Bn with Bn � Anfor all n 2 !.Proof. Let (An)n2! be a sequen
e of disjoint analyti
 sets. We de�ne now theBn by re
ursion.Let B0 be the Borel set that separates A0 from Sn>0An (su
h a set existsby Theorem 2.5.3).If B0; : : : ; Bn are de�ned su
h that Bi separates Ai from Sj<iBi [Sj>iAjfor all 0 � i � n, let Bn+1 be a Borel set that separates An+1 from the analyti
set Si<nBi [Sj>n+1Aj .By this de�nition we get pairwise disjoint Borel sets Bn su
h that Bn � Anfor all n 2 !.Now we 
an prove that the image of a 
ontinuous inje
tion of a Borel set isagain a Borel set.Theorem 6.1.8 (Lusin-Suslin). Let X;Y be Polish spa
es and f : X �! Ybe 
ontinuous. If A � X is Borel and f jA is inje
tive, then f [A℄ is Borel.Proof. Without loss of generality we 
an assume X = N and A � N is 
losed.(By Theorem 2.2.3 there exists a 
losed F � N and a 
ontinuous bije
tionb : F �! A that 
an be extended to a 
ontinuous surje
tion g : N �! A. Butthen f Æ g : N �! Y is 
ontinuous, f Æ gjF is inje
tive and f Æ g[F ℄ = f [A℄.)Let T be the topology of Y . Let Bs = f [A \Ns℄ for s 2 !<!. Sin
e f jA isinje
tive, (Bs)s2!<! is a Lusin s
heme where B; = f [A℄; Bs = Sn2! Bs_n andBs is analyti
. By Lemma 6.1.7 we �nd a Lusin s
heme B0s where B0s is Borelsu
h that B0; = Y;Bs � B0s. We �nally de�ne by re
ursion on length(s) Borelsets B�s su
h that (B�s )s2!<! is also a Lusin s
heme:B�; = YB�(n0) = B0(n0) \ 
lT (B(n0))B�(n0;:::;nk) = B0(n0;:::;nk) \B�(n0;:::;nk�1) \ 
lT (B(n0;:::;nk))(1) For all k 2 ! we have B(n0;:::;nk) � B�(n0;:::;nk) � 
lT (B(n0;:::;nk))Proof: By indu
tion on k. The se
ond in
lusion is 
lear by the de�nition ofthe B�s .
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 sets 70k = 0: B(n0) � B0(n0) and B(n0) � 
lT (B(n0)), so we are done.Let us assume the assumption is proved for k � 1; k � 1. ThenB(n0;:::;nk) � B0(n0;:::;nk) by the de�nition of B0B(n0;:::;nk) � 
lT (B(n0;:::;nk)) andB(n0;:::;nk) � B(n0;:::;nk�1) � B�(n0;:::;nk�1) by the assumption. q.e.d. (1)(2)f [A℄ = Tk2!Ss2!k B�sProof: Let x 2 f [A℄. Then there exists an a 2 A with f(a) = x, sox 2 Tk2! Bajk and thus x 2 Tk2! B�ajk � Tk2!Ss2!! B�s .For the 
onverse let x 2 Tk2!Ss2!! B�s . Then there is a unique a 2 N su
hthat x 2 Tk2! B�ajk (note that the sets B�s form a Lusin s
heme). Then alsox 2 Tk2! 
lT (Bajk). So in parti
ular Bajk 6= ; for all k and thus A \Najk 6= ;for all k, whi
h means a 2 A sin
e A is 
losed. So f(a) 2 Tk2! Bajk. We 
laimthat f(a) = x. Otherwise by the 
ontinuity of f there is an open neighborhoodNajk0 of a with f [Najk0 ℄ � U where U is open su
h that x 62 
lT (U). But thenx 62 
lT (f [Najk0 ℄) � 
lT (Bajk0), a 
ontradi
tion. q.e.d.(2)With this result we 
an easily �nish our 
hara
terization of Borel sets. The
onverse of Corollary 6.1.4 is no more than a 
orollary to this last Theorem6.1.8Corollary 6.1.9. Let (X;T ) be a Polish spa
e and A a subset of X su
h thatthere exists a �ner topology t on A su
h that (A; t) is Polish. Then A is a Borelset in (X;T ).Proof. Consider the identity mapping from (A; t) into (X;T ). Sin
e t is �nerthan T jA this mapping is 
ontinuous and it is obviously an inje
tion. So byTheorem 6.1.8 A is in B(X;T ).We �nish this se
tion by stating the 
hara
terization of Borel sets by �nertopologies as it is witnessed by Corollary 6.1.4 and Corollary 6.1.9.Theorem 6.1.10. Let (X;T ) be a Polish spa
e. A subset A of X is a Borelset in (X;T ) i� there exists a �ner toplogy t on A (,i.e., t � T jA) su
h that(A; t) is a Polish spa
e.6.2 Analyti
 setsOur next task is to 
onstru
t a �ner topology for ea
h analyti
 pointset of aPolish spa
e su
h that the topology is se
ond 
ountable and strong Choquet.By �ner we understand again �ner as the restri
tion of the topology of thePolish spa
e to the analyti
 subset. It is suÆ
ient to �nd su
h �ner topologiesfor the analyti
 subsets of the Baire spa
e by the following general argument:Remark 6.2.1. To prove that for n 2 ! ea
h �1n subset A of a Polish spa
e(X;T ) has a topology t su
h that
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terization of analyti
 sets 711. t � T jA2. t has a basis of length a 
ardinal �3. t is strong Choquetit suÆ
es to prove that ea
h �1n subset of the Baire spa
e N has a topology withthese properties.Proof. Let A be a �1n subset of a Polish spa
e (X;T ). By Theorem 2.2.3 thereexists a 
losed set C in N and a 
ontinuous bije
tion b : C �! X. Sin
e �1nsets are 
losed under 
ontinuous preimages (Theorem 3.1.10) the set b�1[A℄ is�1n in C and also in N . Now the �ner topology (or just a basis of it) of thisset 
an be transferred by the bije
tion b into the set A. It is 
lear that allthe properties of the topology on b�1[A℄ are then properties of this transferredtopology sin
e this is a one-to-one transfer.We will pro
eed by 
onstru
ting a basis for su
h a topology of an analyti
set A in the Baire spa
e and 
he
k then all the properties of the so 
onstru
tedtopology. A basis B for a topology on a set A is 
hara
terized by the proper-ties that the interse
tion of two members of B 
an be written as the union ofmembers of B and that the union of all members of B equals the whole set A.Sin
e analyti
 sets are 
losed under �nite interse
tions the set of all analyti
subsets of A would be a 
andidate for su
h a basis. This may lead to a desiredtopology but the length of this basis is very large. Under AC, this basis has forthe most analyti
 sets the length of the 
ontinuum. Therefore su
h a topologywill never lead to a 
hara
terization of the analyti
 sets by �ner topologies sin
ewe 
an easily de�ne topologies with this properties for any subset of the Bairespa
e. So we are interested in a basis with a length as short as possible. Sin
eour topology should be �ner than the topology of the Baire spa
e the basismust at least have length !.By Proposition 3.2.7 we know that ea
h �11 subset of the Baire spa
e is in�11(a) for a real a. Consider a 2 !! su
h that A 2 �11(a). This set �11(a) is
ountable and 
ontains all basi
 open sets as well as A. Furthermore, �11(a) is
losed under �nite interse
tions by Proposition 3.2.5(a). So a natural 
andidatefor a basis of the �ner topology on A would be the set of all subsets of A whi
hare in �11(a). The only thing to 
he
k for this topology is the strong Choquetproperty.We will prove below that this topology has indeed the strong Choquet prop-erty. This fa
t makes this topology also interesting for other works in des
riptiveset theory, see for example [HKeL90℄. In the paper of Harrington, Ke
hris, andLouveau the topology where the �11 sets of N serve as a basis is 
alled Gandy-Harrington topology. We 
onsider here a relativized version of it. The proofthat the Gandy-Harrington topology is strong Choquet 
an also be found in[HKeL90℄.Cru
ial for the proof that the Gandy-Harrington topology is strong Choquetis the tree representation from Proposition 3.2.10. Before we start with the proofwe remind on a notation 
onne
ted with trees. In generalization of De�nition
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terization of analyti
 sets 722.3.6 we de�ne for a tree T on !�! and (s; t) 2 T the subtree of the 
ompatiblesequen
es of T byT(s;t) = f(s0; t0) 2 T j (s0; t0) � (s; t) _ (s0; t0) � (s; t)g:It is 
lear that if T is re
ursive in some a then T(s;t) is re
ursive in a.Theorem 6.2.2. Let (X;T ) be a Polish spa
e. Let A 2 �11(X). Then thereexists a �ner topology t on A su
h that t is se
ond 
ountable and strong Choquet.Proof. By Remark 6.2.1 we 
an assume X = N .Let Bt = fB j B � A and B is �11(a)g. Sin
e the interse
tion of two �11(a)sets is again �11(a) by Proposition 3.2.5 and sin
e SBt = A (A 2 Bt) the set Btserves as a basis for a topology. Let t be the topology on A generated by Bt. Itis 
lear that this topology re�nes the relative topology of the Baire spa
e on A,sin
e the basis open sets in N are �01 (
f. Example 3.2.3 ). It is also 
lear thatBt is 
ountable sin
e �11(a) is 
ountable (
f. the dis
ussion below Proposition3.2.5).It remains to show that t is strong Choquet. We will des
ribe a winningstrategy for II in the strong Choquet game in (A; t):(i) Suppose I starts by playing (x0; U0). Then let A0 2 �11(a) su
h thatx0 2 A0 � U0 and let T0 be a tree re
ursive in a su
h that A0 = p[T0℄. Sin
ex0 2 A0 there is an y0 2 N su
h that (x0; y0) 2 T0. (y0 is a witness for x0 beingin p[T0℄) Now let s0 = x0j1; t00 = y0j1. The tree (T0)(s0;t00) is re
ursive in a. Letplayer II play V0 = p[(T0)(s0;t0o)℄. This set is �11(a), x0 2 V0 and V0 � A0 � U0.(ii) Let I's next move be (x1; U1) with x1 2 U1 � V0� Sin
e x1 2 V0 there exists a witness y00 2 N su
h that (x1; y00) 2 [(T0)(s0;t00)℄.Set s1 = x1j2; t01 = y00j2. Then s0 � s1; t00 � t01. (T0)(s1;t01) is again a treere
ursive in a and x1 2 p[(T0)(s1;t01)℄ � V0.� Let A1 2 �11(a) su
h that x1 2 A1 � U1 and let T1 be a tree re
ursive ina su
h that p[T1℄ = A1. Sin
e x1 2 A1 there is a witness y1 2 !! su
hthat (x1; y1) 2 [T1℄. Set t10 = y1j1. Then x1 2 p[(T1)(s0;t10)℄ � U1.Player II answers this move from player I by playingV1 = p[(T0)(s1;t01)℄ \ p[(T1)(s0;t10)℄.Pro
eeding this way, when I plays (x0; U0); (x1; U1); : : : II produ
es V0; V1; : : :with U0 � V0 � U1 � V1 � : : : ; xn 2 Vn and moreover one de�nes for ea
h na re
ursive tree Tn with xn 2 An = p[Tn℄ � Un and sequen
es s0 � s1 � s2 �: : : ; tn0 � tn1 � : : : with (sk; tnk) 2 Tn su
h that for ea
h k the �nite sequen
essk; tnk have length k+1 and Vk = p[(T0)sk;t0k)℄\p[(T1)(sk�1;t1k�1 ℄\: : :\p[(Tk)(s0;tko)℄.By this 
onstru
tion we get indeed a winning strategy for player II. Letx = Sk2! sk 2 !!. We 
laim that x 2 TAn = TVn. So player II wins thestrong Choquet game
 sin
e the interse
tion of the open sets he played is notempty. To prove the 
laim 
onsider An = p[Tn℄. Let yn = Sk2! tnk . We have(sk; tnk) 2 Tn for all k. Therefore (x; yn) 2 [Tn℄, so x 2 p[Tn℄ = An.
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terization of analyti
 sets 73Obviously our version of the Gandy-Harrington topology is Hausdor� sin
eit is a re�nement of a Hausdor� topology. We have seen in Proposition 4.2.5that every Polish spa
e is a se
ond 
ountable, regular, strong Choquet spa
ewith the Hausdor� property. So we only property we had to drop for our �nertopology is the property that the topology is regular. The following remarkasserts that the (relativized) Gandy-Harrington topology is indeed not regular(otherwise we would have made a mistake).Remark 6.2.3. The (relativized) Gandy-Harrington topology is not regular.Proof. Let t be the topology on N where all �11(a) sets serve as a basis for ana 2 !!. By Proposition 3.2.6 and Proposition 3.1.14 there exists a �11(a) set Pin N whi
h is not �11. With respe
t to the topology t this set P is 
losed.Assume towards a 
ontradi
tion that t is regular. So for every point x 62 Pexists a open neighborhood V of x su
h that the 
losure of V does not interse
tP . Without loss of generality we 
an 
hoose basi
 open sets for these openneighborhoods. Sin
e the topology t is se
ond 
ountable this are only 
ountablemany sets. The 
ountable union of the 
losures of these sets is in�11 by Theorem3.1.10 and equals N nP . Therefore P as a 
omplement of an �11 set is �11, butthis 
ontradi
ts our 
hoi
e of P .To get now a 
hara
terisation of the analyti
 sets we will prove the 
onverseof Theorem 6.2.2. It will be ne

essary for the proof that player II has awinning strategy in the strong Choquet game in whi
h he plays just basi
 opensets and the diameter of his basi
 open set in his n-th move is less than 1n+1 .The following lemma asserts that player II has indeed su
h a strategy for the
onsidered strong Choquet spa
es.Lemma 6.2.4. Let (X;T ) be a Polish spa
e and A � X. If there exists atopology t on A su
h that t � T jA and (A; t) is a strong Choquet spa
e, thenplayer II has a winning strategy in the strong Choquet spa
e GsCh(A; t) by whi
hhe plays just basi
 open sets from t with diameter less than 1n+1 in his n-th movefor all n 2 !.Proof. Let � be a winning strategy for II in the strong Choquet game GsCh(A; t).We de�ne �rst a winning strategy �0 out of � in whi
h the diameter of the setshe has to play in the n-th move is less than 1n+1 . This strategy �0 is de�ned inthe following way:�0 � ((Uo; x0); V0; : : : ; (Un; xn)) = � � ((U0; x0); V0; : : : ; (Un \B 1n+1 (xn); xn))This strategy has obviously the desired property and is a winning strategy.Given su
h a winning strategy �0 we will now de�ne by re
ursion a strategy�00 su
h that player II always plays t basi
 open sets. For this we will always
onsider two runs of the strong Choquet game GsCh(A; t). One run R0 in whi
hII follows �0 and another run R00 in whi
h we de�ne the new strategy �00. As-sume player I starts in the game GsCh(A; t) by playing (U0; x0) and II answersfollowing �0 by an open set V0. Choose now an t basi
 open set B0 su
h that
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 sets 74x0 2 B0 and B0 � V0. De�ne �00 � ((U0; x0)) = B0. Let (U1; x1) be the an-swer by player I to the t basi
 open set played by player II. To de�ne �00 forthis sequen
e 
onsider in the run R0 the following �rst two moves by ea
h playerI (U0; x0) (U1; x1)II V0 V1where player II followed �0. Choose for strategy �00 an t basi
 open set B1 su
hthat x1 2 B1 and B1 � V1. So in the run R00 the game until now looks as follows:I (U0; x0) (U1; x1)II B0 B1Pro
eeding this way we 
onsider now the answer by player I in run R00 as hisnext move in the run R0 and 
hoose an t basi
 open set in the open set playerII plays following his winning strategy �0 in R0. So the strategy �00 is de�nedby re
ursion as follows. If ((U0; xo); B0; (U1; x1); B1; : : : ; (Un; xn)) is a sequen
eplayed in R00 then 
hoose an t basi
 open set Bn su
h that xn 2 Bn andBn � �0� ((U0; x0); �0 � ((U0; x0)); (U1; x1);�0 � ((U0; x0); �0 � ((U0; x0); (U1; x1))); : : : ; (Un; xn)):Let �00 � ((U0; xo); B0; (U1; x1); B1; : : : ; (Un; xn)) = Bn.It is now easy to see that �00 is indeed a winning strategy for player II.Be
ause player II wins the run R0 sin
e he followed his winning strategy �0.Therefore Tn2! Un 6= ;. But then player II has also won the run R00 sin
e theout
ome is also Tn2! Un.By 
onstru
tion the winning strategy �00 has now both of the required prop-erties of the lemma.We 
an now prove the 
onverse of Theorem 6.2.2 and �nish our 
hara
teri-zation of analyti
 sets by �ner topologies.Theorem 6.2.5. Let (X;T ) be a Polish spa
e, A � X and there is a topologyt on A su
h that� t � T jA� t is se
ond 
ountable� t is strong Choquet.Then A is a �11 set in X with respe
t to T .Proof. Let B = fBi j i 2 !g be a basis for (X;T ), d be a 
omplete 
ompatiblemetri
 for this spa
e. Let C = fCi j i 2 !g be a basis for (A; t). Fix furthera winning strategy for player II in the strong Choquet game GsCh(A; t) whi
h
hooses in the n-th move a set Ci 2 C with diam(Ci) < 1n+1 .
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 sets 75We start by de�ning a tree T on ! � (! �A� !) in the following way:((i0; j0; x0; k0); : : : ; (in�1; jn�1; xn�1; kn�1)) 2 T ,(i) diam(Bim) < 1m+1 for all m < n(ii) 
lT (Bim+1) � Bim for all m < n(iii) ((Cj0 ; x0); Ck0 ; (Cj1 ; x1); Ck1 ; : : : ; (Cjn�1 ; xn�1); Ckn�1) is an initial segmentof a run in the strong Choquet game in whi
h II follows his strategy �(iv) Bim \ Ckm 6= ; for all m < nFor a 
ountable subset Q � A the tree TQ = T \ (w � (! � Q � !))<! is a
ountable tree. By using bije
tions between ! and Q and between !3 and ! we
an view this tree as a tree on ! � !.Then p[TQ℄ = fu 2 !! j 9v 2 (! �Q� !)! (u; v) 2 [TQ℄gis a �11 set by Theorem 3.1.7 andPTQ = fx 2 X j 9u 2 p[TQ℄ ^ x 2\m Bu(m)gis a �11 set in X sin
ex 2 PTQ , 9u(u 2 p[TQ℄ ^ 8mx 2 Bu(m)):We will �nish the proof now by 
onstru
ting a 
ountable Q su
h thatPTQ = A. That PTQ is a subset of A is easy to see for any 
ountable Q.We start by proving this.(1) PTQ � A for all 
ountable Q � A.Proof: Let x 2 PTQ witnessed by x 2 TmBim and Cj0 ; x0; Ck0 ; : : :. By
onstru
tion of the tree and of � the set TmCkm has exa
tly one member inA, let us say Tm Ckm = fag. We 
laim that x = a. Assume x 6= a. Thend(x; a) > 0, say d(x; a) = ". Let m 2 ! be large enough su
h that 1m < "2 . Byour de�nitions above diam(Bim) < "2 ;diam(Ckm) < "2 . Sin
e Bim \ Ckm 6= ;there exists an z 2 Bim \ Ckm . But now we haved(x; a) � d(x; z) + d(z; a) � diam(Bim) + diam(Ckm) < "2 + "2 = �This is a 
ontradi
tion. q.e.d. (1)It remains now to �nd a 
ountable Q � A su
h that A � PTQ . For a proofof A � PTQ we have to �nd for ea
h x 2 A an in�nite sequen
e through TQthat witnesses x 2 PTQ . It will turn out that an Q with the following propertywill be proper to 
onstru
t su
h in�nite sequen
es.(2) There exists a 
ountable Q � A with the following property:For every s 2 TQ and every i; j; k 2 ! the following holds. If there is an
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 sets 76a 2 A su
h that s_(i; j; a; k) 2 T , then there exists an a 2 Q su
h thats_(i; j; a; k) 2 T .Proof: De�ne by re
ursion on ! some Qn.Q0 = ;. Assume now for n > 0 a 
ountable Qn is de�ned su
h that forevery s 2 TQn�1(Q�1 = ;) and for every i; j; k 2 ! we have that if thereexists an a 2 A su
h that s_(i; j; a; k) 2 T then there is an a 2 Qn su
hthat S_(i; j; a; k) 2 TQn . Sin
e Qn is 
ountable the tree TQn is 
ountable.Consider now for every s 2 TQn and every i; j; k 2 ! the set Mns;i;j;k = fa 2A j s_(i; j; a; k) 2 Tg. There are only 
ountable many sets of these form. UsingAC! we 
an 
hoose one point in any of these sets Mns;i;j;k and 
all the set ofthe 
hosen points Q0n+1. Set Qn+1 = Qn [ Q0n+1. This set is a 
ountable by
onstru
tion. Finally set Q = SnQn. Q is 
ountable (here we use again AC!).Q has now the requested property. A �nite sequen
e s 2 TQ must allreadybe in some Qn, so s 2 TQn. If there are i; j; k 2 ! and a 2 A su
h thats_(i; j; a; k) 2 T then a 2 Mns;i;j;k. So there is an a 2 Qn+1 � Q su
h thats_(i; j; a; k) 2 TQ. q.e.d. (2)Fix su
h an Q. The property of (2) suÆ
es now to prove that for su
h anQ our set A equals the �11 set PTQ .(3) A � PTQProof: Let x 2 A. We 
onstru
t by re
ursion on the length of a se-quen
e an in�nite sequen
e s = (�; �; ~y; �) in the tree TQ su
h that for sn =(�n; �n; ~yn; �n) 2 TQ we have x 2 B�n(n�1) \ C�n(n�1).Let s0 be the empty sequen
e. Assume sn = (�n; �n; ~yn; �n) is given with theabove property. The sequen
e (�n; ~yn; �n) des
ribes the �rst n� 1 moves in thestrong Choquet game. Let player I's next move be x. By our assumption onsn the point x is in C�n(n�1). Assume also player I plays an basi
 open set Cpwith x 2 Cp � C�n(n�1) and player II answers by playing an Cq following hisstrategy �. Furthermore let Br be a T -neighborhood of x with diameter lessthan 1n+1 . Now s�n = (�_n r; �_n p; ~yn_x; �_n q) is a sequen
e in T . By our 
hoi
eof Q there exists an z 2 Q su
h that sn+1 = (�_n r; �_n p; ~yn_z; �_n q) 2 TQ andx 2 B�_n r(n) \ C�_n q(n) = Br \ Cq. This �nishes our 
onstru
tion of s.By 
onstru
tion of s we have 8n x 2 B�n(n�1) \ C�n(n�1). So in parti
ularx 2 TmB�(m). So s is a witness for x being in PTQ . q.e.d. (3)So by (1) and (3) we have A = PTQ . And sin
e PTQ is �11 we proved thatA 2 �11.



Chapter 7Chara
terization of proje
tivesets by �ner topologiesWe are now interested in results similar to that of Chapter 6 for higher 
lassesof the proje
tive hierar
hy. So we have to 
onsider additional ways of weakeningthe topologi
al 
onditions in our spa
e. We mentioned that a �ner topologyof a Hausdor� spa
e will always remain Hausdor� and we already droppedthe regularity. One 
ould ask what happens if the weaken the strong Choquetproperty to the Choquet property. The next proposition shows that this leadsnowhere.Proposition 7.1. Let (X;T ) be a Polish spa
e and A an arbitrary subset ofX. Then there exists a topology t on A su
h that t is �ner than T and t isregular, se
ond 
ountable and Choquet.Proof. Let B be a basis for (A;T jA). Let C be the 
losure of B under 
omple-ments and �nite interse
tions. Pi
k a point xC in ea
h nonempty C 2 C.Now let D = C [ ffxCg j C 2 Cg be the 
ountable basis for the topology t.Sin
e the basis 
onsists of 
lopen sets t is regular. The isolated points are densein t, so player II wins the Choquet game in his �rst move by playing one of thexC 's.By this Proposition 7.1 the only topologi
al 
ondition that remains to be
onsidered is the se
ond 
ountable 
ondition. As des
ribed in the introdu
tionto Part 2 we will now 
hara
terize �1n sets by �ner topologies with bases oflength less than the proje
tive ordinals Æ1n. In se
tion 7.1 we will under thetheory ZF+DC+PD 
onstru
t su
h a �ner strong Choquet topology for ea
h�1n subset of a Polish spa
e. We mentioned that the 
hara
terization 
an nothold in this theory and therefore we will work for the 
onverse under the axiomsZF+DC+ADR. The proof of the 
onverse has some te
hni
al diÆ
ulties. Inparti
ular will the length of the basis be 
oded by 
ertain s
ales. In se
tion 2 ofthis 
hapter we will introdu
e the notion of a s
ale 
oding and notions relatedto it that will be ne

essary for the proof. In se
tion 3 we will �naly �nish our
hara
terization of the proje
tive sets by �ner topologies.77



Chapter 7. Finer topologies on �1n sets 787.1 Finer topologies on �1n setsIn this short se
tion we will see that for ea
h�1n set exists a �ner strong Choquettopology with a basis of length less than the proje
tive ordinal Æ1n. This is apretty straightforward generalisation of the 
onstru
tion for the �ner topologyfor �11 sets as we introdu
ed it in the proof of Theorem 6.2.2.Assume ZF+DC+PD for this se
tion. We already 
onstru
ted a topologyfor �11 sets in Theorem 6.2.2. Cru
ial was the !-Suslin property of the �11subsets of N . Under PD we proved in Theorem 5.1.12 that ea
h �1n subset ofthe Baire spa
e is �-Suslin for a 
ardinal � whi
h is as an ordinal less than Æ1n.Comparison with the proof of Theorem 6.2.2 gives us dire
tly an idea how tode�ne now a �ner topology for an �11 set.Theorem 7.1.1 (PD). Let (X;T ) be a Polish spa
e. For n � 1 let A 2 �1n(X).Then there exists a �ner topology t on A su
h that t is strong Choquet and hasa basis of length a 
ardinal less than Æ1n (less as an ordinal, not ne
essarily lessin 
ardinality).Proof. Let n � 1. By Remark 6.2.1 we 
an assume that A is a �1n subset ofthe Baire spa
e N . By Theorem 5.1.12 there exists a 
ardinal � su
h that � isless than Æ1n as an ordinal and a tree T on ! � � su
h that A = p[T ℄. Fix su
han � and a tree T .As in Theorem 6.2.2 we will de�ne a basis for our �ner topology t. InDe�nition 2.3.6 we de�ned for s 2 T the subtree Ts 
onsisting of all sequen
es
ompatible with s asTs = ft 2 T j t is 
ompatible with sg = ft 2 T j t � s _ s � tg:Let A = fp[Ts℄ j s 2 Tg. Then A is a set of 
ardinality �. Let B be the
losure of A and all the T -basi
 open sets of A under �nite interse
tions, i.e.,the interse
tion of all sets that 
ontain A and all T jA basi
 open sets and are
losed under �nite interse
tions. The 
ardinality of B is also �. Let B serve asa basis for our topology t.This so de�ned topology t has now by de�nition a basis of length less thanÆ1n and is �ner than T jA sin
e it 
ontains all basi
 open sets from T jA. So itremains to show that this topology t is strong Choquet. We do this as beforein the �11 
ase by des
ribing a winning strategy for II.Assume player I starts by playing (x0; U0). Then 
hoose a basi
 open set ofthe form p[Tr00 ℄ \ p[Tr10 ℄ \ : : : \ p[Trm00 ℄ \Nu0 ; u0 2 !<!, su
h that this set is asubset of U0 and 
ontains the point x0. We want to make sure our set is notjust a T -basi
 open set, so interse
t the basi
 set with p[T ℄ if ne
essary. Sin
ex0 2 p[Tri0 ℄; 0 � i � m0, there exists an �i0 2 �! su
h that (x0; �i0) 2 Tri0 . Sets0 = x0j1; t0;i0 = �i0j1. Then (x0; �i0) 2 (Tri0)(s0;t0;i0 ) (Of 
ourse this operationreally only applies here if ri0 is the empty sequen
e). Let II playV0 = p[(Tr00 )(s0;t0;00 )℄ \ : : : \ p[(Trm00 )(s0;t0;m00 )℄ \Nu0Let player I's answer be (x1; U1) with x1 2 U1 � V0.Sin
e x1 2 V0 there exists for 0 � i � m0 an �i0 2 �! su
h that (x1; �i0) 2



Chapter 7. Finer topologies on �1n sets 79(Tri0)(s0;t0;i0 ). Set s1 = x1j2; t0;i1 = �i0j2. Then s0 � s1; t0;i0 � t0;i1 and x1 2p[(Tri0)(s1;t0;i0 )℄.Choose now again a basi
 set p[Tr01 ℄ \ p[Tr11 ℄ \ : : : \ p[Trm11 ℄ \Nu1 su
h thatthis is a subset of U1 and 
ontains x1. Let �i1 be in �! for 0 � i � m1 su
hthat (x1; �i1) 2 Tri1 . Set t1;i0 = �i1j1. Then x1 2 p[(Tri1)(s0;t1;m10 )℄. In parti
ularx1 2 p[(Tr01 )(s0;t1;00 )℄ \ : : : \ p[(Trm11 )(s0;t1;m10 )℄ \Nu1 . NowV1 = p[(Tr00 )(s1;t0;11 )℄ \ : : : \ p[(Trm00 )(s0;t0;m00 )℄ \Nu0 \ p[(Tr01 )(s0;t1;00 )℄ \ : : :\p[(Trm11 )(s0;t1;m10 )℄ \Nu1is a legal move for player II.Pro
eeding this way, when I plays (x0; U0); (x1; U1); : : : II produ
es V0; V1; : : :with U0 � V0 � U1 � V1 � : : : ; xn 2 Vn and moreover one de�nes for ea
h nbasi
 sets An with xn 2 An = p[Tr0n ℄ \ : : : \ p[Trmnn ℄ \Nun � Un and sequen
ess0 � s1 � s2 : : : ; tn;0o � tn;01 � tn;02 : : : ; : : : ; tn;mn0 � tn;mn1 � tn;mn2 � : : : with(sk; tn;ik ) 2 Trin ; 0 � i � mn, su
h that for ea
h k the �nite sequen
es sk; tn;ikhave length k + 1 andVk = p[(Tr00 )(sk ;t0;0k )℄ \ : : : \ p[(Trm00 )℄ \Nu0\ p[(Tr01 )(sk�1;t1;0k�1)℄ \ : : : \ p[(Trm11 )(sk�1;t1;m1k�1 )℄ \Nu1\ : : :\ p[(Tr0k)(s0;tk;00 )℄ \ : : : \ p[(Trmkk )(s0;tk;mk0 )℄ \NukTo prove now that this so de�ned strategy is indeed a winning strategy wehave to prove that Tn Vn 6= ;. But this interse
tion 
ontains a point, namelythe point x = Sk sk.Claim: x 2 TnAn = Tn VnProof: Consider An = p[Tr0n ℄ \ : : : \ p[Trmnn ℄ \ Nun . Let 0 � i � mn. Let�in = Sk tn;ik . We have (sk; tn;ik ) 2 Trin for all k. Therefore (x; �in) 2 [Trin ℄ andthus x 2 p[Trin ℄. It remains to show that x 2 Nun . For this let S be thefull tree on !!. For a sequen
e s 2 !<! we have [Ss℄ = Ns our basi
 set inthe Baire spa
e. It suÆ
es to show now that sk 2 Sun for every k. Note thatsn = xnjn+1. Sin
e xn 2 Nun we have sn and un 
ompatible, therefore sk 2 Sunfor k � n. Assume towards a 
ontradi
tion that for k > n the sequen
e sk isnot in Sun . This implies xk 62 Nun . In parti
ular, xk 62 Vn, but xk 2 Vk � Vn, a
ontradi
tion. q.e.d. ClaimObviously this proof applies for �11 sets without assuming PD. We intro-du
ed the Gandy-Harrington topology for �11 sets in Theorem 6.2.2 sin
e thistopology is somewhat more natural. The rest of this paper is devoted to theproof of the 
onverse of Theorem 7.1.1.



Chapter 7. Reliable ordinals 807.2 Reliable ordinalsIt will be ne
essary for the proof of the 
onverse of Theorem 7.1.1 that we 
an
ode the length of our basis for the �ner topology not only by some norm, butby a s
ale. We will de�ne the notion of su
h a s
ale-
oding next. An ordinalthat admits a s
ale-
oding on some subset of the Baire spa
e will be 
alledreliable.De�nition 7.2.1. (i) A s
ale ('i)i2! on some subset W � N is 
alled a s
ale-
oding for some ordinal � if '0 is a surje
tion on � and the length of the othernorms 'n are less or equal to � for all n � 1.(ii) An ordinal � is 
alled reliable if � admits a s
ale-
oding. For some point-
lass � we 
all � �-reliable if it admits a s
ale-
oding by some � s
ale on aset in �.We already mentioned in the Introdu
tion to Part 2 that the 
hara
teri-zation of the proje
tive sets by topologies of length less than the proje
tiveordinals 
an only hold, if the proje
tive ordinals have distinguished 
ardinality.This is true under AD as we proved in Theorem 5.2.5 and Theorem 5.2.6 to-gether with Theorem 5.2.7. In parti
ular these results assert that the proje
tiveordinals are su

essor 
ardinals. In view of Theorem 7.1.1 and Theorem 4 wehave to 
onsider the prede
essors of the proje
tive ordinals sin
e this will bethe lengths of the bases. So there should be reliable ordinals with 
ardinalityof these 
ardinals. Our proof of Theorem 4 requires that su
h ordinals have tobe even �1n-reliable. We will prove now that su
h ordinals indeed exist.Proposition 7.2.2 (PD). Æ12n+1 is �12n+2-reliable for all n � 0.Proof. Let W � N be a 
omplete �12n+1 set and ('i)i2! a regular �12n+1 s
aleon W (this exists by the se
ond periodi
ity Theorem). By Theorem 5.1.14 ea
h'i has length Æ12n+1. Therefore '0 is a surje
tion on Æ12n+1. Sin
e W 2 �12n+2and ('i)i2! is obviously a �12n+2-s
ale we are done.So the odd proje
tive ordinals are reliable in the needed sense. We 
annot prove that the prede
essor of any odd proje
tive ordinal Æ12n+1 is �12n+1reliable. But under the assumption of AD the set of all�12n+1-reliable ordinalsless than Æ12n+1 is unbounded. So there exists an ordinal with the 
ardinalityof the prede
essor of Æ12n+1 that is �12n+1-reliable and this will be suÆ
ient forour purpose.Proposition 7.2.3 (AD). The set of �12n+1-reliable ordinals less than Æ12n+1is unbounded in Æ12n+1 for all n � 0.Proof. Let �0 < Æ12n+1. Let ('i)i2! be a regular �12n+1-s
ale on a 
omplete�12n+1-set P � N .Set P�0 = fx 2 N j 8i 'i(x) � �0g = Ti P �0i 2�12n+1,where P �0i = fx 2 N j 'i(x) � �0g and this set is in �12n+1 by Lemma 5.1.3.(1) ('ijP�0)i2! is a �12n+1-s
ale on P�0 .Proof: Let (xk)k2! be a sequen
e in P�0 
onverging against some point x 2 N
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onverges against some �i < �0 for all i 2 !. Then x 2 W and'i(x) � �i < �0 for all i 2 !. Therefore x 2 P �0i for all i, thus x 2 P�0 . Sin
eP�0 2 �12n+1 we know from Theorem 5.1.2 that ('ijP�0)i2! is a �12n+1-s
ale.q.e.d.(1)De�ne now by re
ursion an in
reasing sequen
e of �i in the following way:Let �i < Æ12n+1 be given. For � < �i su
h that � 62 ran('0jP�i) let ��i beminimal with the property that there exists an x 2 P��i with '0(x) = �. Let�i+1 = supf��i j � < �i ^ � 62 ran('0jP�i)g. Sin
e Æ12n+1 is regular we have�i+1 < Æ12n+1.Let �! = supf�i j i 2 !g. Then �! < Æ12n+1 be
ause of the regularity of Æ12n+1.As in (1) we have that ('ijP�! )i2! is a �12n+1-s
ale on P�! . Furthermoreran('0jP�! ) = �!, sin
e for � < �! there exists an i 2 ! su
h that � < �i.If there is an x 2 P�i � P�! su
h that '0(x) = � we are done. Otherwise thereexists by 
onstru
tion of the �i some x 2 P�i+1 � P�! with '0(x) = �.Corollary 7.2.4. There exists a �12n+1-reliable ordinal less than Æ12n+1 of 
ar-dinality the prede
essor of Æ12n+1.The following notions and results in 
onne
tion with reliable ordinals willalso be ne
essary for the proof of Theorem 4.We �x now for a reliable ordinal � a s
ale-
oding ('i)i2! on W � N .De�nition 7.2.5. Let S be a 
ountable subset of �.Let � be in S. The set S is 
alled �-honest if there exists an w 2W su
h that'0(w) = � and 'n(w) 2 S for all n 2 !.S is 
alled honest if S is �-honest for all � in S.The following Theorem we will be 
ru
ial in the proof of our main Theorem4. We remind here on the bije
tion between !! and (!!)! we used in the proofof Lemma 2.1.2:Let h ; i : !�! �! ! be a bije
tion su
h that hi; 0i � i and hi; ki < hi; li for alli and k < l. Then de�ne ( ) : !! �! (!!)!x 7�! ((x)i)i2!where (x)i(m) = x(hi;mi).One last notion is ne
essary. A fun
tion F : X! �! Y ! is 
alled a Lip-s
hitz fun
tion if it is already de�ned on the initial segments of ea
h elementof X!, i.e., the fun
tion F is also de�ned on X<! and forall x 2 X and foralln 2 ! we have F (xjn) = F (x)jn.Theorem 7.2.6. Let ('i)i be a s
ale-
oding on W � N for �.(i) There exists a Lips
hitz fun
tion F : �! �! N su
h that range(F ) � Wand for f 2 �! the following holds:ff(0); f(1); : : :g is f(0)� honest ) '0(F (f)) = f(0)(ii) There exists a Lips
hitz fun
tion F : �! �! N su
h that range(F ) �fx j8n(x)n 2Wg and for f 2 �! the following holds:ff(0); f(1); : : :g is honest ) 8n '0((F (f))n) = f(n)



Chapter 7. Reliable ordinals 82Proof. (i) Let T be the tree on ! � � asso
iated to the s
ale ('i)i on W , i.e.((ko; : : : ; kn); (�0; : : : ; �n)) 2 T, 9x 2W su
h that x(i) = ki and 'i(x) = �i for i � nConsider now the following game on �I f(0) f(1) : : :II w(0); h(0) w(1); h(1) : : :where f(i); h(i) 2 � and w(i) 2 ! for all i 2 !.II wins the game if(w; h) 2 [Tf(0)℄ ^ 8v[v 2 p[Tf(0)jff(0); f(1); : : :g℄) '0(v) � '0(w)℄where Tf(0) is the subtree of T where ea
h bran
h s starts with (n0; f(0)) forsome n0 2 ! and Tf(0)jff(0); f(1); : : :g is the subtree of Tf(0) where for a se-quen
e s = (r; t) of length n we have t(i) 2 ff(0); f(1); : : :g for all i < n.Claim: II has a winning strategy for this gameProof: Let I start by playing f(0). Then II 
hooses an w 2 W su
h that'0(w) = f(0) and plays on his n-th move w(n); h(n) = 'n(w).Then we have obviously (w; h) 2 [Tf(0)℄. If v 2 p[Tf(0)jff(0); f(1); : : :g℄ thenthere exists by 
onstru
tion of the tree a sequen
e (yi) 
onverging against vsu
h that '0(yi) = f(0) for all i. (
f the proof of Theorem 2.3.7, \�") Sin
e('i)i is a s
ale we have '0(v) � f(0) = '0(w). q.e.d. ClaimLet � be a winning strategy for II. De�ne now the fun
tion F byF (f) = w , f;w; h is a run in the game where II follows his strategy �This fun
tion has the required properties. Let F (f) = w. Sin
e II played w fol-lowing his strategy � this means w 2 p[Tf(0)℄ � p[T ℄ =W , thus range(F ) �W .Let now ff(0); f(1); : : :g be f(0)-honest. We have to show '0(F (f)) = f(0).Sin
e the set ff(0); f(1); : : :g is f(0)-honest there exists an x 2 W su
h that'0(x) = f(0) and 'i(x) = f(k) for an k 2 !. This x is in p[Tf(0)jff(0); f(1); : : :g℄.Sin
e � is a winning strategy we have f(0) = '0(x) � '0(w) = '0(F (f)). Onthe other hand one shows as in (1) that '0(w) � f(0). This proves everything.(ii) The idea is to transfer the tree from (i) by the fun
tion ( ) to annother treeand then imitate the proof of (i). So we de�ne a tree T on ! � � by((k0; : : : ; kn); (�0; : : : ; �n)) 2 T, 9x 2 N su
h that 8i(x)i 2Wand if hi; ji =m then km = (x)i(j) and �m = 'j((x)i)For f 2 �! letTf = f(t; r) 2 T j for li = hi; 0i < length(t; r) : r(li) = f(i)g



Chapter 7. Proof of Theorem 4 83and T if = f(t; r) 2 Tf j r(hi; ki) 2 ff(0); f(1); : : :g8k 2 !g:Consider now the the following game on �I f(0) f(1) : : :II w(0); h(0) w(1); h(1) : : :where f(i); h(i) 2 � and w(i) 2 ! for all i 2 !.II wins , (x; h) 2 [Tf ℄^8v8i[v 2 p[T if ℄) '0((v)i) � '0((x)i)℄Now we 
an do the same as in part (i).Claim: II has a winning strategyProof: We de�ne again a winning strategy for player II. For every f(i)player I plays II 
hooses an wi 2 W su
h that '0(wi) = f(i) (sin
e '0 is asurje
tion onto � su
h a wi exists). Player II wins by playing x(hi; ji) = wi(j)and h(hi; ji) = 'j(wi). Sin
e hi; ji > i player II has at any time allready thene
essary information.Now (x; h) 2 [Tf ℄ sin
e (x)i = wi 2 W and for hi; ji = m we have x(m) =(x)i(j) = wi(j) and h(m) = 'j((x)i). Furthermore h(hi; 0i) = '0(wi) = f(i).Let now v 2 N ; i 2 ! and v 2 p[T if ℄. That means9u 2 �!(v; u) 2 [T if ℄, 9u 2 �!8l 2 !(vjl; ujl) 2 T if, 9u 2 �!8l 2 !9yl 2 N su
h that 8n(yl)n 2Wand if hn; ji = m then v(m) = (yl)n(j) and u(m) = 'j((yl)n)Thus in parti
ular the sequen
e (yl)i 
onverges (in l) against (v)i and '0((yl)i) =f(i) for all l. Sin
e ('i)i is a s
ale we have (v)i 2 W and '0((v)i) � f(i) ='0(w). q.e.d. ClaimFix now a winning strategy � for player II and de�ne as above F (f) = x ifplayer II answers to I's play f by x; h. Note that we used in (1) to show that(v)i 2 W and '0((v)i) � f(i) just the fa
t that v 2 p[Tf ℄. So we 
an prove asin (1) that (F (f))i = (x)i is in W for all i and '0((F (f))i) � f(i) sin
e � beinga winning strategy for II implies x 2 p[Tf ℄.Let now S = ff(0); f(1); : : :g be honest. Let i 2 !. Sin
e S is f(k)-honestfor k 2 ! there exists an wk with '0(wk) = f(k) and 'l(wk) = f(m) for somem 2 ! and all l 2 !. Let v 2 N be de�ned by v(hk; ni) = wk(n). This v 2 p[T if ℄.Sin
e � is a winning strategy we have f(i) = '0((v)i) � '0((x)i) = '0((F (f))i).Thus '0((F (f))i) = f(i).Now we 
an �nally start with the proof of Theorem 4.



Chapter 7. Proof of Theorem 4 847.3 Proof of Theorem 4To prove Theorem 4 and get the 
hara
terization of proje
tive sets by �nertopologies we have to prove the following theorem:Theorem 7.3.1 (ADR). Let (X;T ) be a Polish spa
e and let A � X. If thereexists a �ner topology t on A su
h that t is strong Choquet and has a basis oflength less than Æ1n, then A 2 �1n.Proof. We work now under ZF+DC+ ADR.Fix the following obje
ts:� Let X;T ; A; t; n be given.� Let B = fBi j i 2 !g be a basis for (X;T ).� Let d be a 
omplete metri
 on X whi
h indu
es the topology on (X;T ).� Let � be a �1n-reliable ordinal with 
ardinality the prede
essor of Æ1n.1� Let C = fC� j � < �g be a basis for (A; t).� Let � be a winning strategy for player II in the strong Choquet gameGsCh(A; t) whi
h 
hooses basi
 sets from C of diameter less or equal 1i inthe i-th move.� Let W � N be a �1n set and 'i : W �! � be a �1n-s
ale on W withran('0) = �.� Let F : �! �! !! be a Lips
hitz fun
tion with the properties fromTheorem 7.2.6.We start the proof by de�ning a game G.A game GWe de�ne G in the following way:I �0; �0; x0 �1; �1; x1 : : :II �0; �0 �1; �1 : : :where �i; �i; �i; �i 2 � and xi 2 A for i 2 !.The players must obey the following rule R:The players must play su
h that the �nite initial segments ofI (C�0 ; x0) (C�1 ; x1) : : :II C�0 C�1 : : : (�)1Note that we just proved for n even that � is a 
ardinal. We do not know this for n odd.Nevertheless we denote 
ontrary to our usual notation this ordinal by �.



Chapter 7. Proof of Theorem 4 85are legal moves in the strong Choquet game for (A; t) with diam(C�i) < 1i . The�rst player to fail loses.The payo� set is the following:Let us assume no player violates the rule. Let f = (�0; �0; �0; �0; �1; �1; �1; �1; : : :) 2�!. Set �̂i(f) = '0((F (f))4i+3). Let �nallyP = ff 2 �! j 9x 2 A8m 2 !x 2 C�̂m(f)g:II wins the run of the game , f 2 P .The following remark turns out to be very important.Remark 7.3.2. The de�nition of F (see Theorem 7.2.6(ii) for the propertiesof F ) implies that if f is honest, then�̂i(f) = '0((F (f))4i+3 = f(4i+ 3) = �i:Hen
e if f is honest, then f 2 P , II wins the round of the strong Choquetgame (�).We pro
eed now with the key lemma of this proof. We will show that playerII has a winning quasi-strategy in this game G independent of the points fromA played by player I. This lemma is the only part of the proof that requires theaxiom ADR.Lemma 7.3.3. Player II has a winning quasi-strategy � independent of thepoints xi played by I in the following sense:Let s = ((�0; �0; x0); (�0; �0); : : : ; (�m�1; �m�1; xm�1)) ands0 = ((�0; �0; x00); (�0; �0); : : : ; (�m�1; �m�1; x0m�1))be two positions in G whi
h are legal and 
onsistent with � . Let (�m�1; �m�1) 2� � �. If xm�1; x0m�1 2 C�m�1 and s_(�m�1; �m�1) is 
onsistent with � , thens0_(�m�1; �m�1) is also 
onsistent with � .Proof. We will prove this lemma in several steps. Our �rst aim is to see thatour payo� set P � �! is �-Suslin2 for some ordinal �. Sin
e we are workingunder ADR (and this is equivalent to the fa
t that every subset of the realsadmits s
ales) we will prove �rst that P 
an be seen as the preimage of a subsetR of the reals under the fun
tion F . The subset R is then �-Suslin for someordinal � by ADR and we 
an apply the Lips
hitz fun
tion F to transfer a treeon ! � � that witnesses the Suslin representation for R to a tree on �� � thatwitnesses that P is �-Suslin.(1)There exists a subset R � N su
h that F�1[R℄ = P2Note that we de�ned being �-Suslin just for subsets of !! but the generalization forarbitrary sets of the form X! for any set X is straightforward.



Chapter 7. Proof of Theorem 4 86Proof: Obviously the only 
andidate for su
h an R is F [P ℄. So we have toshow that F�1[F [P ℄℄ = P .\�" 
lear\�" Let g 2 F�1[F [P ℄℄. Then there is an f 2 P su
h that F (f) = F (g). Thisimplies that for all i 2 ! we have �̂i(f) = '0((F (f))4i+3) = '0((F (g))4i+3) =�̂i(g). Sin
e f 2 P there exists an x 2 A su
h that x 2 Ti2! C�̂i(f). ButTi2! C�̂i(f) = Ti2! C�̂i(g). Therefore g 2 P by de�nition of P . q.e.d.(1)ADR implies that every set of reals admits a s
ale. So in parti
ular there isa s
ale for R and by Theorem 2.3.7 R is Suslin. Let TR be a tree on ! � � forsome ordinal � su
h that R = p[TR℄.Using the fa
t that F is a Lips
hitz fun
tion we get a tree representationfor P in the following way. Let a tree T � on �� � be given by((�0; : : : ; �n�1); (�0; : : : ; �n�1)) 2 T �, (F (�0; : : : ; �n�1); (�0; : : : ; �n�1)) 2 TR(2) p[T �℄ = PProof: � 2 p[T �℄, 9� 2 �! (�; �) 2 [T �℄, 9� 2 �!8k((�0; : : : ; �k); (�0; : : : ; �k)) 2 T �, 9�8k(F (�0; : : : ; �k); �0; : : : ; �k)) 2 TR, 9� 2 �!(F (�); �) 2 [TR℄, F (�) 2 p[TR℄ = R, � 2 F�1[R℄, � 2 P q.e.d. (2)The Suslin representation of the payo� set P does not suÆ
e to prove thedetermina
y of the game G, but there is a te
hnique of homogenizing a treeT � on � � � with the help of a strong partition 
ardinal3 � > maxf�; �g thatwill imply the needed result4. This te
hnique is due to Ke
hris, Kleinberg,Mos
hovakis, Woodin ([KKMW81℄) and is des
ribed in detail in PhilippRohde'sthesis [Rohd01℄. Therefore we shall only sket
h the following argument andpoint to the 
orresponding proofs in Rohde's thesis.First of all we have to quote an important theorem from the paper of Ke
hris,Kleinberg, Mos
hovakis and Woodin:3A strong partition 
ardinal is a 
ardinal � su
h that for all fun
tions f : [�℄� ! 2 thereis a subset H � � with 
ardinality � su
h that f � [H℄� is 
onstant. For more on strongpartition 
ardinals, 
f. [Kana97℄ p. 432.4A de�nition of homogeneous trees and the general idea how to apply this for determina
yresults 
an be found in [MaSt89℄, in parti
ular see their Theorem 2.3. The following aproa
hhere is slightly di�erent.



Chapter 7. Proof of Theorem 4 87Theorem 7.3.4 (AD). For ea
h � < � there is a � su
h that � < � < � and� is a strong partition 
ardinal5.For a proof see [KKMW81, Theorem 1.1℄. We look at the tree T � on �� �and �nd a strong partition 
ardinal � > maxf�; �g a

ording to Theorem 7.3.46.Following the outline in [Rohd01℄ we 
an assign an ordinal �(s) to ea
h s 2�<! and atta
h a �-
omplete ultra�lter Us on [�℄�(s) to s in a way su
h thatthe system (Us)s2�<! be
omes a homogeneous system of ultra�lters.7. Thehomogenization of T � is done in Satz (5.15) of [Rohd01℄.With the homogenized tree (T �; (Us)s2�<!) in mind, we 
an de�ne an aux-iliary game G0:In the game G0 player I and player II play as in the game G, so in parti
ularthey have to follow the rule R, but in addition, player II plays an obje
t fn inround n su
h that the following holds:8If in round n of the game, before player II plays, the players have produ
eda sequen
e tn := ((�0; �0; x0); (�0; �0; f0); : : : ; (�n; �n; xn)),and we let t̂n := ((�0; �0); (�0; �0); : : : ; (�n; �n)),then fn 2 [�℄�(t̂n) and fn�1 � fn.The payo� of this game G0 is the same as in G, the additional obje
t fi onlyadds to the rules.It 
an be seen that the game G0 is an open game, hen
e quasi-determined(the proof is Behauptung 1 of Satz (5.16) in [Rohd01℄), so either player I orplayer II has a winning quasi-strategy in this game. In fa
t, if player II has awinning quasi-strategy, then the maximal quasistrategy �max (moving to non-losing positions) is winning and this winning quasi-strategy is independent ofthe points in A played by player I in the sense of this key lemma:(3) The maximal winning quasi-strategy �max has the following property:Let t = ((�0; �0; x0); (�0; �0; f0); : : : ; (�m�1; �m�1; xm�1)) andt0 = ((�0; �0; x00); (�0; �0; f0); : : : ; (�m�1; �m�1; x0m�1))be two positions in G0 whi
h are legal and 
onsistent with �max. Let (�m�1;�m�1; fm�1) be su
h that if xm�1; x0m�1 2 C�m�1 and t_(�m�1; �m�1; fm�1) is
onsistent with �max, then t0_(�m�1; �m�1; fm�1) is also 
onsistent with �max.5� is the supremum of all the lengths of prewellorderings of the Baire spa
e.6� < � sin
e it is the length of �1n prewellordering, � < � sin
e � 
ame from a s
ale of asubset of N7The de�nition of �(s) is De�nition (5.11) in [Rohd01℄8For the de�nition of the fn's and for the following, 
f. the proof of Theorem 5.16 inRohdes thesis.



Chapter 7. Proof of Theorem 4 88Proof:Let t and t0 be as in the statement of (3) and (�m�1; �m�1; fm�1) be ananswer for II following �max. Then t_(�m�1; �m�1; fm�1) is a winning positionfor II by de�nition of �max, i.e., a position su
h that player I has no winningstrategy from this position. (That su
h a quasi-strategy �max is a winning quasi-strategy for II in a open game see the proof of the Gale-Stewart Theorem forexample in [Kana97, Proposition 27.1℄.)Assume towards a 
ontradi
tion that t0_(�m�1; �m�1; fm�1) is no winningposition for II. Then player I has a winning strategy from this position on.Player II does not lose by violating any rule if he plays (�m�1; �m�1; fm�1) inround m, so player I really has to play following a winning strategy to winthe run of the game that starts with t0_(�m�1; �m�1; fm�1). So the out
omeof this run is an element not in P . If player I would use this strategy fromthe position t_(�m�1; �m�1; fm�1) on he would also produ
e an out
ome notin P . And he has not violated any rule sin
e the elements from A played inthe beginning initial segment t play no role in his up
oming moves (this is soby de�nition of the strong Choquet game). So player I would have a winningstrategy for the run starting with t_(�m�1; �m�1; fm�1). But this 
ontradi
tsthe assumption that player II followed his winning quasi-strategy �max. q.e.d.(3)Be
ause of the homogeneity of the ultra�lter system, being a winning quasi-strategy for G0 transfers now to the game G as follows:1. Suppose that player II has a winning quasi-strategy in G0. Then we 
ansee every quasi-strategy as a quasi-strategy in the game G by forgettingthe fi-moves. Clearly, this quasi-strategy is still winning.2. Suppose that player I has a winning quasi-strategy in G0. Then we 
an
onstru
t a winning quasi-strategy for player I in the game G. This 
laimuses the homogeneity of the ultra�lter system and is the proof of Behaup-tung 2 in Satz (5.16) in [Rohd01℄.9So we have proved that the game G is quasi-determined and, even more,that if player II has a quasi-winning strategy he has a winning quasi-strategywith the demanded property (by (3) and the way player II gets his winningquasi-strategy for G out of the winning quasi-strategy for G0 ). In order to�nish the proof of this key lemma now we have to show that player I 
annothave a winning quasi-strategy in G.Assume towards a 
ontradi
tion that he does have a winning quasi-strategyin G and let �̂ be su
h a winning quasi-strategy for player I in G. Note that ifwe use a surje
tion from !! onto X (
f. Theorem 2.2.3) for a 
oding of the Pol-ish spa
e X by the reals, '0 as a 
oding of the ordinals less than � by W � Nand if we identify the t-basi
 open sets C� with � we 
an view both G and thestrong Choquet game for (A; t) as being games on the reals. With this in mind9Note that Rohde's game G�(A) does not have real moves, but the real moves do notmatter for the 
onstru
tion of the quasi-strategy for player I. All we have to worry about isthe simulation of the moves fi for player II that do not o

ur in the game G but are ne
essaryto apply the given quasi-strategy.
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laim makes sense.(4) There exists a 
ountable subset Z of !! su
h that(a) The set of ordinals less than � with 
odes in Z is honest(b.1) Every position in G 
onsistent with �̂ with all moves from Z has anextension 
onsistent with �̂ and all moves from Z.(b.2) Every position in GsCh(A; t) is 
onsistent with � and all moves from Zhas an extension 
onsistent with � and all moves from Z.Proof: We 
an view the winning quasi-strategy �̂ and the winning strategy� as trees on �� ��A� �� � and ��A� � respe
tively. We want to de�neZ by re
ursion.Let Z0 be the emptyset and let Zi 
ountable be de�ned. To get Zi+1 
onsiderthe tree �̂ jZi. That of 
ourse should be �̂ restri
ted to the elements 
oded byZi. Let S be the set of all �nite bran
hes in the 
ountable tree �̂ jZi. For s 2 Slet s_ = f(�; �; x; �; �) 2 �� ��A� �� � j s_(�; �; x; �; �) 2 �̂gBy AC!, we 
an 
hoose for ea
h s 2 S one element from s_ and let S� be theset of all 
hosen elements.We do the same with the tree �jZi and get a 
ountable set R�.The third set we 
onsider is T � = Sz2Zi\W f'i(z) j i 2 !g.Applying AC!, we get three 
ountable subsets R�; S�; T � of reals 
odingR�; S�; T �. Let now Zi+1 = Zi [R� [ S� [ T �.Set Z = Si2! Zi.It is now easy to see that this Z has the demanded properties. For (a) let� be an ordinal 
oded by some w 2 Z \ W . Then w 2 Zi for some i. Bythe de�nition of Z 'k(w) is 
oded for all k in Zi+1 � Z. For (b)(1) let s bea position in G 
onsistent with �̂ with all elements in s from Z. Sin
e s is a�nite bran
h there are only �nitely many elements in s. So there is a Zi forsome i su
h that s 2 �̂ jZi. Now s has a proper extension with elements in Z
onsistent with �̂ sin
e we added exa
tly su
h extensions in Zi+1. The sameargument holds for (b)(ii). q.e.d.(4)Fix an Z as in (4).Then it is 
lear that there exists a run of G su
h that(i) all moves are in Z (again, i.e. all moves are 
oded in Z)(ii) this round is 
onsistent with I's winning quasi-strategy �̂ for G(iii) The �i's, xi's and �i's are 
onsistent with II's winning strategy � for thestrong Choquet game G(A;t).(iv) �0; �1; �2; : : : is an enumeration of the ordinals with 
odes in Z.



Chapter 7. Proof of Theorem 4 90By (ii) I wins this run of G. II does not lose this run by violating rule Rsin
e he follows � by (iii). So the out
ome of this run is an f that is not inP . f is honest, sin
e f 
onsists of all ordinals 
oded by Z (by (iv), puttingin the �0; �1; : : :) and this set is honest by 
onstru
tion of Z. Hen
e Remark7.3.2 implies that I wins the strong Choquet game G(A;t). But this 
ontradi
ts(iii).The tree T0Let � be a winning quasi-strategy for II as in the above Lemma 7.3.3. � isessentially a tree on (����A����). Let us 
all this tree T0 and we assumeall positions in T0 legal, that is, if I loses by violating the rule R we remove thisbran
h from the tree.By the key lemma the points of A in this tree play no role for our purpose,so we remove this points and get a tree T1 on �4:The tree T1De�ne a tree T1 on �4 by((�0; �0; �0; �0); : : : ; (�m�1; �m�1; �m�1; �m�1)) 2 T1, 9x0; : : : xm�1 2 A su
h that((�0; �0; x0; �0; �0); : : : ; (�m�1; �m�1; xm�1; �m�1; �m�1)) 2 T0The important Remark 7.3.2 implies the following property of T1.Lemma 7.3.5. Let f = (�0; �0; �0; �0; �1; �1; �1; �1; : : :) be an in�nite bran
h inT1. If f is honest, then TiC�i 
ontains a point xf 2 A.Proof. Let f be given. We want �rst �nd some x0; x1; : : : in A su
h thatg = (�0; �0; x0; �0; �0; �1; �1; x1; �1; �1; : : :) is an in�nite bran
h through T0. Wede�ne the xi by indu
tion.Let x0; x1; : : : ; xn�1 be de�ned su
h that(�0; �0; x0; �0; �0; : : : ; �n�1; �n�1; xn�1; �n�1; �n�1) 2 T0:Sin
e f is an in�nite bran
h in T1 there exists x00; : : : ; x0n su
h that(�0; �0; x00; �0; �0; : : : ; �n�1; �n�1; x0n�1; �n�1; �n�1; �n; �n; x0n; �n; �n) 2 T0:Now s = (�0; �0; x0; �0; �0; : : : ; �n�1; �n�1; xn�1; �n�1; �n�1; �n; �n; x0n)is a legal move in G 
onsistent with � ands0^(�n; �n) = (�0; �0; x00; �0; �0; : : : ;: : : ; �n�1; �n�1; x0n�1; �n�1; �n�1; �n; �n; x0n; �n; �n)is a legal move in G 
onsistent with � sin
e it is a sequen
e in T0. By theproperty of � we have s^(�n; �n) is a legal move in G 
onsistent with � . So



Chapter 7. Proof of Theorem 4 91de�ne xn to be x0n.This de�nition assures that g = (�0; �0; x0; �0; �0; �1; �1; x1; �1; �1; : : :) is an in-�nite bran
h through T0. Sin
e � is a winning strategy for II g is the out
omeof a round in G in whi
h II wins. So f 2 P . By the remark to the de�nition ofthe game G II wins the strong Choquet game, so TiC�i 6= ;.Finally we will de�ne with the help of T1 a tree T on ! � �4 that will leadto a de�nition of a �1n set A0. We will see that A0 equals A and �nish in thisway the proof of Theorem 4.The tree TLet T be the following tree on ! � �4:((i0; �0; �0; �0; �0); : : : ; (im�1; �m�1; �m�1; �m�1; �m�1)) 2 T ,(i) For all k; diam(Bik) < 1k(ii) For all k; Bik+1 � Bik(iii) ((�0; �0; �0; �0); : : : ; (�m�1; �m�1; �m�1; �m�1)) 2 T1(iv) For all k; Bik \ C�k 6= ;The de�nition of the set A0 is now the following:The set A0De�ne A0 � X byx 2 A0 , 9y 2 !!9�; �; �; � 2 �![(y; �; �; �; �) 2 T and x 2\m By(m)and f�(m); �(m); �(m); �(m) j m 2 !g is honest ℄We 
laim that A0 is a �1n set. To see this we want to use the Coding Lemma5.2.2.Lemma 7.3.6. A0 is in �1n.Proof. We prove �rst that the tree T is �1n-in-the-
odes10.De�ne Code(Tm;�'0) the following way:(y(0); : : : ; y(m� 1); (x0)0; : : : ; (x0)m�1; : : : ; (x3)0; : : : ; (x3)m�1)2 Code(Tm;�'0),[(y(0); '0((x0)0); '0((x1)0); '0((x2)0); '0((x3)0));: : : ;((y(m� 1); '0((x0)m�1); '0((x1)m�1); '0((x2)m�1); '0((x3)m�1))℄2 T \ (! � �4)m:10The notion of a tree being �-in-the-
odes is by no means a standard de�nition. Thede�nition here seems to us the most natural to apply the 
oding Lemma to it.



Chapter 7. Proof of Theorem 4 92By Corollary 5.2.2 this set is �1n. So if we de�ne that T is �1n-in-the-
odesshould stand for the fa
t that the union of all the Code(Tm;�'0) is in �1n wehave just shown that T is �1n-in-the-
odes.Now we 
an rewrite the de�ning formula for A0:x 2 A0 , 9y 2 !! 9x0; x1; x2; x3 2 !!^ 8k[(x0)k 2W ^ (x1)k 2W ^ (x2)k 2W ^ (x3)k 2W ℄^ 8m(y(0); : : : ; y(m� 1); (x0)0; : : : ; (x0)m�1; : : : ;(x3)0; : : : ; (x3)m�1) 2 Code(Tm �'0)^ 8mx 2 By(m)^ 8k9w 2W8i8j(w 2 A'0((x0)j)�'i ^ (x0)j 2 A'0(w)�'i )^ 8k9w 2W8i8j(w 2 A'0((x1)j)�'i ^ (x1)j 2 A'0(w)�'i )^ 8k9w 2W8i8j(w 2 A'0((x2)j)�'i ^ (x2)j 2 A'0(w)�'i )^ 8k9w 2W8i8j(w 2 A'0((x3)j)�'i ^ (x3)j 2 A'0(w)�'i )where A'0(w)�'i and A'0((x`)j)�'i for ` = 0; 1; 2; 3 are initial segments of the prewell-ordering �'i whi
h are in �1n following Lemma 5.1.3.From this formula we see that A0 is indeed in �1n.So we 
an �nish the proof if we show that A = A0.A0 � ALet x 2 A0. Let y; �; �; �; � 2 !! � (�!)4 witness that x 2 A0. Letf = (�0; �0; �0; �0; �1; �1; �0; �0; : : :):Then (y; f) 2 [T ℄ and f is honest. By de�nition of T we have f 2 [T1℄. So byLemma 7.3.5 there exists an xf 2 A su
h that xf 2 Tm C�m . Sin
e x is theonly point in TmBy(m) (by (i) of the de�nition of T ) it suÆ
es to show thatxf 2 TmBy(m) be
ause then x = xf 2 A.Claim: xf 2 TmBy(m)Proof: Assume not. So there is an m 2 ! with xf 62 By(m). There-fore d(xf ; By(m)) > 0, let us say d(xf ; By(m)) = " > 0. But now there ex-ists an k > m with diam(C�k) < "4 (be
ause of rule R in the de�nition ofG) and xf 2 C�k . Also diam(By(k)) < "4 by (i) of the de�nition of T andBy(k) � By(m). By (iv) of the de�nition there is an z 2 By(k) \ C�k . Sin
ez; xf 2 C�k we have d(z; xf ) < "4 . But also z 2 By(k) � By(m) and hen
ed(xf ; By(m)) = inffd(z0; xf ) j z0 2 By(m)g � d(z; xf ) < "4 . This 
ontradi
tsd(By(m); xf ) > ". q.e.d. ClaimThis proves that A0 � A.



Chapter 7. Proof of Theorem 4 93A � A0Let x 2 A. Let h : !! � A be a 
oding of A by the reals. 11Let Z be a 
ountable subset of !! su
h that1. there is an x 2 Z with h(x) = x2. the set of ordinals less than � with 
odes in Z is honest3. 9� < � su
h that x 2 C� and � has a 
ode in Z4. every position in G 
onsistent with � with all moves from elements 
odedfrom Z has an extension 
onsistent with � and with all moves from ele-ments 
oded from ZTo prove the existen
e of su
h a set we de�ne by re
ursion 
ountable sets Zifor i 2 ! (using AC! in every other step of the 
onstru
tion) and the take Zto be the union of all Zi. To make an easy thing not look to 
ompli
ated (byjumping ba
k and forth between the \
oded game" and G) note that if there isa 
ountable set of ordinals less than � one 
an get by AC! a 
ountable subsetof W 
oding these ordinals. Simultaneously one 
an get for a 
ountable subsetof A a 
ountable set of reals 
oding the elements of the subset throug h.Let x 2 !! su
h that h(x) = x 2 A and let y 2W su
h that '0(y) = � andx 2 C� . Set Z0 = fx; yg.Let now Zi 
ountable be given for an i 2 !. We want to de�ne Zi+1.Let T0 � Zi be the tree on � � � � A � � � � restri
ted to elements 
oded byZi. Consider in T0 � Zi the 
ountable set of all �nite sequen
es s 2 T0 � Ziwhi
h have no proper extension. Let s be su
h a �nite sequen
e and let s^ =f(�; �; x; �; �) 2 � � � � A � � � � j s^(�; �; x; �; �) 2 T0g. By AC! we �nda 
ountable set ~Zi+1 su
h that for all su
h s there is a proper extension of sfrom s^ in ~Zi+1. Again by AC! and the above remark there is a 
ountableset Z 0i+1 of reals 
oding these elements. Choose further 
odes for the ordinals'k(z) for z 2 Zi \W;k 2 ! and let Mi be the set of these 
odes. Then letZi+1 = Zi [Mi [ Z 0i+1. Zi+1 is 
ountable. Set Z = Si2! Zi.By de�nition of Z0 1. and 3. are satis�ed. If w 2 Zi for some i 2 ! thenfor 'k(w) there is a 
ode in Mi � Zi+1 for all k 2 !. Hen
e the set of ordinalsless than � with 
odes in Z is honest. If s is a position in G 
onsistent with �and all moves are in Z then there is an i 2 ! su
h that s 2 T0 �Zi and there isan extension so s 2 T0 �Zi+1 � T0 �Z. So this extension is also 
onsistent with � .Using su
h an Z there is a run of the game G su
h that(i) all moves are in Z (that is, 
oded by Z)(ii) the run is 
onsistent with II's winning quasi-strategy � for G(iii) xm = x for all m (so player I always plays the same element x 2 A)11su
h a 
oding exists by Theorem 2.2.3



Chapter 7. Proof of Theorem 4 94(iv) �0 = �; �m+1 = �m+1(v) �0; �1; : : : is an enumeration of the ordinals less than � with 
odes in ZSin
e su
h a run g = (�0; �0; x; �0; �0; �1; �1; x; �1; �1; : : :) of G is 
onsistent with� , we know that g is an in�nite bran
h in T0. By de�nition of T1 the sequen
ef = (�0; �0; �0; �0; �1; �1; �1; �1; : : :) is an in�nite bran
h through T1.Using this f we want to get an in�nite bran
h in T . Property (iii) in thede�nition of T is already satis�ed. Now let i0; i1; : : : be su
h that x 2 TmBimand (i) and (ii) of the de�nition of T holds. Sin
e II wins the run g of G allC�m are legal moves of II and therefore are moves in the strong Choquet game.So x 2 C�m for all m. This implies Bim \ C�m 6= ; for all m and therefore (iv)in the de�nition of T holds. So (i0; �0; �0; �0; �0; i1; �1; �1; �1; �1; : : :) 2 [T ℄.To show now that x 2 A0 it remains (by the de�nition of A0) to show thatf�m; xm; �m; �m j m 2 !g is honest. But all this elements were 
hosen in Zand the �m are all ordinals less than � 
oded by Z and this set is honest bythe 
onstru
tion of Z.Together with Theorem 7.1.1 we have now proved the main Theorem 4 underthe assumption of ZF+DC+ADR. The assumption that every set of reals hasa s
ale is essential for the proof of the key lemma, Lemma 7.3.3, in our proofof Theorem 7.3.1. So it seems, unfortunately, not possible to proof the mainTheorem 4 under the weaker assumption of ZF+DC+AD in this fashion. But,as a 
ompensation, Be
ker suggests that this proof of the Theorem generalizesto point
lasses beyond the proje
tive hierar
hy whi
h are s
aled and proje
tive-like. For further remarks and results we 
ould not 
over here we refer to thenotes of Howard Be
ker, [Be
k91℄ and [Be
k92℄.
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