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Zusammenfassung

Die vorliegende Diplomarbeit beschéftigt sich mit zwei unveroffentlichten Ar-
tikeln von Professor Howard S. Becker von der University of South Carolina in
Columbia. Ausgangspunkt ist folgende klassische Charakterisierung von Borel
Mengen in polnischen Raumen durch Topologieverfeinerungen:

Eine Teilmenge eines polnischen Raumes ist genau dann eine Borel-
Menge, wenn eine polnische Topologie auf dieser Teilmenge existiert,
die die Teilraumtopologie verfeinert.

Professor Becker diskutiert in seinen Aufzeichnungen “Finer topologies on point-
sets in Polish spaces” vom Marz 1991 und “Playing around with finer topolo-
gies” vom Januar 1992 mogliche Verallgemeinerungen dieser Charakterisierung
fiir komplexere Teilmengen polnischer Raume, insbesondere fiir projektive Men-
gen in polnischen Raumen. In dieser Diplomarbeit werden seine Resultate mit
ausfuhrlichen Beweisen und der Bereitstellung aller Grundlagen prasentiert.

Die Diplomarbeit gliedert sich in zwei Teile. Im ersten Teil werden alle
fiir diese Arbeit notwendigen Definitionen und Resultate aus der deskriptiven
Mengenlehre eingefiihrt. Der zweite Teil befafit sich dann mit dem eigentlichen
Thema dieser Arbeit, der Charakterisierung projektiver Mengen durch Topolo-
gieverfeinerungen.

Die klassische deskriptive Mengenlehre beschéftigt sich mit “definierbaren
Teilmengen” der reellen Zahlen und deren Eigenschaften. Die reellen Zahlen
sind ein topologischer Raum, dessen Topologie von einer vollstandigen Metrik
induziert wird. Desweiteren liefert die abzahlbar dichte Teilmenge der ratio-
nalen Zahlen eine abzahlbare Basis fir diese Topologie. Solche topologischen
Raume nennt man polnische Raume. Man kann zeigen, dass die Definierbar-
keitshierarchien auf den reellen Zahlen topologischen Hierarchien entsprechen.
Deswegen beschaftigt sich die deskriptive Mengenlehre heutzutage oft allge-
meiner mit definierbaren Teilmengen von polnischen Raumen.

Wir beginnen deshalb in Teil 1 dieser Arbeit mit einem kurzen Kapitel
iiber polnische Rdume. Es werden die grundlegenden Definitionen wiederholt
und es wird gezeigt, dass Summen und Produkte (in der Kategorie der topolo-
gischen Ridume) von polnischen Rdumen wieder polnische Raume sind. Weiter
erwahnen wir, dass genau die G5-Mengen (d.h. abzdhlbare Schnitte offener
Mengen) versehen mit der Teilraumtopologie wieder polnische Raume sind.
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Zusammenfassung 2

Als wichtigstes Beispiel eines polnischen Raumes (neben R) fithren wir den
Baire-Raum w® ein. Als topologischer Raum ist dies das topologische Produkt
der Mengen w versehen mit der diskreten Topologie. Mit Hilfe von Baumen
konnen wir eine Basis der Topologie des Baire-Raumes angeben. Baume spie-
len in dieser Arbeit eine herausragende Rolle und werden zusammen mit einigen
damit verwandten Begriffen in Kapitel 2 eingefithrt. Ein Baum auf w besteht
aus endlichen Folgen natiirlicher Zahlen, so dass jedes Anfangsstiick solch einer
Folge auch ein Element des Baumes ist. Besonders wichtig fiir den Baire-Raum
sind unendliche Aste durch einen solchen Baum auf w. Ein unendlicher Ast
durch einen Baum auf w ist eine abzahlbare Folge von natiirlichen Zahlen,
also ein Element von w®, so dass alle endlichen Teilfolgen im Baum sind. Ein
einfaches aber wichtiges Resultat in diesem Zusammenhang ist die Charak-
terisierung einer abgschlossenen Teilmenge des Baire-Raumes als Menge der
unendlichen Aste durch einen Baum auf w. In einem Unterkapitel von Kapitel
2 wird die Wichtigkeit des Baire-Raumes deutlich, da wir fiir jeden polnischen
Raum eine stetige Surjektion des Baire-Raumes in den polnischen Raum finden.

Von entscheidender Bedeutung fiir die deskriptive Mengenlehre und ins-
besonders fiir unsere Arbeit hier ist eine weitere Darstellung von Teilmengen
des Baire-Raumes durch Baume. Wir definieren Baume auf dem Produkt von w
mit einer Ordinalzahl A und nennen die Mengen, welche sich durch eine Projek-
tion der Menge der unendlichen Aste auf w* darstellen lassen A-Suslin-Mengen.
Dies wird die entscheidende Definition in Kapitel zwei sein und wir diskutieren
die A-Suslin-Mengen entsprechend. Eng verkniipft damit ist das Konzept einer
Skala. Dafiir betrachten wir eine Folge von Normen (dies sind Abbildungen
von Teilmengen des Baire-Raumes in die Ordinalzahlen) mit gewissen Eigen-
schaften. Sind alle Normen einer Skala Abbildungen, deren Bilder beschrankt
sind durch eine Ordinalzahl A, so sprechen wir von A-Skalen und wir zeigen,
dass Teilmengen des Baire-Raumes genau dann eine A-Skala besitzen, wenn die
Mengen A-Suslin sind. Wir schliefen Kapitel 2 mit der Definition von Borel-,
und in Verallgemeinerung \-Borel-Mengen. Auch hier wird der Zusammenhang
mit A-Suslin-Mengen diskutiert werden.

In Kapitel 3 fithren wir die Borel-Hierarchie und die projektive Hierarchie
ein. Die deskriptive Mengenlehre klassifiziert Teilmengen polnischer Raume in
Hierarchien in Bezug auf die Komplexitiat der Menge. Zum Beispiel besteht
die unterste Ebene der Borel-Hierarchie aus den offenen und abgeschlosse-
nen Teilmengen. Die nédchste Ebene enthalt nun abzahlbare Vereinigungen
abgeschlossener Mengen (F,-Mengen) und abzéhlbare Schnitte offener Mengen
(Gs-Mengen). Um zur nichsten Ebene zu kommen betrachtet man wiederum
abzihlbare Vereinigungen von G§-Mengen bzw. abzihlbare Schnitte von F-
Mengen und so weiter. Die Vereinigung aller Ebenen dieser Hierarchie liefert
die Klasse aller Borel-Mengen. Borel-Mengen sind abgeschlossen unter Komple-
mentbildung und abzahlbaren Vereinigungen und Schnitten. Allerdings nicht
unter Projektionen. Wir nutzen diese Tatsache zur Definition der projektiven
Hierarchie. Wir nennen Projektionen von Borel-Mengen analytische oder X1-
Mengen und zusammen mit ihren Komplementen (den IT}-Mengen) bilden sie
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die erste Stufe der projektiven Hierarchie. Projektionen von Komplementen von
analytischen Mengen bilden dann (zusammen wieder mit deren Komplementen)
die niichste Stufe der projektiven Hierarchie (die Xi- baw. IT}-Mengen). Dies
lisst sich so abzihlbar oft fortsetzen, d.h. wir erhalten die Klassen X! und IT}
fir n € w. Die Mengen dieser Hierarchie nennt man projektive Mengen und
fiir diese Mengen geben wir in Teil zwei dieser Diplomarbeit eine topologische
Charakterisierung.

Im Kapitel 4 kommen wir dann zu einem moderneren Gebiet der deskrip-
tiven Mengenlehre, nidmlich zu Spielen und der Determiniertheit von Spie-
len. Als Prototyp fiir die Spiele, die wir betrachten, dient folgendes Spiel auf
den natiirlichen Zahlen. Es wird zunachst eine Teilmenge des Baire-Raumes
als Gewinnmenge festgelegt. Zwei Spieler I und II wahlen nun abwechselnd
abzihlbar oft natiirliche Zahlen. Das Ergebnis dieses Spiels ist dann also eine
abzahlbare Folge natiirlicher Zahlen und somit ein Element des Baire-Raumes.
Wir sagen, dass Spieler I das Spiel gewinnt, falls die Folge in der Gewinnmenge
liegt. Anderenfalls hat Spieler II gewonnen. Mit Hilfe von Baumen definieren
wir Strategien fiir die einzelnen Spieler, die dem Spieler in jedem Zug mitteilen,
mit welcher natiirlichen Zahl er auf eine bis dahin gespielte Folge antworten
soll. Eine solche Strategie heifit Gewinnstrategie, falls der entsprechende Spieler
jeden Spielverlauf gewinnt, indem er der Strategie folgt. Es ist klar, dass die
Existenz einer Gewinnstrategie immer von der Gewinnmenge abhangt und es ist
auch klar, dass es Gewinnmengen gibt, fiir die man sehr einfach Gewinnstrate-
gien fiir einen der Spieler angeben kann. Eine Gewinnmenge nennt man de-
terminiert, falls fiir einen der Spieler eine Gewinnstrategie existiert. Es ist ein
schwieriges und interessantes Problem, welche Klassen von Teilmengen deter-
miniert sind; wir beschaftigen uns hier allerdings nicht damit, sondern fithren
neue Axiome ein, die die Determiniertheit von Mengen postulieren. Das Axiom
der projektiven Determiniertheit PD garantiert die Determiniertheit aller pro-
jektiven Mengen des Baire-Raumes. Das stiarkere Axiom der Determiniertheit
AD besagt, daf} alle Teilmengen des Baire-Raumes determiniert sind. Spater
werden wir dann sogar das Axiom ADpr voraussetzen. Hierzu werden Spiele
auf Elementen des Baire-Raumes betrachtet. Die Gewinnmenge ist dann eine
Teilmenge von (w“)¥ und es werden abwechselnd Elemente von w® gespielt.
Ansonsten werden die obigen Definitionen in offensichtlicher Weise auf diese
Spiele tibertragen und ADp ist dann das Axiom, welches besagt, dass fir alle
Gewinnmengen solcher Spiele eine Gewinnstrategie fiir einen der Spieler ex-
istiert.

Wir schlieflen in Kapitel 4 mit einer Charakterisierung der polnischen Raume
durch starke Choquet-Spiele. Dies sind Spiele fiir zwei Personen in obigem
Sinn, nur werden diesmal nichtleere offene Mengen eines polnischen Raumes
gespielt, so dass eine absteigende Folge von ineinander enthaltenen offenen
Mengen entsteht und Spieler IT gewinnt dieses Choquet-Spiel, wenn der Schnitt
aller offenen gespielten Mengen nichtleer ist. Im starken Choquet-Spiel wird
zusatzlich von Spieler I jeweils ein Punkt in seiner offenen Menge gespielt und
Spieler zwei muss dann eine offene Umgebung um diesen Punkt spielen, welche
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in der offenen Menge von I enthalten ist. Auch hier gewinnt II, wenn der
Schnitt aller offenen Mengen nicht leer ist. Ein topologischer Raum heifit starker
Choquet- Raum, falls Spieler IT eine Gewinnstrategie im starken Choquet-Spiel
hat. Beispiele fir solche starken Choquet-Raume sind unter anderem die pol-
nischen Raume. Insbesondere sind polnische Raume reguliare starke Choquet-
Raume mit abzahlbarer Basis und es gilt die Hausdorff Trennungseigenschaft.
Diese Eigenschaften von polnischen Rdumen benutzen wir fiir unsere Charak-
terisierung der projektiven Mengen.

Die ersten vier Kapitel benutzen als Voraussetzung nur die Theorie ZF+DC
und an einigen wenigen Stellen zusatzlich das volle Auswahlaxiom AC. Diese
Theorien sind nicht geeignet fiir die vollstindige topologische Charakterisierung
der projektiven Mengen. Aus diesem Grunde haben wir in Kapitel 4 die Ax-
iome der Determiniertheit eingefithrt. In Kapitel 5 zeigen wir einige Resultate
unter Annahme dieser Axiome. Entscheidend fiir die Beweise der Theoreme
iiber die Charakterisierung der projektiven Mengen ist, dass die projektiven
Mengen A-Suslin sind. Dies gilt unter PD und wird in Kapitel 5 bewiesen. Die
Ordinalzahl A hangt eng mit den Langen von bestimmten Normen zusammen.
Jeder Norm 14t sich namlich eine fundierte Relation zuordnen, deren Linge
durch das Bild einer zugehoérigen Norm (der Rangfunktion) definiert ist. Wir
definieren fiir n € w die projektiven Ordinalzahlen 5711 als das Supremum aller
Lingen von solch fundierten Relation, die zusétzlich noch in ! und II}, liegen.
Die projektiven Ordinalzahlen untersuchen wir im Rahmen diese Kapitels unter
der Annahme AD genauer. Damit ist dann der erste Teil dieser Diplomarbeit
abgeschlossen.

Der zweite Teil behandelt nun die eigentliche Charakterisierung der projek-
tiven Mengen durch feinere Topologien. In Kapitel 6 beweisen wir zuerst das
oben angegebene Resultat tiber die Borel-Mengen. Darauf folgt die Charkter-
isierung der analytischen Mengen, die folgendermaflen lautet:

Eine Teilmenge eines polnischen Raumes ist genau dann analytisch,
wenn es eine starke Choquet-Topologie mit abzahlbarer Basis auf
der Teilmenge gibt, welche die Teilraumtopologie verfeinert.

Das letzte Kapitel, Kapitel 7, gibt eine Charakterisierung dieser Art dann fiir
jede E}l—Menge.

Eine Teilmenge eines polnischen Raumes ist genau dann in 2,12, wenn
es eine starke Choquet-Topologie mit Basis der Liange kleiner als 8
auf dieser Teilmenge gibt, welche die Teilraumtopologie verfeinert.

Fiir diese Charakterisierung arbeiten wir unter der Theorie ZF+DC+ ADg.
Damit haben wir, wenn auch unter der sehr starken Annahme von ADg, eine
vollstandige Charakterisierung der projektiven Mengen durch Topologiever-
feinerungen erreicht.



Introduction

A characterization of Borel sets by finer topologies is the starting point for this
work. The following is a fundamental fact about Borel sets in Polish spaces:

For every Borel set in a Polish space exists a finer Polish topology
for the space, such that the Borel set is open and closed with respect
to this finer topology.

This fact implies very easily a remarkable result for one of the classical, if not
the classical, problem in early set theory, the Continuum Hypothesis (CH) by
Cantor. Cantors conjecture was that every subset of the reals (that he called the
continuum) is either at most countable or has the cardinality of the continuum
(cf. [Cant78]).

Of course, nowadays we know that this problem can not be decided in
Zermelo Fraenkel set theory. But Cantor tried very hard to find a proof for
his conjecture and one of the most promising attempts for him was the proof
of the perfect set property for closed subsets of the reals (see [Cant84]). This
fact is known today under the name Cantor-Bendixson Theorem and asserts
that every uncountable closed subset of the reals contains a perfect subset,
that is, a nonempty closed subset with no isolated points. Perfect subsets
have the cardinality of the continuum. So by the Cantor-Bendixson theorem
the Continuum Hypothesis is true for closed subsets of the reals. Cantor was
convinced that he can expand the result for all sets. Of course he could not
succeed, but about 30 years later Felix Hausdorff, who was Professor here at the
University of Bonn from 1910 until 1932, could prove the Continuum Hypothesis
for Borel sets in [Haus16]:

“Jede Borelsche Menge ist entweder endlich oder abzahlbar oder
von der Machtigkeit des Kontinuums”

Hausdorff’s proof can be described as “going down the Borel hierarchy”. Roughly
his idea is the following. An uncountable Borel set is in some X0 for an or-
dinal . Since this is a countable union of sets from lower stages of the Borel
hierarchy one of these sets from the union is uncountable. This set is again a
countable union of sets from lower stages of the Borel hierarchy and so on. So
finally he arrives at closed sets there the result is known by Cantor’s result.
With the above fact about Borel sets in Polish spaces (and an immediate
generalization of the Cantor-Bendixson Theorem to Polish spaces) the proof
that uncountable Borel sets are of cardinality of the continuum is trivial. Be-
cause then uncountable Borel sets are closed sets in a Polish space and have
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therefore by the Cantor-Bendixson Theorem the cardinality of the continuum.

Another nice application of the fact about Borel sets is that we can charac-
terize analytic sets as continuous images of the Baire space. We will prove this
in Proposition 6.1.6 in this thesis.

So this result about Borel sets is really an interesting one. By a well-known
Theorem from Lusin that the image of a Borel set under an injective continuous
mapping is again Borel we can prove the converse of this result by applying it to
the identity mapping from the Polish space with the finer topology to the Polish
space with its original Polish topology. So we get indeed a characterization of
Borel sets by finer topologies. We can state this characterization as follows:

A subset of a Polish space is a Borel set iff there exists a Polish topol-
ogy on this subset that is finer than the restriction of the topology
of the Polish space to the subset.

One could ask if we get such characterizations for other classes of sets than
the Borel sets. Or, seen from another point of view, one can ask what class of
subsets do we get by dropping some properties of the finer topology. Professor
Howard S. Becker from the University of South Carolina in Columbia discussed
this question in two unpublished notes. The goal of this thesis is to present
the results from Professor Becker. In “Finer topologies of pointsets in Polish
spaces” from March 1991 he found a characterization for 31 sets in the theory
ZF + DC and more general for all sets from the projective hierarchy in his
notes “Playing around with finer topologies” from January 1992 under the ax-
ioms ZF + DC 4+ ADg.

This thesis is divided now in two parts. In the first part we introduce all
notions and results necessary for the proofs of the main theorems. It starts with
a short chapter about Polish spaces. In the second chapter we discuss the basic
concepts of trees and A-Suslin sets that are fundamental for the characterization
of the projective sets. In this connection we examine the relation of the A-Suslin
sets with A-scales and A\-Borel sets. Chapter 3 recalls the concepts of the Borel
and the projective hierarchy and its main properties. Since the characterization
for pointsets of higher classes of the projective hierarchy requires the axiom of
determinacy of the reals we introduce games and the concept of determinacy
in chapter four. This chapter also includes a characterization of Polish spaces
as strong Choquet spaces.

For this we need the notion of a strong Choquet game, that is, a two person
game in which the players take turns in playing nonempty open sets of the
topological space, such that each set is contained in the sets played before. In
addition player I has to play a point in his open set and player II is obliged to
play an open set such that it contains also this point played by player 1. Player
IT wins this game if the intersection of all open sets is nonempty.

A topological space is called strong Choquet space if player 1T has a winning
strategy in the strong Choquet space. We prove that Polish spaces are second
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countable, regular, strong Choquet spaces with the Hausdorff property and use
this properties in Part 2 for the characterization of the projective sets by finer
topologies. But before we come to this part we close Part 1 with a chapter about
the scale property and about projective ordinals under the axioms PD and AD.

In Part 2 we give proofs for all results about the characterization of the
projective sets. We start in Chapter 6 with the proof of the above character-
ization of the Borel sets. The theory ZF + DC is sufficient to prove then a
corresponding result for the analytic sets:

A subset of a Polish space is analytic iff there exists a second count-
able, strong Choquet topology on this subset that is finer than the
restriction of the topology of the Polish space to the subset.

A construction of such a finer topology for all . sets is immediate if we work
under the additional axiom PD. This is proved in the beginning of Chapter
7. Crucial for this is that = sets are s-Suslin for a cardinal  less than the
projective ordinal 5,1Z as an ordinal. We thus construct finer strong Choquet
topolgies on such sets with a basis of lenth less than the associated projective
ordinals. The prove of the converse is a lot more difficult. We have to introduce
some new notions about reliable ordinals and honest subsets of reliable ordinals
before we finish in Chapter 7 with the following theorem:

A subset of a Polish space is 2,12 iff there exists a strong Choquet
topology with a basis of length less than 6}1 on this subset that is
finer than the restriction of the topology of the Polish space to the
subset.

The proof of this theorem requires the very strong axiom ADgr. But assum-
ing this we have in fact found a topological characterization of all projective sets.

Our notation is close to the notation in [Kech95] and [Mosc80]. The basic
theory for this paper is the Zermelo-Fraenkel set theory together with the axiom
of dependent choice DC.



Part 1

Facts from descriptive set
theory



Introduction to Part I 9

In this first part we will introduce all of the basic concepts that will be
necessary for the characterization of the projective sets and the proofs for it.
The topological spaces we consider are the Polish spaces. So in the first chapter
we define the Polish spaces and will take a look at sums and products as well
as certain subsets of Polish spaces.

By far the most important Polish space for our approach is the Baire space,
i.e., the space w* seen as the topological product of the discrete topological
spaces w. In the forthcoming we will call elements of w integers and elements
of the Baire space reals. To examine the Baire space, the concept of a tree is of
help. Trees are a fundamental tool for descriptive set theory and in particular
in our work here. In Chapter 2 we thus introduce the notion of trees and many
concepts related to it. A tree on w consists of finite sequences of integers such
that each initial segment of such a finite sequence is again in the tree. By an
infinite branch through such a tree we understand an uncountable sequence
of integers, an element of the Baire space, such that all finite inital segments
of this sequence are also in the tree. Closed subsets of the Baire space are
characterised by the set of all infinite branches of a tree on w. This easy but
important result is the starting point for the consideration of representations
of subsets from the Baire space by trees. This leads in particular to the proof
that for each Polish space exists a continuous mapping from the Baire space
onto the considered Polish space. This explains the special role the Baire space
plays in the category of Polish spaces.

Another tree representation is the main definition in Chapter 2. We consider
trees on the product of w and an ordinal A\. Subsets of the Baire space that can
be characterized as the projection of the infinite branches of such a tree to the
Baire space are called A-Suslin sets. The existence of such a representation
will turn out to be crucial for our topological characterisation of projective sets.
So in the rest of Chapter 2 we discuss these sets. In particular we examine the
connection between A-scales and A-Suslin sets. A A-scale on a subset of the
Baire space is a sequence of A-norms, i.e., a sequence of mappings from the
subset to A, with additional properties. We will prove that each subset that
admits a A-scale is A-Suslin. We finish Chapter 2 by introducing Borel and A-
Borel sets and discussing the relation between these sets and the A\-Suslin sets.

Chapter 3 gives a short overview about the Borel and the projective hi-
erarchy. We will define these hierarchies and state the main properties. In the
second part of this chapter we introduce the effective analogs of these hierar-
chies together with their main properties.

In Chapter 4 we turn to the concept of games and determinacy. We
consider two person games for example on the integers. For a subset of the
Baire space, called the payoff set, such a game works as follows. The two play-
ers I and II take turns in playing integers. After w moves, the outcome of
such a game is an uncountable sequence of integers, therefore an element of
the Baire space. We say, player I has won the game if the outcome of this
run of the game is in the payoff set. Otherwise IT has won. A strategy for
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one of the players tells the player which move to make in every round of the
game depending on the finite sequence played so far. Such a strategy is called
a winning strategy if the player wins all runs of the game by following his
strategy. We call a subset of the Baire space determined, if in the associated
game with this subset as the payoff set one of the players has a winning strategy.

It is an interesting problem which pointsets of the Baire space are deter-
mined. We are here not interested in this problem but rather postulate the
determinacy of certain pointsets. We introduce the axiom PD (which asserts
that all projective pointsets are determined) and the axiom AD (which asserts
that all pointsets of the Baire space are determined). Furthermore we will need
the axiom ADg that asserts that in a game on the reals (on the Baire space)
every pointset is determined. We will work under the assumption of these axiom
to prove the characterization of the projective sets.

As described in the introduction we will also consider the strong Choquet
game and prove the characterization of Polish spaces as strong Choquet spaces
in the second part of Chapter 4.

In Chapter 5 we will show that the projective sets admit certain scales if
we work under determinacy axioms as described in Chapter 4. Therefore we
conclude that the projective sets are A-Suslin sets. The ordinal A will be closely
related to the projective ordinals, which are defined as the supremum of all
the lengths of norms on the Baire space which are in A,ll. Chapter 5 ends with
an analysis of these projective ordinals under AD.

The basic theory for this chapter is the Zermelo-Fraenkel set theory together
with the Principle of dependent choices (DC):

(DC) For every binary relation R C X x X on a nonempty set X
the following holds:

Vee Xy e X (z,y) €R = If :w— XVn((f(n),f(n+1)) €R

Often we need just the weaker Axiom of Countable Choice (AC,):

(AC,,) Every countable set consisting of nonempty sets has a choice
function.

The axiom DC implies AC,, for a proof see for example [Rohd01, Lemma 1.7].
If one of our results needs additional assumptions it will be specified.



Chapter 1

Polish spaces

We want to start off with the definition and some basic facts about Polish spaces.
We assume familiarity with the basic concepts of topological and metric spaces
but repeat first a few properties of it and introduce notation.

Definition 1.1. Let (X, 7) be a topological space.

1.

(X,T) is separable if there exists a countable dense subset of X, that
is, a subset that has a nonempty intersection with every nonempty open
set.

. A basis B for T is a collection B C T such that every nonempty set in 7

can be written as a union of sets from B. The length of a basis B for
T is the cardinality of B.

(X, T) is second countable if (X, 7) has a countable basis.

(X, T) is called a T1 space if for every two distinct points z,y € X there
exists an open set U of X such that z € U and y ¢ U.

(X, T) is called a Hausdorff space if for every two distinct points z,y €
X there exist open neighborhoods U of z and V' of y such that UNV = ().

(X, T) is called regular if for every point z € X and every open neighbor-
hood U of z there is an open neighborhood V of x such that the closure
of V is contained in U. We denote the closure of a subsets V of X by
clr (V).

Polish spaces are topological spaces (X, 7)) where the topology is induced by
a metric d on X. That means the open balls B(z,¢) = {y € X | d(z,y) < e} for
all z € X and all radius € > 0 serve as a basis for the topology. A topological
space (X, T) is called metrizable if there exists a metric d on X such that 7T is
the topology induced by the metric d. The space (X, 7)) is called completely
metrizable if the topology 7 is induced by a complete metric d. In general
this metric d is not unique. We say a (complete) metric d is compatible for a
(completely) metrizable topological space (X, 7T) if this d induces the topology.

11
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Lemma 1.2 (AC,). Every second countable topological space X is separa-
ble. FEwery metrizable, separable topological space X is second countable. In
particular, for metrizable spaces separable is equivalent to second countable.

Proof. Let X be a topological space with a countable basis {B; | i € w}. By
AC, we can choose a point in each basic set. The set of all these points is
countable and dense in X.

Let X be a separable space where the topology comes from a metric d. Let
D be a countable dense subset of X. We claim that a basis for this topology
is given by the open balls with center the points of D and rational radius (and
by AC, this basis is countable). To see this, let U be an open set in X. Let
z € U. Since U is open there exists an open ball around z which is completely
in U. Let B(z,¢) be such a ball. Since D is dense in X there is a point y € D
and a rational § with d(z,y) < 0 < 5. Then 2 € B(y,¢) and B(y, ) C B(z,¢),
since for z € B(y,d) we have d(z,z) < d(z,y) + d(y,z) < 2§ < e. So we can
find for each point in U a neigborhood that has the form B(y,d) with y € D
and J rational and lies completely in U. So U is the union of all these balls,
which proves what we claimed. O

Lemma 1.3. Every metrizable space is a reqular Hausdorff space. So in par-
ticular a T1 space.

Proof. Let (X,T) be a metrizable space and d be a compatible metric for
(X,T). First we want to prove the Hausdorff property. For this let z,y be
two distinct points in X with d(z,y) = ¢ > 0. Then B(z, ) and B(y, ) are
open sets that separate these two points, i.e., the intersection of these two open
sets is empty.

To prove the regularity let U be an open neighborhood of a point z. Then
there is an open ball B(z, ) contained in U and B(z, §) is an open neighborhood
of  with cly(B(z,5)) C B(x,e) CU. O

Definition 1.4. A topological space (X, T) is called a Polish space if (X, 7T)
is a separable, completely metrizable space.

Example 1.5. (i) R with the usual metric is a Polish spaces.
(ii) Any set X with the discrete topology is a completely metrizable space. A
compatible metric is given for example by the discrete metric J§, defined by

d(z,y)=1ifz #yand §(z,y) =0ifz =y

The set X together with the discrete topology is a Polish space iff X is count-
able.

In the category of topological spaces exists products and sums (coproducts).
It turns out that the product in the category of topological spaces of two Polish
spaces is again Polish and also the sum of two Polish spaces is again Polish.
We want to prove this next. It is necessary for the proof that the compatible
metric d of a Polish space X is bounded by 1, i.e., d(z,y) <1 for all z,y € X.
We already noted that the compatible metric is not unique and we show first,
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that there is indeed always a metric bounded by 1 that is compatible for the
Polish space.

Two metrics d and d’ on a set X are called equivalent if they induce the
same topology. Since in a metric space the closed sets are exactly those sets
in which the limit point of a convergent sequence in the set is again in the set,
it suffices to show that two metrics d and d’ on X induce the same notion of
convergence in X, i.e., for every x € X and every sequence (z;)ije, in X the
conditions lim;_,,, d(z, z;) = 0 and lim;_,,, d’'(z, z;) = 0 are equivalent, to prove
that d and d' are equivalent. We use this fact to show that in a metrizable
space we can choose the metric that induces the topology to be bounded by 1.

Lemma 1.6. In every metric space (X,d) the metric d' = #‘ld 18 equivalent to
d.

Proof. Let (X,d) be a metric space. First we have to check that d' really is
a metric. Tt is obvious that d'(z,y) = 0 iff x = y and that d'(z,y) = d'(y,z).
To prove the triangle inequality consider the following equivalence in which I
omitted the easy calculations. Let z,y, 2z be in X.

d(z,2) < d(z,y) +dy,2)
& d(zy) +d(y, z) — d(z, z) + 2d(z,y)d(y, z) + d(z,y)d(z, 2)d(y,z) >0

But the second line is true since d(z,y) + d(y, z) — d(z,z) > 0 by the triangle
inequality for d. So d’ is a metric and it is now trivial that d and d’ induce the
same notion of convergence. U

Proposition 1.7. i) The product of a countable sequence of Polish spaces is
Polish.

ii) The sum of a sequence of Polish spaces is Polish.

Proof. (i) Let (X,)new be a sequence of metrizable spaces. For all n € w let d,
be a compatible metric for X,, with d,, bounded by 1. A metric on [[;_, X, is
given by

w

1
d(z,y) = Z ont1 dn(Tns Yn)

n=0

where z = (2,,),y = (yn). This is obviously a metric.
(1) The topology induced from d on [[;_, X, is the same as the product topol-
ogy.

Proof: The product topology is the smallest topology on [[;,_, X, such
that all projections p; : [];_q Xn — X, are continuous. So if all projections p;
are continuous with respect to the topology induced by the metric d we know
that this topology is finer than the product topology. But p; : ([[,_ Xn,d) —
(X;.d;) is in fact continuous for all i: Let z = (z,,) € [[_, Xn, let € > 0.
Then d(z,y) < 55 implies d;(pi(x),pi(y)) = di(wi,y;) < e. Thus the p;’s are
continuous.

Let conversely B(z,¢) be an open ball around z = (z,,) € [],_, X, with respect

[oe) 1 1

to the metric d. Let i be a natural number such that > ° . T = o7 < €.
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Consider for n < i the balls B,, = B(zy, 5) with respect to the metric d,,. Then
M=o p;l(Bn) is by definition of the product topology open and contains z. Let

Y= (yn) € My Pn'(Bn). Then

i—1 w
1 1
d({lt, y) = Z Fdn(xm yn) + Z Fdn(xm yn)
n=0 n=t
< c + - €
2 2

So y € B(z,e). Therefore ﬂ;zopgl(Bn) C B(z,e) and (1) is proved. q.e.d.(1)

A basis for the product topology is given by products [],, U, where U,, = X,
except for finitely many 7 for which U; is a basic set of X;. So if all X,,’s are
separable the product space [[)_, X, is separable.

The last we have to check is that if all d,, are complete metrics then d
is a complete metric. For this let (z') be a Cauchy sequence in X. Then
(pn(zh)); = (2%); is a Cauchy sequence in X,, for all n. Since all the X,,’s are
complete spaces the sequence (acﬁl)Z converges against a x, € X, for all n. Thus
T = (z,) € []¥_y X» and it is easy to see that the sequence (z‘) converges to
the point z.

(ii) Let (Xp)new be a sequence of metrizable spaces. For any n let d,, be a
compatible metric on X;, bounded by 1. We may assume that the sets X,, are
pairwise disjoint. Now define a metric on X = @,° , X, by

di(z,y) ifz,y € X; for some i € w
d(z,y) =

1 otherwise

The only thing to check that this is indeed a metric is the triangle inequality.
Let z,y,z € X. If 2,z € X; for some ¢ then if y is also in X; we have d(z,z) =
di(z,2) <di(z,y) +d;i(y,z) = d(x,y) + d(y, z) by the triangle inequality for d;,
otherwise d(z,z) = di(z,2) <1 <2 =d(z,y) +d(y,z). If x € X;,2z € X; for
i # j we have d(z,z) = 1. But if y € X; we have d(z,2) = 1 < d(z,y) + 1,
if y € X; we have d(z,z) =1 < 1+d(y,z), and otherwise d(z,z) =1 < 2 =
d(z,y) +d(y, 2).

To show that the topology induced by d is the same as the sum topology,
note that an open ball in X; around an z € X; with radius € < 1 with respect
to d; is equal to an open ball in X around z with radius £ with respect to d.
With this in mind everything that remains to show is obvious.

If all the X,, are separable spaces the sum is separable since the union of all
the bases of the X, is a basis for X.

If all d,, are complete then d is complete since a Cauchy sequence in X with
respect to d will finally be in one X; and we have the convergence there. O

Example 1.8. (i) R",n € w and R¥ with the usual metric are Polish spaces.

(ii) Let X be any set viewed as a topological space with the discrete topology.
We already mentioned that this is a completely metrizable space and it is a
Polish space iff X is countable. By the above Theorem 1.7(i) the product space
X% of countable many copies of the discrete topological space X is again a



Chapter 1. Polish spaces 15

completely metrizable space. In the next chapter, having the notion of a tree,
we will define a complete compatible metric for such spaces. If X is countable,
X% is Polish. For example is w* a Polish space and this space is called the
Baire space. It is of great importance for our work here and we will come back
to this space at various points.

Definition 1.9. The space w” viewed as the product space of countable many
copies of the discrete topological space w is called Baire space and is denoted

by N.

Remark 1.10. It is common use in descriptive set theory to call the elements
of the Baire space reals. This is justified by the fact that the Baire space is
homeomorphic to the set of irrationals with the relative topology (for a defini-
tion of relative topology see below). Since the set of the rationals is countable,
meager and from Lebesgue measure zero, the difference between the reals and
the irrational plays no important role for many results in descriptive set theory.

We are now interested in subspaces of Polish spaces that are again Polish.
We define the topology on a subspace Y of a topological space (X,7) by the
relative topology 7T|Y = {UNY | U € T}. It is easy to see that closed
subsets of Polish spaces are again Polish with respect to the relative topology
by taking the restriction of the complete metric to the closed subset. It is also
possible to prove that open subsets of Polish spaces are again Polish but more
difficult to find the correct metric. We do not want to prove this here but state
instead a more general Theorem that tells us that the subsets of a Polish space
with the relativized topology that are also Polish are exactly the Gy sets.

Definition 1.11. Let (X,7) be a topological space.
G C X is called an Gy set if G is an intersection of countable many open subsets

of X. F C X is called an F, set if F' is a union of countable many closed sets
of X.

Example 1.12. The open sets of a topological space are G sets, the closed
sets of a topological space are F, sets.
In Polish spaces the closed sets are G sets.

To prove that a closed set in a Polish space is a G5 set we have to introduce
the distance of a point from a subset in a metric space (X,d). We define
for a point € X and a subset A C X the distance of z from A by

d(z, A) = inf{d(z,y) |y € A}

Lemma 1.13. Let X be a metrizable space. Then every closed subset of X is
Gs.

Proof. Let d be a compatible metric for X. Let A be a closed set in X. We
show that for £ > 0 the e-ball around A, B(A,e) = {z € X | d(z,A) < €},
is open. To see this let y € B(A,¢). Then d(y,A) < ¢, say d(y,A) = € < e.
The ball B(y,e — €) is contained in B(A,¢), since for z € B(y,e — €) we have
d(z,A) <d(z,y) +d(y,A) < (e —8) +E=¢.

But now we can write A =), B(A, n+r1) and thus A is a Gy set. O
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We state now the Theorem about the subsets which are Polish with respect
to the relative topology we mentioned above. For a proof see [Kech95, Ch.1 §3,
Theorem 3.11].

Theorem 1.14. A subspace of a Polish space with its relativized topology is
Polish iff it is G.

So in particular the open subsets of a Polish space and by Lemma 1.13 the
closed subsets of a Polish space are again Polish.



Chapter 2

Trees

A basic tool in descriptive set theory and for a better understanding of the
Baire space is the notion of a tree. We begin with some notations.

Let X be aset. X™ is the set of all finite sequences s = (sg,...,8,-1) in X
of length n. For n = 0 let X = {(}, where () denotes the empty sequence. For
s =(80y--+s8m—1) € X™ and t = (tg,...,tn—1) € X" we define the concate-
nation of s and ¢ to be the finite sequence st = (S0, ... Sm—1,%0,-.-,tn-1) €
X"™*t™_ Tn abuse of notation we write for ¢ = (z), a sequence of length 1, s™x
instead of s (z). A finite sequence s is an initial segment of the sequence
t, s Ct, if m = length(s) < length(¢) = n and s = t|m = (to,...,tm-1). Two
such finite sequences are called compatible if one is an initial segment of the
other. Otherwise we will call them incompatible and denote this by s L ¢. If
T = (Tn)new € XY is an infinite sequence, we say a finite sequence s is an
initial segment of z if there is an m € w such that s = z|m = (x¢,...,Tm-1).
We denote this also by s C . Finally X<¥ = J,,c,, X" is the set of all finite
sequences.

Definition 2.1. A tree T on X is a set of finite sequences in X closed under
initial segments, i.e., T C X<¥ and if t € T and s C ¢ then s € T.

An infinite branch of T is an infinite sequence z € X“ such that for all
n € w the sequence z|n = (xg,...x,—1) € T. The set of all infinite branches of
T is denoted by [T], so [T] = {z € X¥ |Vn zin € T}.

2.1 The topology of the Baire space

We will now define a metric that induces the topology of the Baire space and
also leads to a definition of a countable basis. Instead of just working with the
Baire space we consider the more general context of metrizable spaces of the
form X* seen as the product of countable many copies of the discrete topological
space X.

Lemma 2.1.1. Let X be a set. X% viewed as the product space of countable
many copies of the discrete topological space X is metrizable with the complete

17
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metric

0 otherwise

9—(min{n€w | zin£y|n}+1) if ¢
i(o,) = { fz#y

A basis for the topology of X“ is then given by the sets
Ny={reX“|sCz},se X

Proof. Tt is easy to see that d is a metric.

A basic for the product topology of X“ is given by sets of the form [[;., U;
where U; = X except for finitely many i for which U; = {z;} for an z; € X. The
topology on X induced by the metric d has by definition a basis consisting of
sets N, s € X<¥. Note that for s C t we have Ny N N; = Ny, and if s L t we
have Ny N N; = (). Tt suffices to show, that these two topologies are the same.
For this it is enough that each set of the basis of the one topology is open with
respect to the other topology.

Let U = HiEw U; with Ui, = {fl?o}, LU = {fl?nfl},i(] < ...i,_1 and all
other U; = X. Then U = |J{N; | length(s) = in—1 and s;, = zg, ..., S, = Tp}.

Conversely, is s = (sg,...,8n-1), then Ny = [[.., U; with U; = {s;} for
1 <n-—1, U; = X otherwise.

To see, that d is complete consider first the following equivalence:

(1) Let (z")new be a sequence in X¥. Then z" — x iff Vi (2" (i) — z(7)).

Proof: “=7” Let 1 € w. Let € < 21% Since " — z there exists a N € w
such that d(z",z) < € for all n > N. But

1Ew

1
(min{k€w | ™ |k#z|k}+1)

d(z", z) = 5 <

e < F
implies 2™ (i) = z(i) for n > N. So z"(i) — z(7).

“<” Let ¢ > 0. Let ¢ € wsuch that 2,% < e. For j <iexists an N; € wsuch
that 2"(j) = z(j) for n > N; by the assumption. Let N = max{N; | j < i}.
So for any n > N we have min{j € w | 2"(j) # z(j)} > i. Therefore

1 1
9(min{k€w | z"|k#z|k}+1) — i+l

d(z",x) = <e

for every n > N. g.e.d (1)

Let now (z")pew be a Cauchy sequence in X“. Let i € w and fix ¢ > 0 with
e < 21% Then there exists an N € w such that d(z",z™) < ¢ for n,m > N.
By the choice of ¢ we have z"(i) = 2™ (i) for all n,,» > N. So in particular
d(z"™(3),z™(3)) = 0 for n,m > N and therefore (z")ne, is a Cauchy seqence.
This sequence becomes eventually constant and converges against this constant
point. Since i was arbitrary, we are done by (1). O

By Proposition 1.7 the products (X“)", n € w, and (X%“)“ are again metriz-
able spaces. But the next lemma tells that these are not really new spaces since
they are all homeomorphic to X¥.
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Lemma 2.1.2. (i) For every n € w the product space (X“)" is homeomorphic
to X“.
(1) (X“)¥ is homeomorphic to X“.

Proof. (i) Let n € w. Let

f: XY — (X¥)"
x — (Tgy.--yNp—1) with z;(j) = z(nj +1) fori <n
This f is clearly a bijection. It is continuous, since for Ny, x ... X Ny _,
basic open set in (X“)" we have f !(Ns,,... x Ny, _,) = [J{Ns | s(nj + i)
si(j) if 7 < length(s;)}. f is open, since f(Ng) = U{Nsy X ..., Ns,_, | si(j) =
s(nj + 1) if defined}.

[l o

(i) Fix a bijection (,) : w? — w. Let

FrXe — (X9
o (z;); with z;(j) = z((i, 7))

This is clearly a bijection. Let [[,U; be a basic open set in (X“)“, say
Ui, = Nsy,..., Ui, = Ns,_, and all other U; = X*. Then f~Y[[,U;) =
U{Ns | s((ik, 7)) = si,(j) if j < length(s;,) and k¥ < m — 1}. Thus f is con-
tinuous. On the other hand let s = (sg,...,8m—1) and let ik, jx such that
(ik,jk) = k for K <m —1. Then f(N;) = [[,; U; with all U; = X* except for U,
with U;, = U{Ns,, | si, = s if defined } for K <m —1. Thus f is open. 0

An example for the importance of the trees in describing the metrizable
spaces of the form X% is the following propositions that infinite branches of a
tree on X are exactly the closed sets.

Proposition 2.1.3. A set C' C X% is closed iff there is a tree on X such that
C =[T].

Proof. Let C be a closed set in X“. Consider the tree Tc = {z|m | = €
C Am € w}. Clearly this is a tree and C C [T¢]. If y ¢ C, there exists an open
neighborhood of y not in C. So by Lemma 2.1.1 there exists an m € w such
that Ny, N C = (. Therefore y ¢ [Tc]. Hence C = [Tc].

Now let T' be a tree on X and x ¢ [T]. Then there exists an m € w such
that z[m ¢ T. Therefore Ny, N [T] = 0 and X* \ [T] is open. O

There is also a connection between “nice” maps between trees on two sets
and continuous functions on the product spaces of these sets.

Definition 2.1.4. Let S be a tree on a set A, T be a tree on a set B. A map
¢ : S — T is called monotone if s C ¢ in S implies ¢(s) C p(%).

For such ¢ let D(p) = {z € [S] | limye, length(¢(z|n)) = co}. For x € D(yp)
let f,(z) = U,c, ¢(z|n). ¢ is called proper, if D(p) = [S].

Proposition 2.1.5. Let ¢ : S — T be a monotone map on trees S, T on sets
A, B. The the set D(p) is G5 and f,: D(¢) — [T] is continuous.
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Proof. (1) D(yp) is Gy:

We have z € D(p) < VnIm (length(p(z|m)) > n). So D(¢) = ,ecn Un
with U,, = {z € [S] | 3m length(p(z|m)) > n}. But these sets are open, since,
if y € Up, there is an m € w with length(p(y|m)) > n. Therefore Ny, C U,.
(2) f is continuous:

Let V; = Ny N [T] be a set from the basis of the topology of [T]. Then

') = {zeD(p)| folz) € NN [T}
= {z € D(p)| folx) Dt}
= {zeD(p| | elzln) 2t}

new

= {xe€D(p)|Is€ S, sCuxp(s) Dt}
= (NN D(p) [ s €S p(s) D1}
|

Definition 2.1.6. Let (X, 7) be a topological space. A closed set FF C X is a
retract of X if there is a continuous surjection f : X — F such that f(z) =z
for z € F.

Proposition 2.1.7. Let A be a countable set. Let F C H be two closed subsets
of A¥. Then F is a retract of H.

Proof. Since F, H are closed in A“ there are trees S,T on A such that F' =
[S], H = [T]. Without loss of generality we can assume that these trees are
pruned, that is, every sequence s in each tree has a proper extension ¢ D s.
(Cutting off all finite branches without proper extension in S, T leads to the
same [S],[T].) We will define a monotone proper ¢ : T — S with ¢(s) = s
for s € S. Then the continuous map f, is a witness for F' being a retract of
H. We define ¢(t) by induction on length(¢). Let o(0) = (). Now let t € T and
©(t) be given. Let a € A such that t7a € T. If t7a € S, let ¢(t™a) = t"a.
Ift7a ¢S, let (t"a) be some ¢(t)"b € S, and this exists since S is pruned.
[Under the assumption of the Axiom of Choice this result holds for any set A,
not only for countable ones.] O

2.2 Polish spaces as surjective images of the Baire
space

The Baire space N plays a special role in the category of Polish spaces, since

for every Polish space there exists always a continuous surjection of the Baire

space in the Polish space. For a proof we first define the concept of a Lusin
scheme.

Definition 2.2.1. A Lusin scheme on a set X is a family (A;)gc,<w of subsets
of X such that

(i) Ag~iNAg~;j =0 forsew¥,i#j€w
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(il) Ag~; C A for s € w<¥,i € w.

By (ii) in the defintion of a Lusin scheme the subsets Ay get smaller than
the length of the sequence gets longer. In applications of the Lusin scheme we
often construct subsets that get arbitrarily small. For this we use the notion of
the diameter of a subset. In a metric space (X, d) we define the diameter of
a subset A of X by

diam(A) = sup{d(z,y) | z,y € A}

Proposition 2.2.2. Let (Ag)scw<e be a Lusin scheme on a metric space (X, d)
with limy, ., diam(Ag),) = 0 for all z € N'. Let D = {z € N'| e, Azn # 0}
and define f : D — X by {f(2)} = Npew Azjn- Then f is injective and
continuous. If (X,d) is complete and each Ag is closed, then D is closed.

Proof. Note first that f is welldefined: Let z € D. Since [, ,, Agin # (), there
is a 2z € (yew Azjn- Let 2 # 2z Since X is a metric space, d(z,2') > 0,
say d(z,2') = e. But lim,¢, diam(A,,) = 0, so there is an m € w such that
z € Ay and diam(A,,,) < e. Therefore 2’ ¢ Ay O N,y Aain

(1) f is injective:

Let © # y € D, Then there is an initial segment s (possibly the empty se-
quence) of z and y and i # j € w, such that s~ C 2,871 L y,s7j Cy,s"j ¢
x. Then Ag~; N As~j = 0, thus ,c,, Azjn N Npew Ayin = 0. So f(x) # f(y).

(2) f is continuous:

Let dar be the metric from Lemma 2.1.1. Let x € D. We have to show that
for all € > 0 exists an § > 0 such that dy(z,y) < d implies d(f(z), f(y)) < e.
Let ¢ > 0 be given. We have to find a proper §. Since lim,,—,,, diam(Ag,) =0,
there is an N € w such that diam(AI‘m) < ¢ for all m > N. Take now
§ = sx53. Now let y € D such that dy(z,y) < §. Then z|N = y|N. Therefore

f(x)?l}fgz;) € Ay n. Thus d(f(z), f(y)) < diam(4, ) < e.

(3) Now let d be a compatible complete metric on X and let each A be closed.
Let (zn)new be a sequence in D with z, — z. We want to show first that
(f(%n))new is a Cauchy sequence. Let for this e > 0. Then thereisa N € w with
diam(A, ) < e. Since z,, — z, there is an M € w such that z,,|N = z|N for
all m > M. So f(zm), f(zn) € Ayn for n,m > M, hence d(f(zm), f(zn)) <e
for n,m > M. So (f(zn))ncw converges against an z € X. We have already
seen that the sequence (f(zn))new is eventually in every A,y for N € w. Since
these sets are closed, z € A,y for all N € w. Thus z € [y, Az|n, S0 We have
x € D. Thus D is closed. O

Theorem 2.2.3. Let (X,T) be a Polish space. Then there is a closed set
F C N and a continuous bijection f : F — X. If X is nonempty, f can be
extended to a continuous surjection g : N — X.

Proof. If we have such an f, the second assumption follows from Proposition
2.1.7.
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Fix a compatible complete metric d < 1 on X. We will construct a Lusin
scheme (Fj)ge,<w on X such that

(i) Fy =X

(ii) Fjs is an F, set, i.e., a countable union of closed sets
(iii) Fs = ; Fs~i = U, clr (Fs~;
(iv) diam(F,) < 2-'ength(s),

If we have defined such a scheme, consider the associated continuous map
f: D — X as in the above Proposition 2.2.2.

(1) £(D) = X

Proof: Let z € X. We use induction to find a unique x € A such that
f(r) = z. Since X is the disjoint union of the F{;’s, there is exactly one j € w
with z € F;). Let z(0) = zo = j.
If s = (zg,...,2n—1) is the only sequence of length n such that z € F,, and
F; is the disjoint union of the F~;, then there is exactly one k& € w such that
2 € Fy~p,2 & Fs~; for i # k. Let x(n) = k. This construction obviously leads
to an z € N such that f(z) = 2. g.e.d. (1)

(2) D is closed

Proof: Let (2,)necw be a sequence in D, x,, — x. We show that (f(zy))ncw i8
a Cauchy sequence and thus converges in X, say lim,¢c,, f(x,) = y. To see this,
let € > 0. Let N € wsuch that diam(F,y) < e. Since z, — ¥ thereisan M € w
such that z,,|N = z|N for all m > M. Therefore f(z,),f(zn) € Fyy for
m,n > M and d(f(zy), f(z,)) < € for n,m > M. In particular, the sequence
(f(Zn))new is eventually in F,n, thus y € cly(F,y). N was chosen arbitrarily,
thus y € Nye,, clr(Fyn)- But since Fyny = U, Foyn—i = U; clr(Fyn~;) and
there is an j € w such that x| N +1 = z|N"j, we also have y € Jy¢,, Fy/n- S0
z € D and f(z) =v. ged. (2)

To construct now the Lusin scheme (Fy) it is enough to show that for every
F, set F C X and every ¢ > 0 we can write ' = UiEw F;, where the F; are
pairwise disjoint F,, sets of diameter < e, such that cly(F;) C F. For notational
simplicity we denote the complement of a subset D in X by ~ D. Note first,
that if C, D are closed sets, then C'\ D is F, since

C\D = Cn~D
1
= Ccn~ () B(D,-)

n
necw

= cn |/ NB(D,l)
n
new

= |Jcon~B(D,

new

)

S|

with B(D, 1) the open balls around D (cf. the proof of Proposition 1.13). Now
let I = .., Ci,C; closed, be an F, set. We can assume that C; C Cj;4 for

€W
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C; with Cf = |J! _, C the closed sets.
Ci\Ci-1,C1 =

every i € w, since we can write F' = | J;,,
Then F can be written as a disjoint union of F;, sets, F' = (J;,,
0.

Now let {U; | i € w} be a basis for the topology of X. It is clear that we
can assume that all U; have diameter < e. Then X = |J;c, U; and also X =
UzEw clr(U;). Let Uy = cly(U), Ufyy = cly( Z+1)\U —ocl7(Uj). These are all
pairwise disjoint Fj, sets of diameter < e and | J;¢,, U = X. So we can write F as
a union of pairwise disjoint F, sets of diameter < ¢, F' = J; ;,(Ci\ Ci—1)NU7,
and clr((C; \ Ci—1) NUS) Celp(Ci\ Cir) CC; CF. O

2.3 MA-Suslin sets and \-scales

We are often interested in trees on products of two (or more) sets A and B.
Let T be a tree on A x B. The elements of [T] are then elements of (A x B)“.
But by using the canonical bijection

(Ax B)Y — AYx BY
((ao,bg),(al,bl),...) — ((ao,al,...),(bo,bl,...))

we can view elements of [T] as elements of A“ x B“. We sometimes also
write finite sequence of T as ((ag,a1,...,an-1),(bo,b1,...,b,—1)) instead of
((ag,bo), (a1,b1), ..., (an—1,bp—1)). It makes now sense to apply the projection
on A“ to the set of the infinite sequences. We define

plT) ={z € A” |3y € B* (z,y) € [T]}

For example the projection of a closed set C C N x N, that is given by the
infinite sequences [T'] of a tree T' on w X w, to its first component is given by

projy[Cl={z e N | Iy e N (z,y) € C} =p[T] ={z e N' | Jy € N (z,y) € [T]}

We call projections of closed sets of N' x N analytic sets of the Baire space
and they are exactly the sets that have the form p[T] for some tree T' on w X w
following Proposition 2.1.3. We will come back to the analytic sets in the next
section.

It will turn out that having sets as a projection of (the infinite branches
of) a tree is fundamental for proving our main theorem and also in many other
areas of descriptive set theory. In particular trees on wellfounded sets will be of
special interest. The important definition in this context is thus the following.

Definition 2.3.1. Let A be an infinite ordinal. A C N* is called a A-Suslin
set if there is a tree T on w* x X such that A = p[T].

In this notation the analytic sets are exactly the w-Suslin sets. So far these
are the only examples we have for A-Suslin sets. We will show below that all
sets that admit A-scales are A-Suslin sets. Before we introduce the scales we
will show that A-Suslin sets are closed under projections in the following sense.
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Proposition 2.3.2. Let A C N**! for k > 1 be a A\-Suslin set. Then p[A] =
{(z1,...,2k) | Fzkg1 (z1,...,2K) € A} is also X-Suslin.

Proof. Let A C N**! be \-Suslin witnessed by a tree T on wF*! x A, ie.,
A = p[T]. Fix a bijection
firuoxA— A

This leads to a bijection
£ (wx )<Y A<
We define a tree 7' on w* x \ by
(S1snn86:m) €T i (s1,.. ., 85, [ 1) €T

Claim p[T'] = p[A]

Proof:

Ju € X\ (z1,..., 2, u) € [T']

Ju € XY Vn(zi|n,, ..., zk|n,uln) € T'

Ju € XVn(zi|n, ..., xyln, f* (uln) €T

Ju € X3z € NVn(zi|n,. .., zr1|n,uln) € T
Ju € X 3zp1 €N (21, ..., Tpy1,u) €T

Az € Nz, ..., 2111) €Ep[T] = A

(21,...,2k) € p[A]

(5[)1, - ,ZL']C) € p[T']

SRR O

O

Proposition 2.3.2 will be important later.

Given a A-Suslin set A Q_./\fk note that using a bijection between the ordinal
A and its cardinality & = X we get a tree T on w* x & such that A = p[T"]
and thus A is k-Suslin. So, often one considers just k-Suslin sets where k is a
cardinal. It seems more natural for the upcoming definition to introduce here
the more general notion.

Before we start defining A-scales and prove that there is a close relation be-
tween sets that admit A-scales and sets that are A-Suslin we have to introduce
the notion of norms and prewellorderings.

We first recall the concept of wellfounded relations. Let < be a binary
relation on a set X. The strict part < of the relation =< is defined by

<y & r3yA-(y=2x).

We call the relation < a wellfounded relation if each nonempty subset A of
X has a <-minimal element, that is, there exists an element x € A such that
-y < x for all other y € A. Under DC this is equivalent to the fact that no
infinite descending chain with respect to < exists, i.e., there exists no infinite
sequence

o~ T1 ™ T2.--
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One can apply the concepts of induction and recursion to wellfounded relations
(see for example [BuKo096, Ch.5.5]). In particular one can define the length of
a wellfounded relation by defining a canonical rank function on X. A rank
function on X with respect to the wellfounded relation < is a function p :
X — Ord such that if z < y for z,y € X then f(z) < f(y). A canonical
rank function p< for X with respect to a wellfounded relation < is defined by
recursion in the following way:

pj:X — Ord
z — sup{p(y) + 1]y <z}

One can prove that such a canonical rank function exists (see for example
[Jech97, Part I, Ch.2, Theorem 5]). The range of this canonical rank function
p< is an ordinal and this ordinal is called the length of the wellfounded
relation =< and is denoted by |=].

A prewellordering is now just a wellfounded relation with additional prop-
erties. The concept of a norm is closely related to prewellorderings, since it will
be pretty obvious how to get a prewellordering out of a norm.

Definition 2.3.3. Let X be a set. A norm on X is a map ¢ : X — Ord.
A norm is called regular if ¢[X] is an ordinal, that is, ¢ maps X onto some
ordinal .

A prewellordering on a set X is a wellfounded relation < on X which is
reflexive, transitive and connected, which means for every z,y € X we have
z<yory<z.

It is very easy to see that for each norm ¢ on a set X the relation <, defined
by
<,y & pz) <py)

is a prewellordering. Conversely, one can define the canonical rank function
on each prewellordering and gets a norm. So the concepts of a norm and of a
prewellordering coincide. The following proposition states this fact.

Proposition 2.3.4. Let X be a set. If ¢ : X — Ord is a norm, then <,
defined by v <, y & ¢(x) < ¢(y) is a prewellordering on X. If < is a
prewellordering of X, then there exists a unique regular norm ¢ on X with
<=<

D=0

Proof. 1f ¢ is a norm on X one proves easily that the relation <, is a prewellorder-
ing on X.

If a prewellordering < of X is given one defines by recursion on the well-
founded relation < the canonical rank function p by p(z) = sup({p<(y)+1 |y <
x}. The rank function is a surjection on some ordinal and it is easy to see that
we get back our prewellordering < as <,. So it remains to show that this norm
p is unique. Assume there is a distinct surjection 7 from X onto some ordinal
such that <=<;. Let z be minimal with respect to < such that p(z) # 7(x)
and without loss of generality let o = p(x) < 7(z). Since 7 is surjective there
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exists an y € X such that 7(y) = a < 7(z). Therefore we have y < z. But
then we have p(y) = 7(y) = o and thus <, y, so < y. This contradicts
Yy < T U

We call two norms ¢, on a set X equivalent if <,=<,. Clearly every
norm is equivalent to a unique regular norm (consider the associated prewellorder-
ing and the canonical rank function of this prewellordering). The length of a
prewellordering < is the range of the associated regular norm, denoted by
<I.

Of course there exist a lot of trivial norms for a set. The concept becomes
interesting if we put definability conditions on a norm. We will come back to
this in Chapter 5.

A (semi-)scale is now a sequence of norms in the following in sense:

Definition 2.3.5. (a) A semi-scale on a subset A of a Polish space X is a
sequence of norms (¢, )necw on A, such that for every sequence (z;);c,, in A for
which the following holds

1. im; oz, =z

2. for all n there is a A\, € Ord such that ¢, (z;) = A, for all 7 large enough
we have z € A.

It is a scale if in addition ¢, (z) < A, for all n.

(b) A (semi-)scale (¢n)new is @ A-(semi-)scale if for all n € w the length of ¢,
is less or equal .

Similar to the norms the concept of scales becomes more interesting then
we put definablity conditions on it. This will play a crucial role in proving our
main theorem and we will also come back to it in Chapter 5. But subsets of
the Baire space that admit A-semi-scales are of interest in there own sense since
they are A-Suslin sets. The next theorem assures that the converse is also true,
i.e., A-Suslin sets admit A-semi-scales. We introduce one more notion for the
proof of it.

Definition 2.3.6. Let T be a tree on a set A. For a finite sequence s € A<Y
we define

Ts = {t € T |t is compatible with s} ={t € T |t C sV s Ct}

Theorem 2.3.7. A subset A of the Baire space N is \-Suslin iff A admits a
A-semi-scale.

Proof. Let first A C N be A-Suslin. Fix a tree T on w X  such that A = p[T].
For z € A we want to pick now one branch (z,f) € T without using any
choice. For this we need the notion of a leftmost branch of a tree. We define
the leftmost branch (z, f;) of [T'] by recursion as follows:

First let < be a wellordering on w X A defined by

(k,a) < (l,p)ea<pVa=FNE <L)
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If ((z(0),...,2(n—1)),(f2(0),..., fz(n—1)) is already defined (possibly the
empty sequence), let (z(n), fz(n)) be the <-least element (k, ) of w x A such

that [Tx\n“k,fﬂn“a] 7é 0.

Now let for z € A the leftmost branch of T' be given by (z, fz). Let ¢, (z) =
fz(n) for n € w. So ¢, is a A-norm on A. To prove it is a semi-scale let (x;);c.
be a sequence in A such that z; — z and ¢, (z;) = A, for i large enough and
for all n. We have therefore

(xufxz) = (:Ei, (‘Pn(xi))ned) € [T]
and
(is (on(Ti))new) = (2, (An)new)

Since [T is closed (z, (An)new) € [T], thus z € p[T] = A. This proves that the
norms ¢, form indeed a semi-scale.

Let now conversely (¢n)necw be a A-semi-scale on A C N. The tree T on
w % A associated to this semi-scale is given by:

((k07 s 7kn)7 (507 s 7571)) €T &
Jz € A such that z(7) = k; and ¢;(z) = ¢&; for all i <n

(1) A =p[T]
Proof: “C” Let z be in A. Then obviously (z, (¢;(x));) € [T].
“D” Let z € p[T]. Then

zep[T] & FueX’ (z,u)e€[T]
& JueNViecw(xliuli) €T
& Ju € A\ Vi € w3y; € A such that for all n <
yi(n) = z(n) A enlys) = u(n)
So (x|i,uli) = (yili, (wo(¥i),--.,pi—1(y;)) for all i < w. Thus the sequence of

the y; converges against x and ¢, (y;) = u(n) for all i > n. Since (¢,) is a
A-semi-scale we have z € A. O

2.4 Wellfounded trees

We call a tree T on some set X wellfounded if [T] = (). This comes from the
fact that for such a tree the relation D of proper extension of finite sequences
is wellfounded. A rank function for a tree T on X is any mapping

p: X<¥ — Ord

such that p is D-< orderpreserving, i.e., if s,t are in T and ¢ D s then p(t) < p(s).
So if we have a wellfounded tree T' we can thus define a canonical rank
function as on any wellfounded relation by:

PT X<¥ — Ord
s +— sup{p(s"z)+1|s zeT}
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there we adopt the usefull convention that sup(f)) = 0. If X is of cardinality &
one can show that pr(s) < k™ for all s € X<%.

On the other hand it is clear that if we have some rank function p on T,
the tree is wellfounded. This is because since under DC being wellfounded is
equivalent to the nonexistence of infinite descending chains. So if an infinite
branch f = (zg,z1,Z2,...) would exist in T' we would get an infinite descending
chain of ordinals

p(xo) > p(zo, z1) > p(xo, 1,22) - ..

Since these results are so very helpful in its application we put them down as a
theorem. See [Mosc80, 2D.1].

Theorem 2.4.1. A tree T on a set X is wellfounded if and only if it admits a
rank function. If card(X) = k and T is wellfounded then pr is a rank function
with range in k.

We introduce one more notation. For a tree T on w X k and z € w* define:

T(x) ={(0.&1,-- - &n-1) | (z[n, (&0, &1, &n1)) €T}

With this the following lemma is trivial:

Lemma 2.4.2. Let A C N be \-Suslin as witnessed by a tree T. Then z € A
iff T(x) is not wellfounded.

2.5 A-Borel sets

In the next chapter we will introduce the Borel hierarchy. But we define the
Borel sets and in generalization the A-Borel sets here since we will see that
k-Suslin sets, where & is a cardinal, are kT "-Borel sets of the Baire space.

Definition 2.5.1. Let (X,7) be a topological space. A subsets A of X is
called a Borel set if A is an element of the smallest class of subsets of X which
contains all open sets and is closed under complements and countable unions.
We denote the class of Borel sets of X by B(X,7) or just B(X) if it is clear
which topology of the space we consider.

A subset A of X is called a \-Borel set if A is an element of the smallest class
of subsets of X which contain all open sets and is closed under complements and
(wellordered) unions of length less than A. We denote the class of the A-Borel
sets of X by By (X).

Remark 2.5.2. With the above notion the Borel sets of a topological space
X are exactly the wi-Borel sets of X. Obviously the open, closed, G5 and F,
subsets of X are Borel sets.

Before we prove the result about the k-Suslin sets we state a generalization
of the famous Lusin Separation Theorem. In modern literature the Lusin
Separation Theorem is stated in the following form:
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Theorem 2.5.3. Let (X, T) be a Polish space and A, A’ be two disjoint analytic
sets. Then there exists a Borel set B that separates A from A, i.e., A C B and
A'NnB=1.

A proof can for example be found in [Kech95, Theorem 14.7]. We have seen
in the discussion of Definition 2.3.1 that the analytic sets of the Baire space are
exactly the w-Suslin sets and Borel sets are by definition w;-Borel sets. So we
can read the Lusin Separation Theorem for the Baire space as follows:

Two disjoint w-Suslin sets can be separated by an wi-Borel set.

We state now a generalization of this. A proof by contradiction as well as a
constructive one for this Strong Separation Theorem can be found in [Mosc80,
2.E.1].

Theorem 2.5.4. Let k be an infinite cardinal. Let A, B C N be k-Suslin and
ANB = 0. Then there exists a k*-Borel set C which separates A from B, i.e.,
ACC and BNC = 0.

The following corollary is now trivial.
Corollary 2.5.5. If ACN and N\ A are r-Suslin, then A € B,.+(N).

Proof. Since A is the only set that separates A from N\ A we are done with
the above Theorem 2.5.4 O

In general this result is not true if just the subset A is k-Suslin but not its
complement. But we can then prove that A is kT -Borel.

Theorem 2.5.6. If A C N is k-Suslin, then A € B, ++(N).

Proof. Let T be a tree on w x x such that A = p[T]. For each A < k™ and each
s € k<% define now
A} ={z € w” | pr)(s) <A}

We prove by induction over A that each of these sets are x™-Borel.
A=0: A= Meeodo | (@ln+1,5°) € T} = Neer Upgmsrneygr Va1

if 5 is of length n. Then AY is the intersection of less than x* many finite unions
of open sets, therefore x™-Borel.
Proof:
reAY & prls) =0

& VE<ksNEET(2)

& VE<k(en+1,5")¢T
A>0: AQ\ = ﬂ§<n U§<A A§A§
Proof:

zeAd & sup{pr(s) + 1] € T(a)} <A

VE < kIn < N[N eT(z) < pT(m)(s/\ﬁ) <7
VE < w3 < A pr(s) (™€) < 1)
V€ < kI < X(z € Alx,)

xEﬂUAZAg

E<k N<A

T ¢
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Claim: N\ A = {J,,.+ 4}
Proof:

r¢ A < T(r)is wellfounded
p1(z)(0) is defined

=

& pra)(0) <w*

= R /@J“pT(I) <A
=
=

N<ktze A@\

T € UA%
A<kt

So A is as a complement of an k*t-Borel set in B,++ O

We can strengthen the statement from the above Theorem if & is a cardinal
of cofinality greater than w. First we repeat the notion of cofinality and notions
related to it.

Definition 2.5.7. Let X\ be a limit ordinal. A subset S C ) is unbounded or
cofinal in ) if for every & < X exists an n € S such that £ < . We define the
cofinality of A\ by

cf(A) = min{§ | S is cofinal in A}

A function f : & — X for £ < X is called a cofinal function if the set f[{] is
cofinal in .
A cardinal k is regular if cf(k) = k.

Theorem 2.5.8. If A C N is k-Suslin with k a cardinal of cofinality greater
w, then A € B,.+.

Proof. Let T be a tree on w X k such that A = p[T]. For ¢ < k and z € N let
Té(z) = {s € T(z) |V € s < £}

(1) T () is not wellfounded < 3¢ <k (T¢(z) is not wellfounded)

Proof: “=7 Since T'(x) is not wellfounded there exists f € k“ such that for all
n € w f|n € T(z). Assume now that for all ¢ < & the tree T¢(z) is wellfounded.
In particullar for all ¢ < & the infinite branch f is not in [T¢(x)]. That means
that for all & < k there exists n < w such that f(n) > £. But then flw] is a
cofinal set of length w in k and that contradicts the assumption ¢f (k) > w.

“ &7 If there is a f € [T¢(z)] then f € [T(x)] qed. (1)
Now let for £ < kK A = p[T¢]. Since ¢ < k we know that all A¢ are K*-
Suslin with x* < k. Therefore x*** < k™ and from Theorem 2.5.6 we get that
A¢ € Byov+ C B+

By the above we have

2 € A < T(z) not wellfounded < 3¢ < k (T¢(z) not wellfounded)

and therefore A = J,_, A¢ € By+. O



Chapter 3

The Borel and the projective
hierarchy

In this chapter we will recall very briefly some of the basic definitions and
properties of the Borel and the projective hierarchy together with its effective
analogs. Proofs and more details can be found in an introctuary book on
decriptive set theory, for example in [Mosc80] or [Kech95].

3.1 The Borel and the projective hierarchy

We will first introduce the notions of pointclasses.

Definition 3.1.1. We call T' a pointclass if T' is a collection of subsets of
Polish spaces. A pointset is then just a set of this class. For a pointset A of a
pointclass I' we write A € T" or say A is a I" set. If X is a Polish space and I" a
pointclass we denote by I'(X) the pointsets of I' which are subsets of X.

The dual pointclass I' for a pointclass T' is defined by I' = {A | X \ 4 €
I'(X) for some Polish space X }.

For each pointclass I' the ambiguous part of T is the class A =T'NT.

We denote for example the class of Borel sets in Polish spaces (as introduced
it in 2.5.1) by B and this stands for the class

B={A| AC X for some Polish space X and A is a Borel set in X}.

For some Polish space X the set B(X) consists of the Borel sets of X (for
example B(N) is the collection of all Borel sets of the Baire space A'). So the
pointclass B is the union of all B(X) for X a Polish space. We could define
pointclasses for other categories too, for example for the category of metrizable
spaces, but we are here just interested in Polish spaces.

We define now the pointclasses of the Borel hierarchy by recursion on the
ordinals.

31
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Definition 3.1.2. Let A be a subset of some Polish space X. The Borel
hierarchy of X is defined as follows.

AcX)(X) & Aisopenin X
AcTll(X) < Aisclosed in X
AexV(X) & A= U A, where A, EH%n(X) for some f, < a

new

AcTI%(X) « Ais the complement of an $2(X) set in X
AcAd(X) & AexV(x)nm(X)

For a Polish space X this forms indeed a hierarchy, that means, Zg(X ) C
2 1(X) and similar for II%(X) for & € On. We state this and other main
properties in the next theorem. For proofs see for example [Kech95, 11.11.B] or
[Mosc80, 1.B; 1.F].

Theorem 3.1.3. Let X be a Polish space. Then we have we following picture
of inclusions:
=1 (X) 25(X)
@
7 \(\

AY(X)

<
AY(X) AY(X)
Z Z
Sy g N

The union of all £%(X) is the collection of all Borel sets of X, so B(X) =
Uacord B(X). If X is an uncountable Polish space T9(X) ¢ TI2(X) for all
a < wy, so we have proper inclusions in the above picture.

Furthermore, using AC implies B2 (X) = Uaco, >0 (X) and for a > w;
we have B%(X) = B (X). From this it follows immediately that under AC
we get B(X) = =) (X).

O

O

This last theorem thus justifies the name Borel hierarchy. We write boldface
letters for this pointclasses to distinguish them from the arithmetical hierarchy
we define in the next section. Sometimes, pointclasses closed under continous
preimages are called boldface pointclasses (cf. for example [Andr??]). The
just defined Zg pointclasses are indeed closed under continuous preimages. The
following theorem states the most interesting closure properties, see [Mosc80,
1C.2].

Theorem 3.1.4. For a Polish space X the class 3°(X) is closed under count-
able unions and finite intersections for all a. The pointclass Eg is closed under
continuous preimages for all a, i.e., the continuous preimage of an 23 set s
again an XY set.

The class TI(X) is closed under finite intersections and countable unions for
all a. The pointclass TIO is closed under continuous preimages.

The ambiguous pointclass Ag s closed under finite unions and intersections,
under continuous preimages and under complements.

Before we define now the projective hierarchy we will take a closer look at
the analytic sets since they form the first level of the projective hierarchy. We
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introduced analytic sets of the Baire space as projections of closed sets of N'x N
and were able to characterize them as the w-Suslin sets in the last section.

Historically these sets were discovered by Suslin who found a mistake in a
paper of Lebesgue [Lebe05]. Lebesgue claimed that a projection of a Boreel
set is again a Borel set. Suslin found out that the class of projections of Borel
sets is strictly larger than the class of Borel sets. The following theorem gives
a characterization of the analytic sets.

Proposition 3.1.5. Let (X,T) be a Polish space, A C X. Then the following
are equivalent:

(1) A is the continuous image of a function f: N — X.
(2) A =projx[C] where C C X x N,C closed.
(8) A = projx|[B] where B C X xY is a Borel set, Y is a Polish space.

(4) A is the continuous image of a Borel set of a Polish space .

Proof. (1) = (2): Let A = f[N] where f : N — X is continuous. Then
graph(f) := {(f(z),z) | z € N'} is closed in X x A and A = projx[graph(f)].
(2) = (3): trivial.

(3) = (4): projy is a continuous mapping.

(4) = (1): see 6.1.6. O

We postpone the last part of the proof until we have the characterization of
Borel sets by a finer topology since we can then prove the missing part of this
theorem very easily. Finally we write down the definition of the analytic sets
in Polish spaces.

Definition 3.1.6. A set A in a Polish space X is called an analytic set if A
is the projection of a Borel set in a Polish space X x Y, where Y is a Polish
space.

We already mentioned that the analytic subsets of the Baire space are ex-
actly the w-Suslin sets. This follows immediately from the above Proposition
3.1.5 and Proposition 2.1.3. Since this is so important we put this down as a
theorem.

Theorem 3.1.7. A subset A of the Baire space N is analytic iff A is w-Suslin.

Following Suslin, the analytic sets form a larger class of sets then the Borel
sets. We will give a proof later (see 3.1.11 and 3.1.14). From the above char-
acterization one can easily prove that the projection of an analytic set is again
an analytic set. But if we take the dual class of the class of the analytic sets
and apply projection we get a larger class than the class of the analytic sets.
Tterating this process we get the projective hierarchy.
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Definition 3.1.8. Let A be a subset of some Polish space X. We define the
projective hierarchy of X by recursion on w:

(X) & Aex)(X)

(X) & Aem(Xx)

Ae=l (X)) & A=projy[B] where B € I, (X x N)
(X) & X\Ae=, (X)

(X) & Aezl(X)nmml(X)

We call a subset P of some Polish space a projective set if P € 2711 for some
n € w.

So with this notation the analytic sets are the X1 sets. In analogy to the
Theorems 3.1.3 and 3.1.4 we state now theorems about the hierarchy that form
the projective sets and the main closure properties of the projective sets.

Theorem 3.1.9. Let X be a Polish space. Then the following picture of inclu-
sions hold:

= (X) 5 (X) .
Al(X ’ \OAlX ’ \OAlX ’
1(X) . 2(X) . 3(X)
\<\ 1 7 \C\ 1 7 \(\
I1; (X) I, (X)

Note that we defined the projective sets just for integers and that by defini-
tion the union of all X. sets is called the class of projective sets. For uncountable
Polish spaces we have as with the sets of the Borel hierarchy proper inclusions
in the above picture. To prove this, one uses the concept of universal sets. We
come back to this after we state the closure properties.

Theorem 3.1.10. For all n € w the class X is closed under countable inter-
sections and unions, under continuous preimages and continuous images. The
class I, is closed under countable unions and intersections and under continu-
ous preimages. The class A,ll 18 closed under countable unions and intersections,
under continuous preimages and under complents.

It remains now to prove that for uncountable Polish spaces we have indeed a
proper hierarchy and that the class of analytic sets is really larger than the class
of Borel sets. For the latter we first prove that for a Polish space X we have
B(X) = A}(X). We are done if we show afterwards that 3! (X) ¢ II. (X) for
n € w if X is uncountable. Because then we have in particular that 3{(X) is
a proper extension of Af(X) = B(X). And we also proved the fact about the
proper hierarchy with this.

Theorem 3.1.11. Let X be a Polish space. Then B(X) = A}(X).

Proof. Let first A C X be a Borel set. Taking the identity mapping between X
we could see A as the continuous image of a Borel set. Therefore A € =1(X).
Since Borel sets are closed under complements X \ A is also a Borel set and
therefore also in 31(X). This implies A € IT}1(X) and therefore A € A}(X).
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For the converse we use again the Lusin Separation Theorem 2.5.3. Let A
be in Aj(X). Then both A and its complement X \ A are analytic sets. So by
Theorem 2.5.3 A and X \ A are separated by a Borel set and the only possible
set that can separate A and X \ A is the set A. Therefore A is a Borel set. O

We now introduce the notion of universal sets to prove that the projective
hierarchy for uncountable Polish spaces is proper.

Definition 3.1.12. Let I be a pointclass of Polish spaces and let X be a Polish
space. For Y another Polish space we call U C Y x X a Y-universal set for
X)) if

o« UeT(Y x X)
e (U, |y €Y} =T(X), where U, = {z | (y,2) € U}

Universal sets exist for the classes of the projective hierarchy and also for
the classes of the Borel hierarchy. For a proof see [Mosc80, 1D.2, 1E.3]. We
state the result here only for the projective classes.

Theorem 3.1.13. For every Polish space X and every uncountable Polish space
Y ezists an Y -universal set for £L(X) and similar for TIL(X) for all n € w.

With this theorem it is now easy to prove that the projective hierarchy is
a proper hierarchy. The same proof applies for the classes 23 of the Borel
hierarchy for a < wj.

Proposition 3.1.14. Let X be an uncountable Polish space. Then X! (X) #
1. (X) for all n € w. In particular this implies that AL(X) c ZL(X) for all
ncw.

Proof. Assume towards a contradiction that 3! (X) = IT!) (X). Let U be an
X-universal set for =1 (X). Therefore U € =L (X x X). The function

FfiX — XxX

xr +— (z,z)

is obviously continuous. Since the class 3. is closed under continuous preimages
the set
{z](z,2) €U} = f7'[U]

is in ! (X). By our assumption this set is also in TI.(X). So its complement
{z| (z,2) ¢ U} is in B} (X). But since U is an X-universal set there exists an
z, € X such that

{z|(z,2) U} =A{z | (v,20) € U}

Considering = = x( leads now to a contradiction. O
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3.2 The effective hierarchies

Considering the Borel and the projective hierarchy it seems reasonable that
if we compare two levels of a hierarchy we say that the sets from the higher
level of the hierarchy have greater complexity than the sets of the lower level
since we had to apply operations like taking unions or intersections or even
projections. In the language of set theory taking intersections is nothing else
than applying the V-quantifier. So a natural way for a different approach to
decide the complexity of a subset (for example of the Baire space or also from
the discrete topological space w) is to consider the complexity of the formula
in the language of set theory that defines the set (and we want to decide the
complexity of a formula by the number of quantifiers). We do this now by
defining the arithmetical and analytical hierarchy. The study of the classes
from these hierarchies is called the effective descriptive set theory. Classically
this effective theory has its origins in recursion theory. We do not want to go
in this area here, see for example [Mosc80, Ch 3] or [MaKe80, Ch 6].

It is not obvious that these new to define hierarchies have something to
do with the Borel or the projective hierarchy but there is indeed a very close
relation. So can the classes of the analytical hierarchy together with its rela-
tivized versions (we will introduce this in the upcoming section) be seen as a
ramification of the corresponding classes of the projective hierarchy. A similar
result applies for the arithmetical hierarchy and the pointclasses from the Borel
hierarchy of finite order.

For the effective theory we restrict ourselves to product spaces of the form
w" x (w*)*¥ and follow here the outline in [Kana97, sec. 12]. A different approach
(by recursion theory) and in a more general context can be found in [Mosc80,
Ch3].

Let A = (w,w®,ap,+, -, exp, <,0,1) be the structure with two domains w
and w”. ap is the function

ap:w¥ Xw —w

(x,m) +—— x(m)

+, - are the usual arithmetic operations on w, exp stands for the exponentation
on w. To distinguish the variables for the two domains our language contains
variables v, v?, 09, ... which stand for elements of w and variables v}, vi,vi, ...
which stand for elements of w“. In addition we have the number quantifiers
39 v0 for the v? and the function quantifiers 3',V' for the variables vil. Terms
and formulas of our language are defined in the obvious way. By terms for num-
bers we understand the smallest class of words which contains 0, 1, 1)8, 009,
and is closed under +, -, exp and ap. For any such term 7 and any formula ¢ we
write (3% < 1) for %P (v) < 7 A p) and (V009 < 7)¢ for V00D (v < 7 — o).
These are the bounded quantifiers.

We consider now subsets A of w” x (w¥)* and will also see this A as a
relation, that means we write interchangebly (moq,...,my—1,20,..., 2k 1) € A

or A(mg,...,Mp_1,%0,...,Tp—1).
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A set A C w" x (w*)* is definable in A by a formula ¢ iff
(mOa ceey My 1,20, - - - 71:16—1) cAs A ‘: (p[mOa <oy Myp—1,205 - - - awk—l]-
A is A} in A iff A is definable by a formula whose only quantifiers are bounded.
We can now define the arithmetical hierarchy.

Definition 3.2.1. Let A be a subset from some w” x (w*)*. For n € w set

Ac Zg & YVw(we Ao ¥ ... QmuR(my,...,my, w))
Ae Hg & YVw(we Ao Vo 30ms . .. QmuR(my,...,my, w))

where R C w™" x (w*)* is A and @Q is 3% if n is odd and V? if n is even for the
29 case and vice versa for the I case. A is called arithmetical if A € |, £0.
The ambiguous pointclasses are defined as before by A) = 20 NTI%. A set A
in Al is called recursive.

It can be shown that A is arithmetical iff A is definable by a formula without
function quantifiers. A proof for this and proofs for the following are carried
out in full detail in [Stei98].

Proposition 3.2.2. (a)For all n € w the following holds:

The complement of a X0 set is a T set. The classes %0 and T2 are closed
under finite unions and intersections. For a set of the form w" x (w*”)* there
exist only countable many subsets in X0 and only countable many in TI0.

(b) The X} and 11} sets form a hierarchy, we get the following picture of inclu-
sions:

Example 3.2.3. The basic sets of the Baire space are X0 sets since for a finite
sequence s = (Sg, $1,...,8,—1) of integers the set Ny is defined by the following
formula:

z € Ny & ap(z,0) =sgAap(z,1) =s1 A...ap(z,n — 1) = 8,1

We call the collection of all the sets definable in A the class of analytical
sets. By shifting quantifiers and using various coding maps we can classify the
analytical sets in the analytical hierarchy:

Definition 3.2.4. Let Zé = Z? and Hé = H[l’. For n > 0 define

Aexl o vwweAde eV, Qr,R(w,z1,...,2,))
AcTll & vw(we Ao Vi I, Qr,R(w,z1,...,2,))

for some arithmetical R C w” x (w*)¥™™ and Q is 3" if n is odd and V' if n is
even in the X! case and vice versa in the II! case.
Define also AL = ! NTIL.
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We collect some main properties in the next proposition.

Proposition 3.2.5. (a)For all n € w the following holds:

The complement of a X} set is a 11} set. The classes ¥} and II. are closed
under finite unions and intersections. For a set of the form w” x (w®)* there
exist only countable many subsets in ¥} and only countable many in II .

(b) The L and 11} sets form a hierarchy, we get the following picture of inclu-
stons:

O

(c) A set A is analytical iff A is in some 2.

We already mentioned that there is a deep connection between the just
defined “lightface” hierarchies and the “boldface” hierarchies before. For this
we have to consider the lightface classes relativized to some parameter a of w®.

For a € w” consider the structure

‘A(a) = (w7ww’ a’p’ +7 " eXp’ <7 0’ ]‘7 a’)

A set A C w" x (w)k is Ad(a) if it can be defined by a formula in A(a).
Starting with this definition we can obtain in the same way as before the classes
Y0 (a), T2 (a), A2 (a), 2L (a), TT) (a), Al (a). For A € ¥(a) NT{(a) we say A is
recursive in a and so on. Most results, as for example the above facts about
the hierarchies hold for the relativized version by relativizing everything to its
parameter.

It is clear that X0 C %0 (a), 1Y C T12(a), %L C 2l (a) and IT}, C TI} (a) for all
a € w” and all n € w since a set definable in the structure A by a formula ¢ is
also definable in the structure A(a) by the same formula ¢ where the parameter
a just does not occur. Furthermore it is clear that for a set w” x (w*)* only
countable many subsets are in X! (a) since our language for the structure A(a)
is finite, thus there are only countable many formulas. Analogous results hold
for the classes X0 (a),I1% (a) and II! (a).

We have seen that the boldface hierarchies were proper hierarchies. This is
also true for the lightface hierarchies defined here and the relativized versions
of it. Proofs can be obtained easily if we have the existence of universal sets.
It is quite similar to the proof of Proposition 3.1.14 but note that the lightface
classes are not closed under continuous preimages. But they are still closed
under preimages of recursive functions and this is enough to finish the proof
as before. For the notion of recursive functions and the proof of the following
proposition see [Mosc80, 3.F].

Proposition 3.2.6. For each set X of the form w" x (w*)* and for each n € w
exists a Y universal set for L) (X) with Y a product of multiples of w and w®.
The same holds for ¥.0,TI% and TI. and the relativized classes.

This implies that the arithmetical and analytical hierarchies (and its rela-
tivized versions) are hierarchies of proper inclusions.
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The connection between the arithmetical hierarchy and the Borel hierarchy
of finite order as well as between the projective hierarchy and the analytical
hierqarchy is now the following:

Proposition 3.2.7. Let A C (w*)* and 0 < n € w. Then
(a) Ac X0 iff AcX0(a) for some a € w¥
(b) A e XL iff Aexl(a) for some a € w”

Analogous results for TI and TI..

By this Proposition 3.2.7 the analytic sets are the union of the classes 21 (a).
The analytic sets of the Baire space were exactly the w-Suslin sets. One could
ask if we can distinguish which trees lead to a representation of an %1 (a) set,
a € w", of the Baire space. The answer is yes but for this we can not avoid
to introduce some of the coding functions necessary for a “normal form” of the
%! sets. To code finite sequences of natural numbers consider the following
function

(V:ws — w
0)+1 —1)+1
s=(s(0),...,8(n—1)) — (s) =p8( ) ...pfl(fl )
where p; is the ith prime number.
If we are interested in just an initial segment of an z € w*“ this can also be
coded by a natural number using the above function:

WY X w —w

(s,m) —  T(m) = (slm) = ((0), .., z(m — 1))
This function is AJ. For w = (mg,...,my_1,%0,..., Tk 1) € w" x (w*)¥ and
n € wset w(n) = (mg...,mr_1,To(n),...,Tp_1(n)).

Proposition 3.2.8. Let A C w" x (w*®)* be a Xl (a) set for a € w”. Let
0<neuw.
For n even there exists an AY(a) set R C w"TF++1 sych that

weAs I . Va2, mR(m, w(m),Z1(m),...,Tn(m)).
For n odd there exists an Ad(a) set R C w™TF+"+1 such that

w e Ae I e, YVOmR(m, W(m), T1(m), . .., Tn(m)).
Similar results can be obtained for TI\ (a) sets by negation.

It turns out that A C w® is a 3} (a) set for a € w® if an only if A is w-Suslin
with trees T recursive in a. By this we understand that the set of the codes of
the sequences of T' is recursive in a. To be exact we define:

Definition 3.2.9. A tree T on w X w is called recursive in a if the set
(T) = {((s), (t)) | (s,t) € T} is recursive in a.
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So the result for the tree representation of ©1(a) sets is the following.

Proposition 3.2.10. Let A C w”,a € w*. A is ¥1(a) iff there is a tree T on
w X w recursive in a such that A = p[T).

Proof. Assume we have such a tree representation of A. Then

€A & x€p[T]
& 3ly(a,y) € [T]
o AYyWOn(z|n,yln) €T
& 3'yn(T)((z[n), (y|n))
So A is Xi(a).
Let now A be a ¥1(a) set. By Proposition 3.2.8 there exists an AJ(a) set R C w?

such that
z € A e IYWOmR(m,z(m),7(m))

We define now a tree recursive in a by

(s,t) €T < Y < length(s)R(p, (s(0),...,s(p)), (t(0),...,t(p)))
& Pn(n = length(s))V'p < nR(p, (s(0) (p)), (t(o0)
(s))¥’p < nR(p, (s(0) (p)). (t(0)

The projection of the infinite sequences of this tree is indeed the set A:

R R
& Y'n(n = length yeees S RO

zep[T] & Fy(z,y) € [T)

& Elyvon(x|n,y|n) eT

& 3'yv'nVp < nR(p.Z(p).7(p))
& 3'YWpR(p, Z(p), Y(p))



Chapter 4

Games and (Axioms of)
Determinacy

For the characterization of the 2711 sets for n > 1 by finer topologies the theory
ZF + DC is not strong enough. Even taking the full axiom of choice will
not be of help. So we will consider other additional axioms, namely the axiom
of projective determinacy (PD) where we consider games on integers and the
much stronger axiom of determinacy of games on reals (ADg). The axiom of
determinacy (AD) will also be of importance. Even though AD contradicts the
axiom of choice it is quite common in descriptive set theory since it implies a lot
of nice properties of the reals and one can draw interesting conclusions out of
it sometimes even for a model of set theory in which AC holds. Philipp Rohde
gives in his Diplomarbeit an overview also about other determinacy axioms, see
[Rohd01].

The foundation for these axioms is the notion of a two person game that
we will introduce in the first section. The prototype of such a game is a game
on integers. But we will also consider games on reals and ordinals. Also Polish
spaces can be characterized by games. We will introduce this in the second
section here. The game will then be a game on open subsets of some Polish
space.

4.1 Games and determinacy

We inroduce first games on integers and the notion of a strategy.

Definition 4.1.1. (a) For a subset A C N, called the payoff set, the two
person game G 4 is defined in the following way: The two players take turns
in playing integers

I n n9
II al ns

After w moves the game is over and player I wins if the sequence z = (n;);c.
is in A. Otherwise IT wins.
(b) A strategy for player I is a tree o on w which tells player T which move to

41
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make in every round of the game. That is, o is a subtree of the full tree on w
with the following properties:

(i) o is nonempty
(ii) if (no,m1,...,n9) € 0,k € w, then (ng,n1,...,n9,,m) € o for all m € w

(iii) if (ng,n1,...,M96_1) € 0,k € w (for k = 0 this is the empty sequence),
there exists a unique m € w such that (ng,ny,...,nok_1,m) € o.

Player I follows the strategy o if he plays in his 2k-th move the unique
integer such that the finite sequence played so far is a member of the tree o.
We denote this unique integer by o s if s € w?*~1 is the sequence of all the
integers played before.

The strategy o is called a winning strategy for player I if he wins every
run of the game by following ¢. Similarly, one defines the notion of a strategy
and winning strategy for player II.

(c) The game G 4 is determined if one of the players has a winning strategy.

Closely related to the subject of strategies is the concept of quasi-strategies.
A quasi-strategy for player I is a tree as it is for a strategy but instead of giving
player I a unique element to play following the strategy it gives him a set of
possible answers in every stage of the game. So the definition is the following:

Definition 4.1.2. Let A be a subset of NV and G4 be a game as in the defi-
nition above. A quasi-strategy for player I is a tree on w with the following
properties:

(i) o is nonempty
(ii) if (no,m1,...,n9k) € 0,k € w, then (ng,n1,...,n9,,m) € o for all m € w

(iii) if (ng,n1,...,n9k—1) € 0,k € w (for kK = 0 this is the empty sequence),
there exist integers m € w such that (ng,n1,...,n9%_1,Mm) € 0.

Player I follows the quasi-strategy o if he plays in his 2k-th move an integer
such that the finite sequence played so far is a member of the tree o.

A quasi-strategy o is a winning quasi-strategy for player I if player I
wins every run of the game by following ¢. Similarly, one defines the notion of
a quasi-strategy or a winning quasi-strategy for player II.

The game G 4 is is quasi-determined if one of the players has a winning
quasi-strategy.

Obviously it depends on the subset A of A if a game is (quasi-)determined
or not. So one says that a subset A C N is (quasi-)determined if one means
that the associated game G 4 determined. Furthermore, it is also obvious that
determined games exist.

For example taking A as the whole set A/ or just taking away finitely many
points will lead easily to a winning strategy for player I. The question is now
whether pointsets from certain pointclasses are determined. David Gale and
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Frank Stewart proved in [GaSt53] that all open and all closed sets are deter-
mined. The proof uses DC but one can show in ZF that all open and closed
sets of the Baire space are quasi-determined. It is pretty obvious that under
DC we can always reduce a quasi-strategy for games of length w to a strategy.
So under ZF + DC the open and closed sets are determined. It was proven
shortly after the Gale-Stewart Theorem that also £9 and IT) sets are deter-
mined (cf. [Wolf55]). Using ZF+ AC Donald Martin even proved in [Mart75]
that all sets of the Borel hierarchy are determined.

But not all pointsets are determined. Already in their 1953 paper, Gale
and Stewart mentioned that under AC nondetermined subsets of the Baire
space exist. Despite this fact (and knowing it will contradict AC) the Polish
mathematicians Jan Mycielski and Hugo Steinhaus suggested in [MySt62] the
Axiom of determinacy that asserts that all subsets of the Baire space are
determined.

Definition 4.1.3. [Axiom of determinacy (AD)] For all A C N the game
G 4 is determined.

In the next chapter we will introduce the scale property and the projective
ordinals. We will prove some results about it under the Axiom AD. Since we
are mainly interested in pointclasses of the projective hierarchy it suffices for
some of these results to work under the weaker assumption that just sets of the
projective hierarchy of the Baire space are determined. The axiom that asserts
this property is the Axiom of projective determinacy:

Definition 4.1.4. [Axiom of projective determinacy (PD)] For all A €
SL(N),n € w, the game G4 is determined.

n

It is straightforward how to describe two person games of length w on arbi-
trary sets X. For a subset A of X* we define games G} as above but instead of
playing elements from w the two players pick elements from X. The strategies
will then be trees on X and winning strategies as well as determined sets of X“
are described as above. Important for us will be games on reals. In such a game
each player has to play elements of the Baire space and the payoff sets will then
be subsets of N*. The axiom that all payoffs sets of N“ are determined for
games of reals is much stronger than AD and it is denoted by ADp:

Definition 4.1.5. [ADg] For all A C N the game G% is determined.

The axiom ADp implies the axiom AD. This is an easy result, see [Rohd01,
3.1].

A slightly different game on open subsets of a topological space will be
introduced in the next chapter when we characterize Polish spaces by strong
Choquet games.

4.2 Polish spaces as strong Choquet spaces

We start by defining the Choquet game.
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Definition 4.2.1. Let X be a nonempty topological space. The Choquet
game Gcp(X,7T) on X is defined as follows: Players I and II take turns in
playing nonempty open subsets of X

I U U
1T v Vi,

such that Uy DV, D2 U; D Vi D...
We say II wins this run of the game if (), V,, = ), Un # 0. Otherwise I

wins.

Strategies and winning strategies for Choquet games are defined now as
trees on open subsets of the Polish space as before. For our purpose, the strong
Choquet game is more important. It is similar to the Choquet game but in
addition to the Choquet game player 1 is required to play a point z, € U,
on every turn and then player II must play V,, C U, with z, € V,. So the
definition is the following.

Definition 4.2.2. Let X be a nonempty topological space. The strong Cho-
quet game Gy (X, T) on X is defined as follows: Players T and IT take turns
in playing nonempty open subsets of X and player I in addition a point in his
open subset

I Uo, zo Ui,z )
I Vo Vi ...,

such that Uy D Vy D ...,z € Uy, zy, €V, for n € w. We say II wins this run
of the game if (), V;, =, Un # 0. Otherwise I wins.

An appropriate tree on the product set of open subsets of the Polish space
X and points in X can be viewed as a strategy where the information of the
extra point for player II is of no interest.

The Choquet game on a topological space X is determined if one of the
players has a winning strategy. If player II has a winning strategy we will call
the topological space a Choquet space:

Definition 4.2.3. A topological space X is called a (strong) Choquet space
if player II has a winning strategy for the associated (strong) Choquet game

GCh(Xa T)a (GSCh(Xa T))
An example for strong Choquet spaces are the completely metrizable spaces.

Proposition 4.2.4. A nonempty, completely metrizable space is a strong Cho-
quet space.

Proof. Let (X, T) be a nonempty completely metrizable space, d a compatible
complete metric on X. We define a winning strategy o for player II by induc-
tion. If (Uy, zg, Vo, ..., Un,xy,) is a legal round in the game Ggcp (X, T), then
choose an open ball V,, from {B_1_(z,) | i € w} such that cly(V,) C U, (for

+i41

example the least ¢ such that this holds). Then (", U, = cly(V;). For every
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n the sequence (zy, Tpi1,...) lies completely in cly(V;,) and, since the diame-
ter of the V,, gets arbitrarily small, is a Cauchy sequence. Thus this sequence
converges in X and the limit point is in cly(V},) since this is a closed set. Since
limge,, 2 = limgey, 2, 1% for every n, we have this limit point in every cly(V},).
Thus limgey, 25 € ), cl7(Va). d

Putting together this result with Lemma 1.3, a Polish space has the following
properties.

Proposition 4.2.5. Every Polish space is a second countable, reqular, strong
Choquet space which is Hausdorff.

We will prove now that, if we assume in addition AC, the converse is also
true. For this we show first the converse of Proposition 4.2.4 under AC that
every separable, metrizable, strong Choquet space is complete. This will lead
to a characterization of Polish spaces as strong Choquet spaces.

First we give two general lemmas, the first one about trees, the second a
purely topological one.

Definition 4.2.6. Let T be a tree on a set A. T is called finite splitting if
for every s € T there are at most finitely many a € A with s™a € T.

Lemma 4.2.7 (Konig’s Lemma). Let T be a finite splitting tree on a set A.
Then [T] # 0 iff T is infinite.

Proof. If [T] # 0 the tree cannot be finite.

Now let conversely T' be infinite. We will inductively pick z; at every level
of the tree, such that the infinite sequence (z;) is in [T]. Pick first an z, € A
such that the tree T,, = {s € T' | s D zo} is infinite. This is possible since
we have only finitely many sequences of length 1, but the full tree is infinite.
With the same argument we pick z; such that (zo,z1) € Ty, and Tizoz1) =
{s € Ty, | s 2 (mg, 1)} is infinite. By iterating these process, we get an infinite
branch in T ]

Lemma 4.2.8. Let (Y,d) be a separable metric space. Let U be a family of
nonempty open sets in Y. Then U has a point-finite refinement V, i.e., V
is a family of nonempty open sets with YU = JV,VV € VAU e U (V C U)
and Yy € Y ({V € V |y € V} is finite). More over, given € > 0 we can also
assume that diam(V') < e for all V € V.

Proof. Denote the induced topology of Y by 7. Since Y is second countable,
let (Uy) be a sequence of open sets such that |J, U, = [JU and forall n exists
an U € U(U, C U). Furthermore, given ¢ > 0 we can always assume that
diam(U,) < €. For example, fix a countable dense subset D of Y and take the
U,’s to be the open balls around the points of | JU N D which lie in some U of
U and have rational radius smaller e. (cf. the proof of Lemma 1.2).

Let next U, = |J UP with U open, U € UL and clr(UP) C U,

Ew

for every p € w. Plft

Vi =Un \ | dr(UF™) = Unn ~ | g (U™) = Un 0 () ~ el (U™)

n<m n<m n<m
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open, where ~ A denotes the complement of a set A in Y.
1) U, Vo =U, Un:

Cleary for every m we have V;;, C Uy,,. Let z € J,,c, Un and m the least
integer with 2 € Up,. Then x € Uy \ U e clTUT(lm) = V,» by the choice of m.
(2) For all y € Y there are only finitely many V;,, which contain y:

Let z € U = |JU. Then z € U, for an n and then z € U for some p. So
€V ifm>pn

Let V = {V, | Vi, # 0}. 0

Theorem 4.2.9 (AC). Let X be a nonempty sepamble meltrizable strong Cho-
quet space, X a Polish space and X a subspace ofX Then X is Gs in X.

Proof. Fix a compatible complete metric d for X and a winning strategy o for
player IT in the strong Choquet game Ggcp(X).

Claim: There exists a tree S on X x P(X) x P(X) with the following
properties: If (2o, Vo, Vo), - - - s (2n, Vi, Vi) € S, then for 0 < i < n we have V; is
openin X, V;isopenin X, z; € Vi_; (V 1= X) zi € Vi, VinX CV,,V; CViy
and (X, zg), Vo, (VO NX,z1),V,... (Vn 1, Zn)s Vi, V, is a legal run of the game
where II follows 0. Additionallay, if s = ((zo, Vb, Vo), (T 1, Va1, Vio1)) €
S, Vs ={Vi | s~ (2, Vi, Vi ) € S}, then XNV, C UVs,dlamV < 27" for all
Vi, € V, and for every & € X there are at most finitely many (,, Vy,, V,,) with

$7(&n, Vo V) € S such that z € V.

Proof: We construct a tree by induction on the length of the sequences.
Let s = (20, Vo, Vo), .-+, (Zn-1, Vi1, Viu_ 1)) be in S such that all properties
hold (s may be the empty sequence) Let V, = {V | V is open in X and V C
Vi—1 and 3z, € V,,_;NX such that VNX C o*(xO,X Vo,...,z—n,V, —1NX)}.
Let V* be a point-finite refinement such that diam(V*) < 27" for every V* € V.
By the axiom of choice choose now for every V* an 2,(V*) € V,_; N X such
that V* N X C o« (xo,X,...,asn(V ), Vi1 ﬂX) Then put s (a:n(V ), 0 x
(2o, X, ..., 0 (V*), Voot N X),V*)) in S for all V* € V. One can easily prove
that the so constructed tree has all the properties. For example to see that
XNV,_4 C U fi;‘, note that we put in neighborhoods for every point of XNV,,_;.

g.e.d. Claim

Fix a tree with all these conditions and let
W = Vo | (0. Vo, Vo), -, (n, Vo, V) € S}

Then W, is open and, using X N Vo1 C U]}s, one can prove by an easy
induction that X C W, It remains to show that (), W, C X.

Let & € [, W,. Consider the subtree S; of S consisting of all sequences
((mU,VO,Vg),...,(gsn,Vn,Vn)) € S for which # € V,. This is a tree since & €
V,, C V; for all i < n. Since & € N, Wr, S; is infinite. By the preceding
conditions on S it is also finite splitting. So, by Konig’s Lemma, [S;] # 0.
Say ((xo, Vo, Vo), (21, V1, V1), (22, V2, V3),...) € [Si] Then (X, zg), Vo, 21, (Vo N
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X, 21),Vi,(Vi,22), Va,...is a run of G% compatible with o, so ), Vo N X #0.
In particular there is a point of X in (1, V,, and by construction Z € (), V;,. But

these two points must coincide with each other since diam(V},) < 27", Thus
zeX. U

Given a second countable metrizable space X we can consider the comple-
tion X, that is, a second countable complete metrizable space X such that X
is a subspace of X and X is dense in X. Such a completion exists for every
metrizable space.

Theorem 4.2.10. Let (X,d) be a metric space. Then there exists a unique,
up to isometry, completion (X,CZ) of (X,d). If X is separable, the completion
X is also separable. In particular, a completion of a separable metric space is
a Polish space.

A proof for this theorem can be found in [Kura66, Ch. III, § 33, VII] where
this theorem is called Hausdorff Theorem since Hausdorff proved it in [Haus65,
p. 135]. We have already seen in Theorem 1.14 that G5 subsets of Polish spaces
are again Polish. So X in the above Theorem 4.2.9 is a Polish space. Together
with the Hausdorff Theorem 4.2.10 we thus know that a separable metrizable
strong Choquet space is a Polish space.

Furthermore by Lemma 1.3 a metrizable space is a regular T1 space. To
get the different characterization of a Polish space we will state now Urysohn’s
Metrization Theorem that asserts the converse for second countable topological
spaces.

Theorem 4.2.11 (Urysohn Metrization Theorem). Let X be a second
countable topological space. Then X is metrizable iff X is T1 and regular.

A proof for this theorem can, for example, be found in the books of the Pol-
ish topologists R. Engelking [Enge68, Ch.4 §2, Theorem 4] or K. Kuratowski
[Kura66, Ch.2, §22, II, Theorem 1].

If we put now together all these results, we get, by using AC, the following
characterisation of a Polish space. Note, that we did not use AC to prove that
a Polish space is strong Choquet, T'1 and regular. This is only required for the
converse.

Theorem 4.2.12 (AC). [Choquet] A nonempty, second countable topological
space is Polish iff it is T1, regular and strong Choquet.

This is the characterization of Polish spaces we will mainly use for our
characterization of the projective sets.



Chapter 5

The scale property and
projective ordinals

In Section 2.3 we introduced norms and scales and mentioned that these con-
cepts get more interesting if we examine norms (and scales) of a certain com-
plexity, that is, roughly speaking, the associated prewellorderings should be in
certain pointclasses (for the exact defintion see Definitions 5.1.1 and 5.1.10).
The pointclasses we consider will be the pointclasses that occur in the projec-
tive hierarchy. So we will define I'-norms and I'-scales for pointclasses I' from
the projective hierarchy and state properties of these notions mainly under the
axiom PD. The reason for considering PD here is that one of the great assets
of PD is that one can show that a lot of pointsets in the projective hierarchy
admit I'-scales. We also introduce a bound for the length of such a I'-norm.
This will be the projective ordinals 8. .

We proved in Theorem 2.3.7 that the pointsets of the Baire space that admit
A-scales are A-Suslin sets. So the results under PD lead to a lot of examples of
A-Suslin sets where A is an ordinal related to the projective ordinals. The goal
of the first section is to prove that X! sets are such A-Suslin sets.

In the second section we will take a closer look at the projective ordinals.
It will turn out that these ordinals are under the axiom AD in fact regular
successor cardinals.

5.1 The prewellordering and scale properties under
PD

Definition 5.1.1. Let T" be a pointclass. Let X be a Polish space and A C X
A norm ¢ : A — Ord is called a I'-norm if there are relations Sg, ggg XxX

in T, T' respectively such that for every y we have
y€ A= Vr[x € AN p(x) Sw(y)@xggyﬁxggy}

A pointclass T' has the prewellordering property (or is normed) if eyery
pointset in I' admits a I"-norm.

48
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Since we are here only interested in projective sets we will only consider
pointclasses T' that occur in the projective hierarchy. For this reason we de-
noted in the above definition and will denote in the following all pointclasses
with boldface letters. Of course in general this definition applies not only for
boldface pointclasses if we understand by this pointclasses closed under contin-
uous preimages.

Notice that for a set A € T' (where T' is ! or IT!) the defining prop-
erty for a norm ¢ being a I'-norm is stronger than requiring that the associ-
ated prewellordering <, is in I' but weaker than insisting that <, is in A.
On the other hand the definition implies that a I'-norm ¢ on A € A is al-
ready a A-norm, since intersecting the two relations Sg, Sg with A gives the
prewellordering <., and this is therefore in A and can serve as Sg, Sg. Despite
the simplicity of this argument we put this down as a Proposition since we will
use this fact more often.

Proposition 5.1.2. Let T be ! or TIL. Every T-norm on a pointset A € A
is a A-norm.
Proof. Let ¢ be a I'-norm on a A set A C X and let Sg, SE be two relations in
I', T respectively with the defining properties for ¢ being a I'-norm. We want
to show that nggg NAx A :gg NA x A and has also the defining property.
We first prove that Sg NAx A :nggg NA x A:
“C” Let (z,y) ESE NA x A. Then (z,y) € A x A and ¢(z) < ¢(y). Thus
(:E, y) GS@‘
“D"Let (z,y) €<,. Thenz € A,y € Aand p(z) < ¢(y). Therefore (z,y) ESE
NA x A.
The proof for Sg is exactly the same. So <,€ A.

Next we show that <, has indeed the defining property. For this let y €
A,z € X. We have to show

z€ANp(r) <p(y) & (z,y) €ESENAXA

“="re ANp(x) <ply) = (z,y)n ESE Az,y) € Ax A
= (z,y) ESE NAx A
‘=7 (z,y) ESENAXA = ze ANp(z) < o(y)
Analogous for gg.
So <,€ A and has the defining property for ¢ being a A-norm. O

Even if in general it is not true that a I'-norm on a pointset A € T" is in A,
this holds for initial segments of the associated prewellordering;:

Lemma 5.1.3. Let T be £, or IT}, and let ¢ : A — |<,| be a regular T-norm
on some pointset A € T'. Then for o < |<,| the sets A* = {z | ¢(z) < a} and
A~ = {z | p(z) < a}, initial segments of the prewellordering <,, are in A.

In particular, A = Ua<‘<¢‘ A% with each A% in A.
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Proof. The norm ¢ on A is a surjective mapping. Choose for o < [<,| some y
in A such that ¢(y) = @. Then

r €AY & asggy
< xégy
Similar for A<%:
r € A & xggy/\ﬂyggx
& e<hyr-y<ie
O

There are two other relations associated to a norm ¢ on a subset A of some
Polish space X that will be of special interest. We extend the prewellordering
<, to arelation to all of X by putting all points from X \ A above all the points
from A. This gives us the relations <7, <7 defined by:

<,y & z€AN[YZAVe(z) < p(y)
r<p,y & TeANyZAVe(r) <py)

Proposition 5.1.4. Let T' be =L or IT} and let ¢ be a norm on some A in T.
Then ¢ is a T'-norm iff the relations <7, <7, are both in T.

Proof. Let ¢ be a I'-norm on A. Let g};, g}; be two relations with the defining
conditions for ¢ being a I'-norm. )
(Hz<L,y & T€AN [xggy\/ ﬂyggx]

Proof: “= “ Let z <}, y. Then z € A. If y € A then ¢(z) < ¢(y), so
T gg y. If y & A we want to show that -y g}; z. But y g}; x implies y € A.
So this would lead to a contradiction.

“<” Let x € A and z g};y V -y Sg x.

Case 1: y € A. Ifx gg y then p(z) < ¢(y) and we are done. If =y Sg Yy &

—y €AV —p(y) < p(r). Since we have y € A we must have - p(y) < p(z).

Since ¢ is a norm on A it must be that ¢(y) > ¢(z), thus 2 <7 y.

Case 2: y ¢ A implies by definition of <f, that z <7, y. g.e.d.(1)
(1) proves that <7, is indeed a relation in I". The upcoming (2) proves it for

the relation <7.

r
Qz<,ye reAN-y<,z ]
Proof: “ =7 Let z <(;y. Then z € A. If y ¢ A and would have y Sg T
this would lead to a contradiction since y Sg z implies y € A. If y € A and

o(z) < p(y) we have z <£, so# y Sg z.
“«<” Same as in the proof of (1). q.e.d.(2)

Let for the converse <{, <7, be in I'. Define the relations gg, SE by
r
<,y & v,y

xggy & —y<,z
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By this definition g}; isin I and Sg isin I'. Let y € A. Then
z<ly e r<ly o zecAop() <oy

Thus gg has the wanted property.

Now for SE. Let y € A If x € A and ¢(z) < ¢(y), then z <7, y, so
-y < z. Suppose for the converse that we have =y <{ z. Assume z ¢ A,

then y <7 z since y € A. A contradiction. So z € A. Therfore z <, y and

this implies ¢(x) < p(y). This proves that SE has the defining property for ¢
being a I'-norm. O

Of course we are now interested in pointclasses of the projective hierarchy
which are normed. Tt is known that TI} and =} are normed classes (cf.[Mosc80,
4B.2, 4B.3]). One of the great assets of PD is that under PD for each of the
projective classes, the class has or does not have the prewellordering property.
This result is due to Moschovakis and proved by his “First Periodicity Theorem”
[Mosc80, 6B.1].

Theorem 5.1.5 (PD). For all n > 0 the following holds: I3, ., and 3, .,
have the prewellordering property and Z%HH and H%n+2 do not have the pre-
wellordering property.

Next we will define the projective ordinals. They serve as an upper bound
for the length of a I'norm on a set in I'. It will turn out later that they will
be the length of the basis for the topology we define on the X. sets.

Definition 5.1.6. For all n > 1 the projective ordinals . are defined as:
8. = sup{a | a is the length of a Al prewellordering of N'}

We will give first some basic facts about the projective ordinals.

Proposition 5.1.7. Let T be B} or I}, for n > 1.

(a) 5,11 s a limit ordinal that is not attained by a A,lZ prewellordering of N.
(b) Every Al-norm on a Al set has length less than 8.

(¢) Every T'-norm on a T' set has length less or equal 5,12.

(d) For every a < 6}1 there exists a A,ll prewellordering of N of length .
(e) cf(8)) > w

Proof. (a) Assume 8 is a successor ordinal. This implies in particular that
there is a prewellordering < of A of length 8.. TLet ¢ be the associated rank
function. Since 8} > w (for example z < y < z(0) < y(0) is a Al prewellorder-
ing of length w) we have the following bijection

f:o) — 6l +1
sl ifa=0
a — a—1 if0<a<w

o fa>w
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Now foy: N — 8. +1is a regular norm. Pick an a € A such that ¢(a) = 0.
Then the prewellordrering <y, is given by

T<fopy & (z<yAy<uz)
V(y<ana<y)
Valz<ahNa<zAy<aha<y) - xz<y

So we just defined a Al prewellordering of A" of length &) + 1. This contra-
dicts our assumption and tells us furthermore that 8, is not attained by a A}
prewellordering of .

(b) We show first that by Theorem 2.2.3 it is enough to consider a Al
subset of /. Let X be a Polish space and A C X be a Al subset of X together
with a A,lZ norm . There exists by 2.2.3 a continuous bijection b between a
closed subset of N and the Polish X and we can use this bijection to pull back
the Al prewellordering <,of Atoa Al prewellordering of the same lenght of
the A} subset b~1[A] of A since the pointclass A} is closed under continuous
preimages.

Solet ¢ : A — a bea Al-normon A C N. If A = N we are done
with (a). Otherwise consider the A} prewellordering <,, of A. Define then a
prewellordering < of N by

1<y r<,yvVygA

This prewellordering is Al and has length o+ 1. Thus « < 8. by (a).

(c) Let A be a T set and ¢ be a regular I'-norm. By Lemma 5.1.3 the sets
A® for a < || are in A} Intersecting <, with A® gives us a A}-norm on A°.
Thus by (b), a has to be less than d§}. Since |¢| = SUPq.«|,| @ We have |p| < ).

(d)Let o« < .. Then there exists an ordinal 8 > o and a A} prewellordering
on N of length 8 (by the definition of the projective ordinals). Define now a
prewellordering <, on N by

T<ay & (2,9) ESNN* X NV =1 € N <@

there N<* = {z | p(z) < a}.
From Lemma 5.1.3 we know that N'<®isin Al. Thus <, isa A} prewellorder-
ing with regular associated norm

(pa:./\/ —
{0 if v g N<
r —

¢(z) otherwise

Thus the length of <, equals «.
(e) Let (e)icw be a sequence of ordinals < 5,11. Let <;bea A,lZ prewellorder-
ing of N with |<;| = «;. Consider the following two homeomorphisms

7TZ':N — N(z)
z — (i) x
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and

1EW

r —

where we understand by » ., N(;) the topological sum of the Polish spaces N;
which are disjoint by definition. The mapping w; carries the prewellordering <;
to the prewellordering <7* of N;). Putting together these prewellorderings of
all the N(;) we get a prewellordering of > Ny by

<y & wE€NHANYyeNy ANz<y
V(z € Nyy Ay € Ny ANi<j)

This is a prewellordering of length > .. ;. Also < is in A,lZ since

€W
<= <FulJ Ny x Ny
iCw i<j

Pulling back this prewellordering < to N with the homeomorphism o gives us
then a Al prewellordering of A of length Yicw @i- Thus supa; < 30,0 0y <
5. O

The results from this last Proposition 5.1.7 are pretty much all we know
about the projective ordinals under the axioms ZF 4+ DC. And even if we
work in addition under the assumption of PD we are not able to prove a lot
more. This looks different if we assume the theory ZF 4+ DC 4+ AD and we
will come back to this in the next section.

Under classical set theory the only result of interest left to prove is the
calculation of 8. For this we state now the Kunen-Martin Theorem, which is
fundamental for all of the rest of this chapter. A detailed proof using the notion
of a good semiscale can be found in [Mosc80, 2G.2].

Theorem 5.1.8. Let < C N x N be a wellfounded relation. If < is k-Suslin,
then | 2| < k™.

With this Theorem 5.1.8 it is now easy to prove that §} = wy.
Proposition 5.1.9. 81 = w;

Proof. Let < be a Al prewellordering of A'. Then the relation < is in par-
ticular in 3] and therefore w-Suslin by Theorem 3.1.7. So the length of the
prewellordering is less than w; by the Kunen-Martin Theorem 5.1.8. Therefore
6} < w;. We proved on the other hand in Proposition 5.1.7(e) that &] has
cofinality greater than w. Since this is not possible for ordinals below w; we
conclude that 8} = w;. O

Similar to I'-norms we define now I'-scales.
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Definition 5.1.10. For a pointclass ' we call a scale (¢, )ncw a T'-scale if the
following two relations are in I':

S(n,z,y) & <5y
T(n,z,y) & =<,y

A pointclass T' has the scale property or is scaled if every pointset in T'
admits a I'-scale.

In particular this definition implies that all norms in a I'-scale are I'-norms.
So if for example a A/-scale on a A} set A C N exists, we thus know that
this scale is a &) -scale and by Theorem 2.3.7 the set A is §}-Suslin. Similar
results hold for the pointclasses . and TIL. We give a result below. So we will
get a whole class of examples for J}Z—Suslin sets if we know which pointclasses
are scaled. The answer under PD gives us Moschovakis “Second Periodicity
Theorem”, see [Mosc80, 6C].

Theorem 5.1.11 (PD). The pointclasses H%n_l_l and Z%TH_Q are scaled for all
n > 0.

Using now Theorem 2.3.7 and Proposition 2.3.2 we can view X sets as
A-Suslin sets:

Theorem 5.1.12 (PD). For all n > 0 the following holds:
(i) Bvery B3, .5 set is 83,1 -Suslin.
(ii) Every 3,1 set A is koni1(A)-Suslin for a cardinal kapi1(A) < 831

Proof. (i) By Proposition 2.3.2 it is enough to prove that each I}, set is
J%n“—Suslin since the E%n_l_g sets are by definition projections of H%n—l—l sets.
But by the “Second Periodictiy Theorem” 5.1.11 we know that each H%nﬂ
set has a H%n+1—scale. All the norms in this scale are H%nﬂ—norms and thus
have length less or equal than 8% by Proposition 5.1.7(c). So all H%n—l—l sets
admit 5%n+1—scales and thus Theorem 2.3.7 implies that all H%nﬂ sets are
J%nﬂ—Suslin.

(ii) Let Abea 23, set and B € II}, such that A = p[B]. Since B € A}, |,
there exists by Theorem 5.1.11 a TI},, | ;-scale (¢;)ie, on B. Each ¢; isa A}, ;-
norm on B, so by Proposition 5.1.7(b) has length less than &3, ;. The length
of the scale is sup;c,, |<,,| and since cf(83,,;) > w by Proposition 5.1.7(e)
the sequence (|<y,|)icw is bounded below &3,,,. Hence there is a cardinal
Kont+1(A) < 6%n+1 such that [<,,| < kon41(A) for all i € w. Thus (¢;)icy is a
Kon+1(A)-scale on B. By Theorem 2.3.7 we thus know that B is ko,41(A)-Suslin
and therefore also A by Proposition 2.3.2. O

We close this section by stating a result about the length of a H}L norm
under the assumption PD. In Proposition 5.1.7 we proved that the length of
such a norm on a set in II. is less or equal to §.. Tn fact there are TI! sets
with II.-norms with length equal to §,. These are the II.-complete sets and
we define this notion next.

For the upcoming the pointclasses T' should always stand for 3!(N) or

I, (N) for n > 1.
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Definition 5.1.13. Let A,B C N. A is called (Wadge-)reducible to B,
A <w B, if there exists a continuous function f : N' — A such that f~![B] =
A.

We say A is I'-complete if A € T and all B € T" are reducible to A.

The following theorem will turn out to be very helpful to us at various stages
in the rest of this paper. A proof can be found in [Mosc70, Theorem 8.1], using
facts from recursion theory.

Theorem 5.1.14 (PD). If ¢ is a II.-norm on a II.-complete set, then the
prewellordering <, has length 5}1.

Of course it arises now the question if I'-complete sets exist? Since we will
apply Theorem 5.1.14 mainly under the assumption of AD in the next section,
the following theorem implies a result of interest in the context of complete
sets.

Theorem 5.1.15 (AD, Wadge’s Lemma). Let A,B C N. Then either
A<w B or B<y N\ A.

Proof. Consider the Wadge game WG(A, B)

where I and II play integers and II wins if (z € A <> y € B). Since we are
working under AD this game is determined.
Assume IT has a winning strategy 7. If I plays = we denote the element played
by IT following his strategy 7 by z * 7. So we have x € A & 7 € B. We
can obviously view 7 as a monotone mapping between the full trees on w. By
Proposition 2.1.5 the function

fr N — N

r > IT*T

is continuous and by the property of 7 we have f.![B] = A. So A <y B.
If I has a winning strategy o one can show with the same argument that B <y

N\ A. O
Corollary 5.1.16 (AD). Ewvery set in I' \ A is T'-complete.

Proof. Let A € T'\ A and B € T'. From Wadge’s Lemma we have B <y A
or A <y N\ B. But A <y N\ B leads to a contradiction since then A is
the preimage of some I'-set and therefore also in I' (since both X! and IT! are
closed under continuous preimages). O

We conclude from this Corollary 5.1.16 and Theorem 5.1.14 that under the
assumption of AD all II)-norms on a set in TI} \ A} has length §.. One could
expect that a similar result is true for the complete E,ll sets, but we will show
in Theorem 5.2.8 that this does not hold.
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5.2 Projective ordinals under AD

The projective ordinals turned out to be very important for the results of the
last section. But even working under PD does not give us a lot of information
about the projective ordinals. The picture looks completely different if we
assume AD. We will prove here that under AD the projective ordinals are
regular successor cardinals. Crucial for a proof of this is the very powerful
“Coding Lemma” by Moschovakis that holds under AD and which we will
state first.

We mentioned before that AD contradicts AC. The Coding Lemma allows
us now to use some sort of choice for (a subset of) the powerset of any set Y
if we have a function from an ordinal A, that can be coded by a wellfounded
relation (or more exact by the associated rank function), to the powerset of
Y. Furthermore the Coding Lemma assures that if A is coded by an 2} well-
founded relation the choice set (or rather the codes for the choice set, see the
exact definition below) is also in X.. The definition of such a choice set is the
following;:

We can restrict ourselves for our purpose to spaces of the form w* x (w®)*.
Let X be such a space and < be a strict wellfounded relation on some subset
S of X. Let p: S —» X be the associated rank function. So the elements
of S can be seen as codes for ordinals below A. Let Y be another space and
f: A" — P(Y) be any function. A choice set for f is a subset C' of X" x Y
such that the following holds

() (@0, rm 1,5) €C = T, .., 5m 1 € SAYE F(p(z0), -, plm 1))

(i) f(€os---s&m—1) # 0 = 3Fzg...Izm_13ylp(zo) = & A ... p(Tm-1) =
Tm-1ANY € f(To;- - Tm-1) A (T0,- -+, Tm-1,y) € C|

Theorem 5.2.1 (Coding Lemma I). Assume AD. Let m,n € w. Let < C
X x X be a strict wellfounded relation in 2} of length X. Then for every
f:A™ — P(Y) there exists a choice set in L.

For a proof see [Mosc80, 7D.5]. Important to us will be the following Corol-
lary, which Moschovakis calls “Coding Lemma II” (see [Mosc80, 7D.6]). It tells
us that the set of codes of each subset of an ordinal A which is coded by an A}
prewellordering on the reals is also in Al. So we consider now more generally
prewellorderings <, ..., <,,_1 on subsets Sg, ..., Sy_1 of spaces Xg,..., X;n_1
respectively with associated regular norms pg : Sog = Ag,.- ., Pm—1 : Sm-1 —
Am—1. For any A C Ay X ... X A1 set

Code(A; <0y, Sm—l) = {(.CL‘(), ce ,.iL'm_l) ‘ (po(mo), ce ,pn_l(xm_l)) € A}

Corollary 5.2.2 (Coding Lemma IT). Assume AD. Let m,n € w. Let <y
sy <im_1 be prewellorderings with lengths Ag, ..., Apm—1 0on Sy C Xog,...,S-1 C
Xim—1 such that <g,...,<pm_1€ A}L. Then for every A C Ag X ... X Apm—1 the
set Code(A;<g,...,<m 1) is in AL.
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Proof. Let < be the lexicographic ordering on X = X X ... X X;;,—1 induced by
the prewellorderings <y, ..., <,,_1 and let < be its strict part. For simplicity
we write now z; ~; x) for z; <; 2} Az <; z; for 0 <i <m — 1. So we have

(xﬂa tet ,xm—l) < (x,07 et 7x;71,—1) @

xo <; 1'6

V (zg ~o 2y A 21 <1 7))

V(2o ~0 ZHA o T2 ~m-2 Thyg AN Tm—1 <m—1 Tiy_1)
and therefore < € Al
Consider also the lexicographical ordering on Ag X ... X A\p,—1 and let () :
Ag X ... X A1 —> A be the isomorphism of this ordering to its order-
type. Then the associated regular norm p of < is given by p(zg, ..., Tm-1) =
<P1 (5171)7 s apn(fEm))' Let now

f:A — Pw)
PP {{1} if (0,0 €m1) €4
{0} if (z0,...,&m-1) ¢ A
Let C C X x w be a choice set for f in ). We claim
(Zoy- -y Zm—1) € Code(A; <qy,...,<m1)
& Az ...z, _q[To ~0 THA o ATt ~m—1 Toy_y A(T(y oy Ty, 1) € O]
Proof of claim:
Uy
(Zoy. .., zm) € Code(A4; <py...,<m-1)
< (po(20),- s pm—1(zm-1)) € A

& f((po(20)s -+ s pm—1(Tm-1))) = {1}
éﬂxf) =

m—1

ANy € {1} A (z0,...,Zm-1,y) € C

since () is a bijection and by (ii) of the definition of a choice set

/ /
Jyzg ~o g Ao ATp—1 ~m—1 Ty

=3zh... 3T, 10 ~0 TGA - A Tin—1 ~m—1 Toyq A (T(y oy Tiy_1,1) € C
since 1 is the only element in {1}
“c”
3xg ... 3%, 120 ~0 TGA oo A Tm—1 ~m—1 Toy_y ATy X1, 1) €C
=1¢€ f({po(zh),- - pm—1(zh,_1))) by (i) of the definition of a choice set
=f({po(x0), -, pPm—1(z7, 1)) = f({po(@0), - -, pm—1(zm—1))) = {1}
=(Z0,...,2m-1) € Code(4; <o,..., <m-1)
This proves that Code(A4;<g,..., <, 1) € X.. Similary we prove that the
complement of Code(4; <g,...,<m_1) is in B} by showing
(iUO, s 7q"m—1) g COde(A, Sla teey Sm—l)
& Az ...z, [To ~0 THA o ATt ~m—1 Toy_y A(T(y -y Ty, 0) € O]

This proves that Code(A4; <g,...,<pm_1) is indeed in A]. O
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Now we are able to prove that the projective ordinals are cardinals.
Theorem 5.2.3 (AD). For alln > 1,8 is a cardinal.

Proof. Assume this is not true. Then let & < 5,11 and < be a prewellordering of
N of length ¢ and f : ¢ — &1 be a bijection. Let p be the associated regular
norm for <. Define the following relation <* on ¢ by

n<*d9 & f(n)<f)

Thus <* is a wellordering of ¢ of ordertype 8. From the above Corollary 5.2.2
we have Code(<*;<,<) € AL,

But
Code(<*;<,<) = {(z1,52) € N2 | p(z1) <* (z2)}
= A{(z1,22) | flp(x1)) < f(o(z2))}
is a prewellordering of A" of length 8. which contradicts 5.1.7(b). O

To prove now that the projective ordinals are successor cardinals we have
to examine more closely the relations between pointsets from the projective
hierarchy and k-Suslin sets (cf. Theorem 2.3.7 and Theorem 5.1.12) as well as
between such pointsets and the x-Borel sets (cf. Section 2.5) under the axiom
AD. In particular, we will prove a genaralization of Theorem 3.1.11 in which we
show that A}, = BéénH' We proved in Theorem 3.1.11 that the A} subsets
of N are exactly the Borel sets of the Baire space. By definition we call Borel
sets also wi-Borel sets and w; = 6% by Proposition 5.1.9. So we can restate
Theorem 3.1.11 as

By = Af.

This statement remains true under AD if we replace the lower 1 by any odd
integer.

Theorem 5.2.4 (AD). By +1(./\/) = A}, (N) forn > 1.

Proof. “2” Let A€ A}, ;. The N\ A€ A}, ., and by Theorem 5.1.12 there
is a cardinal k < &3, such that A and A"\ A are k-Suslin. By Corollary 2.5.5
Ae B+ C B&% .
n41

“C” Tt suffices to show that A%nﬂ is closed under unions of length strictly
smaller than 83, ;. Assume towards a contradiction that there is a 9 < 3,4
minimal such that a sequence (Ag)e<y with Ag € A, for & < ¢ exists and
A=UiyAc ¢ A}, . Since A}, ., is closed under countable unions 9 has to
be uncountable and obviously be a limit ordinal. Without loss of generality we
can assume that for all { <n <19, we have that A C A, and Ay = U§</\ Ag if
A is a limit ordinal smaller than 4.
(1) Aisin 23,,4.

Proof: Let < be a A%n+1 prewellordering of N of length 9 and ¢ be the
associated regular norm. Consider now the following mapping:

f:9 — PWN)
¢ — {z]zisa A%,H_l—code for A¢}
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By a A%,H_l—code we mean the following: Let W be a N-universal set for
S1.41(N), let V be a N-universal set for IT}, ;(N) and let () be a homeo-
morphism between ' and N’ x N. If (z) = (21,22) and W,, = V,, we denote
this set by D, and say z is a code for this A%nﬂ set.
Let C now be a choice set for f in Z%nﬂ (that exists by the Coding Lemma
5.2.1). Then
r €A & FyIz[(y,z) € C Az € D,]

“=” Let x € A. Then there is an { < 9 such that z € A¢. Since W,V are
universal sets there exists a code z € N such that A = D,. So f(&) # 0.
Thus there exists an y € N and z € N such that ¢(y) = ¢ and z € f(£) and
(y,z) € C by definition of the choice set. But z € f(¢) implies D, = A¢.

“<” Now let y, z be such that (y,z) € C Az € D,. By definition of a choice
set z € f(p(y)) where ¢(y) is some ordinal less than J. By definition of f, z
codes then the set A,,). So z € Ay, in particular, z € A.

This proves that A is a 35, set. qed. (1)

Since A is not in A%n_l_l, we know by Corollary 5.1.16 that A is E%n_l_l—
complete. We get now a contradiction to the prewellordering Theorem 5.1.5 by
defining a 2}, 11-norm on A. Because then we get a I 11 prewellordering for
every 33, 1 subset B of N by transfering the prewellordering of A to B with
a continuous function witnessing B <y A.

Define the norm % on A by

v A — U
x +— the minimal { such that z € Agyq \ A

(2) 4 induces a £3, ,; prewellordering on A.
Proof: We use the characterization of Proposition 5.1.4.

mg:},y = E|£<19[$€A§+1\A§/\y¢14§]
x<;§,y = E|£<?9[£B€A§+1\A§/\y¢A§+1]

Therefore <j, and <j, are unions of less than ¢ many A}, ., sets. With the
same argument as in (1) one shows that <y and <j, are in Eénﬂ. O

We can now prove that the projective ordinals are successor cardinals. We
recollect before the results from section 2.6 about the relation between k-Suslin
sets and kT T-Borel sets as well as xT-Borel sets. We proved there that a x-
Suslin subset of the Baire space is k™ T-Borel and if x is of cofinality greater
than w then the x-Suslin set is even a x*-Borel set. First we show that the §1’s
are successor cardinals if n is odd.

Theorem 5.2.5 (AD). For alln >0, 83, = k3, where Konyy is a cardinal
of cofinality w.

Proof. Let kopy1 < 6%n+1 be the smallest cardinal such that all 2%n+1—sets are
Kont1-Suslin. (Such a kop 41 exists, cf. 5.1.12.)

(1) K;—n—l—l = J%n-l—l
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Proof: Assume H;—n—:—l < 6%n+1. Since every 2%n+1—set is /-;%,H_l—Suslin, using
Theorem 2.5.6 and Theorem 5.2.4 we get 33, ., C B, ++ C By

It 241
a contradiction. q.e.d.(1)

(2) cf(k2nt1) = w
Proof: Assume cf(kon41) > w. Using theorem 2.5.8 we get £3.., C

_ _ 1 . .
BK;HI = Bdénﬂ = Aj, 1, a contradiction. q-e.d.(2)
O

_ 1
- A2n+1a

An application of Theorem 5.1.14 and the Kunen-Martin Theorem 5.1.8 for
the converse proves now that the 83, ,,’s are the successors of the &3, ’s.

Theorem 5.2.6 (AD). For alln >0, (83,.1)" = 83,5

Proof. “<” Let ¢ be a H%,H_l—norm on a H%nﬂ—complete set. By theorem
5.1.14 the length of ¢ is éénﬂ. Thus there exists a A%n+2 prewellordering of
N of length S%n“(induced by the prewellordering on the H%n+1—complete set).
So we have 83, < 85,,, and since the projective ordinals are cardinals we
get (6%n+1)+ < 6%n+2

“>” Let < be a prewellordering of R with < € A}, ., C B} .. It follows from
theorem 5.1.12 that < is 5%n+1—Suslin. By the Kunen-Martin theorem we have
|<| < (83n41) " Thus 83,1 < (83,11)" O

From this last Theorem 5.2.6 it is clear that for all odd integers n we have
), < &5.. For the even integers this follows from the fact that the projective
ordinals are of cofinality greater than w and Theorem 5.2.5.

Theorem 5.2.7 (AD). For alln > 1, 8, < &,

Proof. For all odd integers this follows from Theorem 5.2.6. Let n = 2m be
even. Assume 85, = 5%m+1. Using Theorem 5.2.5 and Theorem 5.2.6 we get
8mi1 = Kyt = Oy = (83,,_1)". Therefore we have 83, = Kom41 but this
can not be true since k1 has cofinality w and cf(d),.) > w by Proposition

5.1.7. 0

We already mentioned that we can not prove a result similar to Theorem
5.1.14 for the pointclasses 2,12. Under AD a simple application of the Kunen-
Martin Theorem 5.1.8 even proves that all 3. prewellorderings or even X!
wellfounded relations have length less than §..

Theorem 5.2.8. For alln > 1,
0L = {€| € is the length of a B wellfounded relation }.

In particular has any B wellfonded relation length less than 5}1.

Proof. Since every Al prewellordering is a X! wellfounded relation there is
nothing to prove for the “<”-direction.

So let < be a 2! wellfounded relation. For n even < is 8. ;-Suslin by
Theorem 5.1.12 and therefore, by the Kunen-Martin Theorem, the length of <
is less than (81 _;)* and this equals 8. by Theorem 5.2.6.

For n odd < is k,-Suslin with %, < &) (again by Theorem 5.1.12) and so
|<| < k7 < 8. by Theorem 5.1.8 O
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We finish this chapter by showing that all projective ordinals are regular
cardinals. For the proof we have again to rely on the Coding Lemma 5.2.1.

Theorem 5.2.9 (AD). For all n > 1, 8} is reqular.

Proof. Assume towards a contradiction that there is a cofinal mapping g : A —
8}, for some X\ < §,. Let < be a Al prewellordering on A of length A with
associated canonical norm . Let U C N be a universal set for L (N x N).
We will define a X.-wellfounded relation < on A of length greater or equal
.. But this contradicts our last Theorem 5.2.8.

Consider first the following function:

f:A — PWN)
¢+ {z| U, is a Z}-wellfounded relation of length ¢(¢)}

Note that f is defined since there exists for all ¢ < X a Al-prewellordering of
length f(£). Let C C N x N be a choice set (such a choice set exists Theorem
5.2.1) for f in B and define the relation < on N3 by:

(,9,2) < (#',9,2) @ z=2"ANy=9y A(z,y) eCA(2,7) € Uy

Obviously this relation is £.. And < is also wellfounded, because if we assume
that there is an infinite descending chain (zg, yo, 20), (21, ¥1,21), . . . with respect
to<wehave x ;=29 =21 =...,y:=yg=y1 = ... and zp, 21, ... is an infinite
descending chain with respect to Uy, but since (z,y) € C, i.e. y € f(¢(z)), we
know that U, is a wellfounded relation and has therefore now infinite descending
chains.

For all ¢ < X there exists now an embedding

W.0y) — (NV%,<)

with p(z) = ¢ and (y,z) € C.
Hence we have g(§) = |Uy| < | < | for all £ < A. Since g was a cofinal
mapping we have | < | > 8! and we arrived at the contradiction. O



Part 11

Characterization of projective
sets by finer topologies

62
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In this second part we come now to the main objective of this work, the
characterization of the projective sets by finer topologies.

In Chapter 1 we will prove the classical results about a characterization of
Borel sets in Polish spaces.

Theorem 1. Let (X, T) be a Polish space. A subset A of X is a Borel set iff
there exists a finer topology t on A (i.e., t O T|A) such that (A,t) is a Polish
space.

This is the prototype of results we will prove here. For the whole Chapter 6
the theory ZF+DC will be sufficient. Recall that we proved under these axioms
in Proposition 4.2.5 that every Polish space is a second countable, regular,
strong Choquet space with the separation property T1. We proceed in Chapter
6 by a characterization of the analytic sets:

Theorem 2. Let (X,T) be a Polish space. A subset A of X is analytic iff
there exists a finer topology t on A such that (A,t) is a second countable, strong
Choquet space.

Trivially, a finer topology t of a Polish topology 7 remains Hausdorff, so in
particular T1. So the only property we have to drop is that the finer topology
is not regular any more.

For classes of a higher level we have to drop additional properties. We start
in chapter 2 by proving that we do not get anywhere by dropping the strong
Choquet property. So the only property that remains to be considered is the
second countable property.

This will lead to the general characterization of projective sets. The idea is
to imitate the proofs of Theorem 2.

Crucial for a construction of the finer topology in the analytic case is that
3! sets are w-Suslin. If we would have Suslin representations of X! sets for
n > 1 we could pretty much imidiately construct a finer topology for any 3!
set by the same idea as in the case of the analytic sets. By Theorem 5.1.12 the
additional axiom PD gives us the Suslin representation for each ) set. So the
first main result in Chapter 7 will be under the theory ZF + DC 4 PD the
construction of a finer topology for each 3! set such that this finer topology
has a basis of length less than 5,1Z and is strong Choquet.

Theorem 3 (ZF+DC+PD). Let (X,T) be a Polish space. Then there exists
for every subset A of X a finer topology t on A which has a basis of length less
than 81 and is strong Choquet.

The converse can not hold under ZF+DC+PD by a result from Donald
Martin and John Steel. They proved in [MaSt89] that in a ZFC model with
infinitely many Woodin cardinals’ PD holds. By the usual methods of forcing?

!For a definition of Woodin cardinals see for example [Kana97, p. 360]. Woodin proved
that the Theory ZF 4+ AD is equiconsistent to the theory ZFC+ there are infinitely many
Woodin cardinals. Since we are working here under ZF + AD we may as well assume that
there are models of ZFC with infinitely many Woodin cardinals.

?An introduction to forcing is given in [Kune80].
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we get a generic extension in which the Continuum Hypothesis is true. Joel
David Hamkins and Hugh Woodin showed in [HaWo00] that after small forcing
a cardinal x is Woodin iff it was Woodin in the ground model. So the generic
extension of the Martin-Steel Model is a model of ZFC+CH-+PD.

In this model all projective ordinals have the same cardinality wy. So if we
construct for some n > 1 by the above result a finer topology for a subset A
in 2} 1 (NV)\ AL, (and such a set exists by Proposition 3.1.14) the converse
of Theorem 3 in such a Martin Steel Model would imply that A € . (N) and
therefore in A}H_l(./\/'). But this contradicts the assumption that A was not in

A, (V).

So for the converse of Theorem 3 we have to assume that the projective or-
dinals are all ordinals of different cardinality. This holds under ZF+DC+AD,
so we could hope to prove the converse under this axioms. Unfortunately we
are not able to give such a proof and have to assume the much stronger axiom
ADg, for the following characterization of projective sets by finer topologies:

Theorem 4 (ZF+DC+ADgR). Let (X,T) be a Polish space. A subsets A of
X is a B set iff there exists a finer topology t on A such that t has a basis of
length less than 5,12 and t is strong Choquet.

We actually need not really the determinacy of games on reals but rather
the result that every set of reals has a scale. But, by a result of Woodin, this is,
under the assumption ZF 4+ DC, equivalent to ADg. (This result is quoted
in [Kana97, Theorem 32.23].)



Chapter 6

Characterization of Borel and
analytic sets by finer
topologies

6.1 Borel sets

We start now by showing that a finer Polish topology ¢ on a Borel set in a
Polish space (X, 7) exists . In the first lemma we do this just for closed sets,
so we enlarge for a closed set C' of X the topology 7 to a Polish topology T¢
such that C' is open (and closed) with respect to this topology. The relative
topology T¢|C is then a finer Polish topology on C.

Lemma 6.1.1. Let (X,T) be a Polish space, let C C X be closed. Let Tc be
the topology generated by T U {C}, that is, T U{UNC | U € T} is a basis of
Tco. Then To is a Polish topology, C is open and closed with respect to To and
B(X,Tc) =B(X,T).

Proof. Consider the following mapping:

id: (X, Te) — (C,TIC)® (X \C,T|(X\C))
r —— X

By Theorem 1.14 and Proposition 1.13 the closed set C and the open set X \ C
are Polish spaces, and by Theorem 1.7 is the sum of this two spaces again a
Polish space. To prove that 7o is a Polish topology it is therefore enough to
show that id is an homeomorphism. id is obviously a bijection.
(1) id is continuous.

Proof: Let V be an open set in C & (X \ C). By definition of the topological
sum V N C is open in C with respect to T|C, i.e., there exists an open set
Uy € T such that CNV =CNU;. Then

id"(Vne)=CcnV=CnU € Te.
On the other hand there must be a Us € T such that

(X\C)NV = (X \ C) N Us,

65
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and since X \ C' is open with respect to 7 we have
d (X \O)NV)=(X\C)NV=(X\C)nU; €T C Te.

Thus
id N (V)= (CnU)U((X\C)NT) € Te.

qed. (1)
(2) id is open.
Proof: Let U be an open set with respect to T¢. So

v=JuuJw;no
i J

for open sets U;,U; € T. Then

id)nc=JuinoyulJujnc)= |J tinC
3 j k=1i,j

is open in C and by the same argument id(U) N (X \ C) is open in X \ C. Thus
id(U) is open. q.e.d (2)

So, T¢ is a Polish topology on X. Now C is open and closed with respect
to the new topology by definition of 7¢.

It is clear that B(X,7) C B(X,7¢). To prove the converse it suffices to
show that C N U is in B(X,T) for every U € T. But every open set U is in
B(X,T) and C is as a complement of an open set in B(X,7T), therefore C N U
is in B(X,T) for every open set U € T. O

The next lemma asserts that if we have a sequence of finer Polish topologies
T, on a Polish space (X, T), then the topology generated by the union of all
the open sets from the 7, is again a Polish topology on X.

Lemma 6.1.2. Let (X,7) be a Polish space, (Ty)ncw be a sequence of Polish
topologies on X with T C Ty, for allm € w. Then Ty is Polish where Ty, is the
topology generated by U, c,, Tn- If Tn € B(X,T), then B(X,Ts) = B(X,T).

Proof. Let X,, = (X, T,) for n € w. Consider the map

p: X — HX”
new

x +— (z,z,2,...)

where [], ., X, stands for the topological product of the spaces X,.
(1) p[X] is closed in [],,c,, Xn.

Proof: Let (zp)new & ©[X]. Then there exists an i < w such that z; # x;1.
Let U be an open neighborhood of z; in X and V be an open neighborhood of
Zir1 in X with UNV = (note that X is a Hausdorff space). By our assump-
tion is U € T;,V € Tiy1. Therefore we have (2,)new € [, Wn C [1,, Xn \ ¢[X]
with W; = U,W;;1 =V and W; = X for j # i,i+ 1. Thus ¢[X] is closed in
[Thco Xn- ged. (1)
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(2) ¢ is an homeomorphism from (X, 7) to ¢[X].

Proof: It is clear that ¢ is a bijection.
The mapping ¢ is continuous, since for U;, € T;,, 1 < k < n, the preimage of
[I,co Vo with V;, = U;, for 1 <k < n, V,, = X, otherwise is the intersection

of the U;, , so
IV

new

(,071

= ﬂ Uij € Too-
j=1

¢ is open: Let {Ui(n) | i € w} be a basis for 7,. Then {Ui(n) i €w,mEw}isa
subbasis for To,. And so we get

k
o |N U™ | =] Vanelx]
j=1

new

where V,, = Ui(jnj) for n = n;, V;, = X,, otherwise. ged. (2)
By (1), (2) and Theorem 1.7 as well as Theorem 1.14 the space (X, 7o) is
a Polish space.
The fact about the Borel sets is clear since with 7, C B(X,7T) we have
Too € B(X,T) and therefore B(X,7s) C B(X,7T). The converse inclusion

holds trivially. O

We can now put together this two lemmas to prove the existence of a finer
Polish topology on every Borel set in a Polish space.

Theorem 6.1.3. Let (X,T) be a Polish space, A C X be a Borel set. Then
there exists a Polish topology Ta O T such that A is open and closed with respect
to Ta and B(Ty) = B(T).

Proof. Let S = {A C X | there exists a Polish topology T4 2 T such that A is
open and closed and B(T4) = B(T)}. It suffices to show that S is closed un-
der complements and countable unions if we show that 7 C S (since then
B(X,7) CS). But by 6.1.1, all open and all closed sets are in S, so T C S.

(1) S is closed under complements, since for A € S the topology T4 witnesses
that X \ 4 isin S as well.

(2) S is also closed under countable unions. Let for this (Ay)ncn be a
sequence in S and let T4, = T,, 7T like in the above Lemma 6.1.2. Then
A =, e, An is open with respect to 7. By 6.1.1 there exists an Ty 2 Too 2 T
Polish such that A is open and closed and B(X,T4) = B(X,Tx) = B(X,T).
Therefore | J, .., An € S. O

ncw

The following corollary states now the above Theorem 6.1.3 in the way we
need it for our charcterization of the Borel sets.

Corollary 6.1.4. Let (X,T) be a Polish space. For every Borel set A C X
exists a finer Polish topology t on A.
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Proof. Let A C X be a Borel set. By Theorem 6.1.3 there exists a finer topology
T4 on X such that (X,74) is a Polish space and A is closed and open with
respect to T4. So the restriction of T4 to A is a Polish topology on A by
Theorem 1.14. O

The following theorem is a nice application of Theorem 6.1.3 that readily
implies the proof of the missing part of Proposition 3.1.5 about the different
characterizations of analytic sets. It asserts that Borel sets in a Polish space
can be seen as continuous images of the Baire space.

Theorem 6.1.5. Let (X, T) be a Polish space, A C X a Borel set. Then there
exists a closed subset F C N and a continuous bijection f: F — A. If A # )
there is a continuous surjection G : N — A extending f.

Proof. Enlarge by Theorem 6.1.3 the topology T of X to a Polish topology Tx
in which A is closed and open. Then there exists by Theorem 2.2.3 a closed
F C N and a bijection f : F — A continuous for Ty|A. Since T C Ty we
have f : F — A is continuous for T as well. The second assertion follows from
2.1.7. O

In Proposition 3.1.5 we characterized an analytic set as a continuous image
of the baire space as well as a continous image of a Borel set. But we have not
proved this yet. The proof is now easy. We first repeat the proposition.

Proposition 6.1.6. Let (X,T) be a Polish space, A C X. Then the following
are equivalent:

(1) A is the continuous image of a function f: N — X.

(2) A = projx[C] where C C X x N, C closed.

(8) A = projx|[B] where B C X xY is a Borel set, Y is a Polish space.
(4) A is the continuous image of a Borel set of a Polish space.

Proof. Comparison with the proof of Proposition 3.1.5 tells us that it remains
to show that (4) = (1):

Let h : Y — X be a continuous mapping from a Polish space Y to X and let
B be a Borel set in Y such that h[B] = A. By Theorem 6.1.5 there exists a
continuous surjection g : N'— B. Then obviously the mapping g* : N' — Y
defined by g*(z) = g(x) for z € N is a continuous mapping g*[N] = B. But
now the composition h o g* is a continuos function from A to X such that
hog*[N] = A. O

We proved by Theorem 3.1.11 and Theorem 3.1.14 that the class of analytic
sets in an uncountable Polish space is larger than the class of the Borel sets in
such a space. The above characterization of analytic sets thus implies that the
continuous image of a Borel set is in general not a Borel set. But we will prove
now that the image of a Borel set of a continuous injection is again a Borel
set. This implies the converse of Theorem 6.1.3. Because given a Polish space
(X,T) and a finer topology ¢ on X such that a set A is closed and open with
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respect to ¢ we can consider the identity mapping between (X, ¢) and (X, 7).
This mapping is continuous since ¢ is finer than 7 and the image of the Borel
set A in (X,t) equals A in (X, 7)) and is therefore also Borel with respect to 7.

To prove that the image of a Borel set under a continuous injection is again
Borel we construct now a Lusin scheme (cf. Definition 2.2.1 and Proposition
2.2.2). The construction makes again use of the classical Lusin Separation
Theorem 2.5.3 for analytic sets.

For the construction of the upcoming Lusin scheme we need separation for
a whole sequence of disjoint analytic sets. We get this by recursion out of the
Lusin Separation Theorem 2.5.3 and prove this in the following lemma.

Lemma 6.1.7. Let (Ap)ncw be a sequence of pairwise disjoint analytic sets in
a Polish space. Then there are pairwise disjoint Borel sets B, with B, O A,
for alln € w.

Proof. Let (A, )new be a sequence of disjoint analytic sets. We define now the
B,, by recursion.

Let By be the Borel set that separates Ag from (J,,-( An (such a set exists
by Theorem 2.5.3).

If By, ..., B, are defined such that B; separates A; from Uj<i B; U Uj>i A;
for all 0 <4 < n, let By41 be a Borel set that separates A,,1 from the analytic
set Ui<n B; U Uj>n+1 Aj.

By this definition we get pairwise disjoint Borel sets B,, such that B, 2 A,
for all n € w. O

Now we can prove that the image of a continuous injection of a Borel set is
again a Borel set.

Theorem 6.1.8 (Lusin-Suslin). Let X,Y be Polish spaces and f : X — Y
be continuous. If A C X is Borel and f|A is injective, then f[A] is Borel.

Proof. Without loss of generality we can assume X = N and A C N is closed.
(By Theorem 2.2.3 there exists a closed F C N and a continuous bijection
b: F — A that can be extended to a continuous surjection g : N' — A. But
then fog: N — Y is continuous, f o g|F is injective and f o g[F] = f[A].)

Let 7 be the topology of Y. Let By = f[AN Ny| for s € w<*. Since f|A is
injective, (Bs)scw<e is a Lusin scheme where By = f[A], By = |,,¢,, Bs—~n and
By is analytic. By Lemma 6.1.7 we find a Lusin scheme B, where B] is Borel
such that By =Y, By C B;. We finally define by recursion on length(s) Borel
sets B such that (B})sc <« is also a Lusin scheme:

B =Y
BEknO;---znk) = BE”O:---snk) n BEknOV"ynk—l) n CIT(B(nOssnk))

(1) For all k € w we have B, n.) C B, ) S clr(Bng,...nx))

(nos..
Proof: By induction on k. The second inclusion is clear by the definition of

the B}.
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k=0: B, C ano) and B(,,) C cly(B(p,)), so we are done.

Let us assume the assumption is proved for £ — 1,k > 1. Then

Bng,...ny) € BEHO,...,nk) by the definition of B’
Bng,..np) € clr(Bng,....ny)) and ‘
Bing,...nx) € Bnoyoni_1) € Blng,..ny_,) DY the assumption. ged. (1)

@)14] = Meew Useur B:
Proof: Let z € f[A]. Then there exists an a € A with f(a) = z, so

T € (pey Bajk and thus x € ), By € Nicw Uscws Bi-
For the converse let = € (¢, Usepw Bi- Then there is a unique a € N such
that = € e, By (note that the sets B form a Lusin scheme). Then also
T € pew A7 (Bgjk). So in particular By, # 0 for all k£ and thus AN Ny, # 0
for all k, which means a € A since A is closed. So f(a) € Mjc,, Bak- We claim
that f(a) = 2. Otherwise by the continuity of f there is an open neighborhood
Nk, of a with f[Ng ] € U where U is open such that x ¢ cly(U). But then
x & el (f[Ngjko]) 2 cly(Baji,), a contradiction. g.e.d.(2)
U

With this result we can easily finish our characterization of Borel sets. The
converse of Corollary 6.1.4 is no more than a corollary to this last Theorem
6.1.8

Corollary 6.1.9. Let (X,T) be a Polish space and A a subset of X such that
there exists a finer topology t on A such that (A,t) is Polish. Then A is a Borel
set in (X, T).

Proof. Consider the identity mapping from (A,¢) into (X,7). Since ¢ is finer
than 7| A this mapping is continuous and it is obviously an injection. So by
Theorem 6.1.8 A is in B(X,T). O

We finish this section by stating the characterization of Borel sets by finer
topologies as it is witnessed by Corollary 6.1.4 and Corollary 6.1.9.

Theorem 6.1.10. Let (X,T) be a Polish space. A subset A of X is a Borel
set in (X, T) iff there exists a finer toplogy t on A (yi.e., t O T|A) such that
(A,t) is a Polish space.

6.2 Analytic sets

Our next task is to construct a finer topology for each analytic pointset of a
Polish space such that the topology is second countable and strong Choquet.
By finer we understand again finer as the restriction of the topology of the
Polish space to the analytic subset. It is sufficient to find such finer topologies
for the analytic subsets of the Baire space by the following general argument:

Remark 6.2.1. To prove that for n € w each X! subset A of a Polish space
(X,T) has a topology t such that
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1.t2T|A
2. t has a basis of length a cardinal k
3. t is strong Choquet

it suffices to prove that each XL subset of the Baire space N has a topology with
these properties.

Proof. Let A be a . subset of a Polish space (X, 7). By Theorem 2.2.3 there
exists a closed set C'in A/ and a continuous bijection b : C — X. Since =}
sets are closed under continuous preimages (Theorem 3.1.10) the set b~![A] is
>l in C and also in N'. Now the finer topology (or just a basis of it) of this
set can be transferred by the bijection b into the set A. It is clear that all
the properties of the topology on b~ ![A] are then properties of this transferred
topology since this is a one-to-one transfer. O

We will proceed by constructing a basis for such a topology of an analytic
set A in the Baire space and check then all the properties of the so constructed
topology. A basis B for a topology on a set A is characterized by the proper-
ties that the intersection of two members of B can be written as the union of
members of B and that the union of all members of B equals the whole set A.

Since analytic sets are closed under finite intersections the set of all analytic
subsets of A would be a candidate for such a basis. This may lead to a desired
topology but the length of this basis is very large. Under AC, this basis has for
the most analytic sets the length of the continuum. Therefore such a topology
will never lead to a characterization of the analytic sets by finer topologies since
we can easily define topologies with this properties for any subset of the Baire
space. So we are interested in a basis with a length as short as possible. Since
our topology should be finer than the topology of the Baire space the basis
must at least have length w.

By Proposition 3.2.7 we know that each 3} subset of the Baire space is in
$i(a) for a real a. Consider a € w“ such that A € %}(a). This set X}(a) is
countable and contains all basic open sets as well as A. Furthermore, ¥1(a) is
closed under finite intersections by Proposition 3.2.5(a). So a natural candidate
for a basis of the finer topology on A would be the set of all subsets of A which
are in X1 (a). The only thing to check for this topology is the strong Choquet
property.

We will prove below that this topology has indeed the strong Choquet prop-
erty. This fact makes this topology also interesting for other works in descriptive
set theory, see for example [HKeL90]. In the paper of Harrington, Kechris, and
Louveau the topology where the 1 sets of A serve as a basis is called Gandy-
Harrington topology. We consider here a relativized version of it. The proof
that the Gandy-Harrington topology is strong Choquet can also be found in
[HKeL.90].

Crucial for the proof that the Gandy-Harrington topology is strong Choquet
is the tree representation from Proposition 3.2.10. Before we start with the proof
we remind on a notation connected with trees. In generalization of Definition
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2.3.6 we define for a tree T on w X w and (s,t) € T the subtree of the compatible
sequences of T' by

Tispy ={(s", ) €T [ (s',t) C (s,8) V (s',) 2 (s,8)}.
It is clear that if T' is recursive in some a then T{, ;) is recursive in a.

Theorem 6.2.2. Let (X, T) be a Polish space. Let A € ${(X). Then there
exists a finer topology t on A such that t is second countable and strong Choquet.

Proof. By Remark 6.2.1 we can assume X = N.

Let B, = {B| B C A and B is X}(a)}. Since the intersection of two %} (a)
sets is again 1 (a) by Proposition 3.2.5 and since |JB; = A (A € B;) the set By
serves as a basis for a topology. Let ¢ be the topology on A generated by B;. It
is clear that this topology refines the relative topology of the Baire space on A,
since the basis open sets in A are ©.¢ (cf. Example 3.2.3 ). It is also clear that
B, is countable since Y1(a) is countable (cf. the discussion below Proposition
3.2.5).

It remains to show that t is strong Choquet. We will describe a winning
strategy for II in the strong Choquet game in (A, ?):

(i) Suppose I starts by playing (z9,Up). Then let Ag € ©1(a) such that
xg € Ag C Uy and let Ty be a tree recursive in a such that Ay = p[Ty]. Since
xg € Ag there is an yg € N such that (zg,y0) € Tp. (yo is a witness for zy being
in p[Tp]) Now let sq = 0|1, %] = yo|1. The tree (T[))(sO’tg) is recursive in a. Let
player II play Vo = p[(T0) s, ,:0)]- This set is Yi(a), zo € Vo and Vg C A C Up.

(ii) Let I's next move be (z1,U;) with 1 € U3 C Vj

o Sincez; € Vj there exists a witness yj € A such that (z1,y5) € [(To) (s9,0)]-
Set 51 = 71/2,#) = yh|2. Then sq C 51,15 C #9. (TO)(slyt(lj) is again a tree
recursive in a and z1 € p[(To),, )] € Vo-

e Let Ay € ©l(a) such that x1 € Ay C Uy and let T} be a tree recursive in
a such that p[Ti] = A;. Since 1 € A; there is a witness y; € w* such
that (z1,91) € [T1]. Set t§ = y1|1. Then z; € pl(T1) (59,41)] € Un.

Player IT answers this move from player I by playing
Vi = p[(T0) (5, ,40)] N PITY) (50,01

Proceeding this way, when I plays (zo,Up), (21, U1), ... IT produces Vp, V4, . ..
with Uy D Vo D U; D Vi D ...,x, € V, and moreover one defines for each n
a recursive tree T, with z, € A, = p[T;] C U, and sequences sy C s1 C s9 C
oty C Y C L. with (sg,t}) € T, such that for each k the finite sequences
sk, ty, have length k+1 and Vi, = p[(To),, s0)]00[(T1) (5, 42 10 OP[(Th) (50,45

By this construction we get indeed a winning strategy for player II. Let
T = Upew Sk € w*. We claim that € (1A, = [V,. So player II wins the
strong Choquet gamec since the intersection of the open sets he played is not
empty. To prove the claim consider A, = p[T;,]. Let y, = U, t7- We have
(s, t}) € T, for all k. Therefore (z,y,) € [T,], so z € p[T,] = Ay. O
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Obviously our version of the Gandy-Harrington topology is Hausdorff since
it is a refinement of a Hausdorff topology. We have seen in Proposition 4.2.5
that every Polish space is a second countable, reqular, strong Choquet space
with the Hausdorff property. So we only property we had to drop for our finer
topology is the property that the topology is regular. The following remark
asserts that the (relativized) Gandy-Harrington topology is indeed not regular
(otherwise we would have made a mistake).

Remark 6.2.3. The (relativized) Gandy-Harrington topology is not reqular.

Proof. Let t be the topology on A" where all X1 (a) sets serve as a basis for an
a € w”. By Proposition 3.2.6 and Proposition 3.1.14 there exists a IT{ (a) set P
in N which is not 2%. With respect to the topology ¢ this set P is closed.
Assume towards a contradiction that ¢ is regular. So for every point z ¢ P
exists a open neighborhood V' of x such that the closure of V' does not intersect
P. Without loss of generality we can choose basic open sets for these open
neighborhoods. Since the topology t is second countable this are only countable
many sets. The countable union of the closures of these sets is in II} by Theorem
3.1.10 and equals '\ P. Therefore P as a complement of an II} set is X}, but
this contradicts our choice of P. O

To get now a characterisation of the analytic sets we will prove the converse
of Theorem 6.2.2. It will be neccessary for the proof that player II has a
winning strategy in the strong Choquet game in which he plays just basic open
sets and the diameter of his basic open set in his n-th move is less than n%rl
The following lemma, asserts that player II has indeed such a strategy for the

considered strong Choquet spaces.

Lemma 6.2.4. Let (X,T) be a Polish space and A C X. If there exists a
topology t on A such that t O T|A and (A,t) is a strong Choquet space, then
player II has a winning strategy in the strong Choquet space Gscn(A,t) by which
he plays just basic open sets from t with diameter less than —— in his n-th move

n+1
for alln € w.

Proof. Let o be a winning strategy for IT in the strong Choquet game Gy (A, t).
We define first a winning strategy o’ out of o in which the diameter of the sets
he has to play in the n-th move is less than ——. This strategy o' is defined in

n+1
the following way:
o * (Uo,20), Vo, ..., (Un,z)) = 0 % (Ug, 0), Vo, - .., (Up N B%(Qﬁn),%n))

This strategy has obviously the desired property and is a winning strategy.
Given such a winning strategy ¢’ we will now define by recursion a strategy
0" such that player 1T always plays ¢ basic open sets. For this we will always
consider two runs of the strong Choquet game Gscn(A,t). One run R’ in which
IT follows o’ and another run R” in which we define the new strategy o”. As-
sume player I starts in the game Gycn(A,t) by playing (Up, zg) and II answers

following ¢’ by an open set V5. Choose now an ¢ basic open set By such that
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29 € By and By C V. Define o” x ((Ug,z0)) = By. Let (Uy,z1) be the an-
swer by player I to the ¢ basic open set played by player II. To define ¢” for
this sequence consider in the run R’ the following first two moves by each player

I (Uo, ) (U1, z1)
11 Vo Vl

where player II followed o’. Choose for strategy o” an t basic open set By such
that £y € By and By C V4. So in the run R” the game until now looks as follows:

I (Uo, xo) (U1, 21)
11 By B

Proceeding this way we consider now the answer by player I in run R” as his
next move in the run R’ and choose an ¢ basic open set in the open set player
IT plays following his winning strategy o’ in R'. So the strategy ¢” is defined
by recursion as follows. If ((Uy, z,), By, (U1, x1), B1, ..., (Upn,x,)) is a sequence
played in R” then choose an t basic open set B,, such that z, € B, and

Bn C o'« ((UOaxO)aUI * ((UOaxU))a (U1,£E1),
U’ * ((Ug,%‘g),a’ * ((Ug,%‘g), (Ul,xl))), ceey (Un,xn))

Let o * ((Uﬂa xo)a BOa (Ula xl)a Bla R (Una xn)) = Bn

It is now easy to see that ¢” is indeed a winning strategy for player II.
Because player IT wins the run R’ since he followed his winning strategy o’.
Therefore (., Un # 0. But then player II has also won the run R" since the
outcome is also (¢, Un.

By construction the winning strategy ¢” has now both of the required prop-
erties of the lemma. O

We can now prove the converse of Theorem 6.2.2 and finish our characteri-
zation of analytic sets by finer topologies.

Theorem 6.2.5. Let (X,T) be a Polish space, A C X and there is a topology
t on A such that

e tDT|A
o t 1s second countable
e t is strong Choquet.
Then A is a 1 set in X with respect to T.

Proof. Let B={B; |1 € w} be a basis for (X,T), d be a complete compatible
metric for this space. Let C = {C; | i € w} be a basis for (A4,t). Fix further
a winning strategy for player IT in the strong Choquet game Gycn(A,t) which

chooses in the n-th move a set C; € C with diam(C;) < n+r1



Chapter 6. Characterization of analytic sets 75

We start by defining a tree T' on w X (w x A X w) in the following way:

((i07j07 Zo, kﬂ)a sy (in—lajn—laxn—la kn—l)) €eT &

(i) diam(B;,,) < #ﬂ forallm <mn

(ii) cly(B;,,.,) C B;,, forallm <n

Im41

(iii) ((Cjo»0)s Chy» (Cj1y21), Chyy oo, (Cj, 1 s Tn—1), C,_,) is an initial segment
of a run in the strong Choquet game in which II follows his strategy o

(iv) B, NC,, # 0 for allm <n

For a countable subset @ C A the tree T? = TN (w X (w x Q x w))<¥ is a
countable tree. By using bijections between w and @ and between w? and w we
can view this tree as a tree on w x w.
Then
p[T9 = {u € w’| e (wxQ xw)” (u,v) € [T?}

is a 3] set by Theorem 3.1.7 and

Pro ={z € X |3u e plT? Az € () Bym)}

is a ] set in X since
z € Pro < Ju(u € p[T?] AYmz € By(m))-

We will finish the proof now by constructing a countable () such that
Prq = A. That Prq is a subset of A is easy to see for any countable ().
We start by proving this.

(1) Prq C A for all countable Q C A.
Proof: Let € Prq witnessed by z € (1, Bi,, and Cj,, 20, Cp,,.... By
construction of the tree and of o the set (1, Cj,, has exactly one member in
A, let us say (), Ck,, = {a}. We claim that £ = a. Assume z # a. Then
d(z,a) > 0, say d(z,a) = ¢. Let m € w be large enough such that % < 5. By
our definitions above diam(B;,,) < §,diam(C},,) < 5. Since B;, N Cy,, # 0
there exists an z € B;, N C}, . But now we have
£

d(z,a) < d(z,z) +d(z,a) < diam(B;,,) + diam(Cy,,) < 5

e
5 =€
This is a contradiction. ged. (1)

It remains now to find a countable Q C A such that A C Pr¢q. For a proof
of A C Ppo we have to find for each € A an infinite sequence through T'9
that witnesses © € Prq. It will turn out that an @) with the following property
will be proper to construct such infinite sequences.

(2) There exists a countable @ C A with the following property:
For every s € T% and every i,5,k € w the following holds. If there is an
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a € A such that s™(i,j,a,k) € T, then there exists an @ € @ such that
s~ (i, 4,3, k) € T.
Proof: Define by recursion on w some @Q,,.

Qo = 0. Assume now for n > 0 a countable @, is defined such that for
every s € T9-1(Q_; = () and for every i,j,k € w we have that if there
exists an a € A such that s™(i,j,a,k) € T then there is an @ € @, such
that S™(i,j,a,k) € T9". Since Q, is countable the tree T@" is countable.
Consider now for every s € T%" and every 4, j,k € w the set M, ik = {a €
A | s™(i,j,a,k) € T}. There are only countable many sets of these form. Using
AC, we can choose one point in any of these sets M:’i’j’k and call the set of
the chosen points @), ;. Set Qn41 = @, U Q). This set is a countable by
construction. Finally set @ = J,, @n. @ is countable (here we use again AC,).
@ has now the requested property. A finite sequence s € T9 must allready
be in some Q,, so s € T9 . If there are i,j,k € w and a € A such that
s7(1,,a,k) € T then a € M, .. So there is an @ € Qny1 C @ such that
s (i,j,a,k) € TY. q.e.d. (2)

Fix such an Q. The property of (2) suffices now to prove that for such an
Q our set A equals the 31 set Prq.

(3) AC Pre

Proof: Let z € A. We construct by recursion on the length of a se-
quence an infinite sequence s = (u, 7,4, p) in the tree T such that for s, =
(fins T, Yms Pn) € T we have z € B, n=1y N Cpn=1)-
Let so be the empty sequence. Assume 8, = (fin, Tn, Un, Pn) 1S given with the
above property. The sequence (7, Yn, pn) describes the first n — 1 moves in the
strong Choquet game. Let player I's next move be z. By our assumption on
sy, the point z is in C, (,_1). Assume also player I plays an basic open set C),
with z € C), C C), (n—1) and player II answers by playing an C; following his
strategy o. Furthermore let B, be a 7T-neighborhood of z with diameter less
than n+r1 Now s} = (u, r, 7, P, Yn~ Z,p, q) is a sequence in T'. By our choice
of Q there exists an z € Q such that s,.1 = (u,r, 7, p,9n " 2, p;q) € T and
T € By~pn) N Cpgn) = Br N Cy. This finishes our construction of s.
By construction of s we have Vn z € By, ,_1) N C),(n—1). So in particular
T € (), Bu(m)- So s is a witness for z being in Ppo. g.e.d. (3)

So by (1) and (3) we have A = Prq. And since Ppq is 1 we proved that
Ac 3. O



Chapter 7

Characterization of projective
sets by finer topologies

We are now interested in results similar to that of Chapter 6 for higher classes
of the projective hierarchy. So we have to consider additional ways of weakening
the topological conditions in our space. We mentioned that a finer topology
of a Hausdorff space will always remain Hausdorff and we already dropped
the regularity. One could ask what happens if the weaken the strong Choquet
property to the Choquet property. The next proposition shows that this leads
nowhere.

Proposition 7.1. Let (X,T) be a Polish space and A an arbitrary subset of
X. Then there exists a topology t on A such that t is finer than T and t is
reqular, second countable and Choquet.

Proof. Let B be a basis for (A, T|A). Let C be the closure of B under comple-
ments and finite intersections. Pick a point ¢ in each nonempty C € C.

Now let D = C U {{z¢} | C € C} be the countable basis for the topology t.
Since the basis consists of clopen sets ¢ is regular. The isolated points are dense
in ¢, so player IT wins the Choquet game in his first move by playing one of the
asc’s. |

By this Proposition 7.1 the only topological condition that remains to be
considered is the second countable condition. As described in the introduction
to Part 2 we will now characterize Z}L sets by finer topologies with bases of
length less than the projective ordinals 6,11. In section 7.1 we will under the
theory ZF+DC+HPD construct such a finer strong Choquet topology for each
>! subset of a Polish space. We mentioned that the characterization can not
hold in this theory and therefore we will work for the converse under the axioms
ZF+DC+ADg. The proof of the converse has some technical difficulties. In
particular will the length of the basis be coded by certain scales. In section 2 of
this chapter we will introduce the notion of a scale coding and notions related
to it that will be neccessary for the proof. In section 3 we will finaly finish our
characterization of the projective sets by finer topologies.

7
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7.1 Finer topologies on E,ll sets

In this short section we will see that for each ), set exists a finer strong Choquet
topology with a basis of length less than the projective ordinal 6,12. This is a
pretty straightforward generalisation of the construction for the finer topology
for B! sets as we introduced it in the proof of Theorem 6.2.2.

Assume ZF+DC+HPD for this section. We already constructed a topology
for B! sets in Theorem 6.2.2. Crucial was the w-Suslin property of the X1
subsets of /. Under PD we proved in Theorem 5.1.12 that each X} subset of
the Baire space is x-Suslin for a cardinal  which is as an ordinal less than §).
Comparison with the proof of Theorem 6.2.2 gives us directly an idea how to
define now a finer topology for an X1 set.

Theorem 7.1.1 (PD). Let (X, T) be a Polish space. Forn > 1let A € ! (X).
Then there exists a finer topology t on A such that t is strong Choquet and has
a basis of length a cardinal less than 5,12 (less as an ordinal, not necessarily less
in cardinality).

Proof. Let n > 1. By Remark 6.2.1 we can assume that A is a 3! subset of
the Baire space A/. By Theorem 5.1.12 there exists a cardinal x such that  is
less than &} as an ordinal and a tree T on w x & such that A = p[T]. Fix such
an k and a tree 7.

As in Theorem 6.2.2 we will define a basis for our finer topology ¢. In
Definition 2.3.6 we defined for s € T' the subtree T consisting of all sequences
compatible with s as

Ts = {t € T | t is compatible with s} ={t € T |t C sV s C t}.

Let A = {p[Ts] | s € T}. Then A is a set of cardinality x. Let B be the
closure of A and all the 7T-basic open sets of A under finite intersections, i.e.,
the intersection of all sets that contain A and all 7|A basic open sets and are
closed under finite intersections. The cardinality of B is also k. Let B serve as
a basis for our topology t.

This so defined topology ¢ has now by definition a basis of length less than
6. and is finer than 7T|A since it contains all basic open sets from T|A. So it
remains to show that this topology ¢ is strong Choquet. We do this as before
in the 3| case by describing a winning strategy for IL.

Assume player I starts by playing (zo, Up). Then choose a basic open set of
the form p[T,o] N p[T;1] N ﬁp[Trsno} N Nyy,ug € w<Y, such that this set is a
subset of Uy and contains the point 3. We want to make sure our set is not
just a T-basic open set, so intersect the basic set with p[T] if necessary. Since
Ty € p[Tré],O < i < my, there exists an 7, € k¥ such that (zg,n}) € Tré. Set
S0 = xo\l,tg’i = ni|l. Thep (zo,mb) € (Tré)(SO’tg,i) (Of course this operation
really only applies here if 7 is the empty sequence). Let II play

Vo = p[(TTS)(so,tg’O)} n... ﬂp[(Trgto )(SO’to,mo)] N Ny,

0

Let player I's answer be (z1,U;) with z; € Uy C V.
Since z1 € Vj there exists for 0 < i < mg an 7 € k“ such that (x1,7;) €
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(Tré)(go 0y Set s1 = x1\2,t(1]’i = 75|2. Then s9 C sl,tg’i C t?’i and 27 €
1o

p[(Trg)(sl,tg,i)]-
Choose now again a basic set p[T.o] N p[T,a]N...N p[TrTl] N Ny, such that
this is a subset of U; and contains z;. Let n{ be in k¥ for 0 < ¢ < my such
that (z1,7}) € T,i. Set té’z = ni[1. Then z; € p[(Tri)(s0 tl,ml)]. In particular
sto

T € p[(TT‘?)(so,té’O)] n... ﬁp[(TrTn )(so,té’ml)] N Ny,. Now

Vi = p[(Trg)(sl,t?’l)] n... ﬂp[(Trglo)(SO’tg,mo)] N Ny, mp[(TT?)(so,té’O)] n...
ﬂp[(Tr;nl )(So,té’ml)] N Ny,

is a legal move for player II.

Proceeding this way, when I plays (zo,Up), (21,U1), ... IT produces Vg, V1, . ..
with Uy D Vo D U; D Vi D ...,xz, € V, and moreover one defines for each n
basic sets Ap with z, € A, = p[Tyo] N ... N p[Tymn] N Ny, C Uy, and sequences
50 C 81 C sg..,ty® C POyt C P C ™ C L. with
(sk,tZ’i) € T,:,0 < i < my, such that for each k the finite sequences sk,tZ’i

have length £ + 1 and

Vi = p[(Trg)(sk’tz,o)] n... ﬂp[(Trglo)] N Ny,
N p[(TT?)(Skfl,ti’fl)] n... ﬂp[(TT;m )(sk_l’tllc,_mll)] N Ny,
n...

M p[(Trg)(So,tS’O)] n. ﬂp[(TT;nk )(so,tlg’mk)] M Nu
To prove now that this so defined strategy is indeed a winning strategy we
have to prove that (), V,, # 0. But this intersection contains a point, namely

the point z = |, s.

Claim: z € N, 4n =, Va
Proof: Consider A, = p[To] N ... N p[Tyma] N Ny,. Let 0 < i < my. Let
nh = Upty'. We have (s, 1) € T, for all k. Therefore (z,n}) € [T,;] and
thus z € p[T;;]. It remains to show that z € Ny,. For this let S be the
full tree on w®. For a sequence s € w<* we have [S;] = N our basic set in
the Baire space. It suffices to show now that s; € S, for every k. Note that
Sp = @p|n+1. Since z, € N,, we have s,, and u,, compatible, therefore s, € S,
for £k < n. Assume towards a contradiction that for & > n the sequence s;, is
not in S, . This implies z; € N,,. In particular, zy € V,, but x, € V CV,;, a
contradiction. g.e.d. Claim
O

Obviously this proof applies for 2} sets without assuming PD. We intro-
duced the Gandy-Harrington topology for X1 sets in Theorem 6.2.2 since this
topology is somewhat more natural. The rest of this paper is devoted to the
proof of the converse of Theorem 7.1.1.



Chapter 7. Reliable ordinals 80

7.2 Reliable ordinals

It will be necessary for the proof of the converse of Theorem 7.1.1 that we can
code the length of our basis for the finer topology not only by some norm, but
by a scale. We will define the notion of such a scale-coding next. An ordinal
that admits a scale-coding on some subset of the Baire space will be called
reliable.

Definition 7.2.1. (i) A scale (¢;);cw on some subset W C A is called a scale-
coding for some ordinal X if ¢ is a surjection on A and the length of the other
norms ¢, are less or equal to A for all n > 1.

(ii) An ordinal X is called reliable if A admits a scale-coding. For some point-
class T' we call A I'-reliable if it admits a scale-coding by some I scale on a
set in T'.

We already mentioned in the Introduction to Part 2 that the characteri-
zation of the projective sets by topologies of length less than the projective
ordinals can only hold, if the projective ordinals have distinguished cardinality.
This is true under AD as we proved in Theorem 5.2.5 and Theorem 5.2.6 to-
gether with Theorem 5.2.7. In particular these results assert that the projective
ordinals are successor cardinals. In view of Theorem 7.1.1 and Theorem 4 we
have to consider the predecessors of the projective ordinals since this will be
the lengths of the bases. So there should be reliable ordinals with cardinality
of these cardinals. Our proof of Theorem 4 requires that such ordinals have to
be even A!-reliable. We will prove now that such ordinals indeed exist.

Proposition 7.2.2 (PD). 83, is A, ,-reliable for alln > 0.

Proof. Let W C N be a complete H%n_l_l set and (¢;)icw a regular H%n_l_l scale
on W (this exists by the second periodicity Theorem). By Theorem 5.1.14 each
©; has length J%n“. Therefore ¢ is a surjection on 6%n+1. Since W € A%n—l—?
and (¢;)ic, is obviously a A}, ,,-scale we are done. O

So the odd projective ordinals are reliable in the needed sense. We can
not prove that the predecessor of any odd projective ordinal 6%n+1 is A%n—l—l
reliable. But under the assumption of AD the set of all A%,H_l—reliable ordinals
less than 6%71“ is unbounded. So there exists an ordinal with the cardinality
of the predecessor of J%n—l—l that is A%,H_l—reliable and this will be sufficient for
our purpose.

Proposition 7.2.3 (AD). The set of A}, -reliable ordinals less than &3,
is unbounded in 5%n+1 for alln > 0.

Proof. Let &y < 83,.1. Let (¢i)icw be a regular IT},  -scale on a complete
II},, -set P C N.

Set Pe, = {z € N | Vig;(z) < &} =) Pfo € Adyirs

where Pfo = {z € N'| pi(z) < &} and this set is in A}, ; by Lemma 5.1.3.
(1) (91l PeyJicw i & Al -scale on P,.

Proof: Let (z1)rew be a sequence in Py, converging against some point z € N
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and ¢;(zy) converges against some \; < & for all 1 € w. Then z € W and
wi(z) < X <& for all i € w. Therefore x € Pfo for all 4, thus z € P¢,. Since
P, € A}, ., we know from Theorem 5.1.2 that (¢;| P, )icw is a A, -scale.
g.e.d.(1)

Define now by recursion an increasing sequence of ; in the following way:

Let & < 03,,1 be given. For a < & such that o ¢ ran(po|P,) let £ be
minimal with the property that there exists an z € Pea with ¢o(z) = . Let
Eiv1 = sup{&l | @ < & A a ¢ ran(pg|P:,)}. Since 83, is regular we have
i1 < 6%72—1—1'

Let &, = sup{¢; | i € w}. Then &, < 83, because of the regularity of &3, ;.

As in (1) we have that (p;|Ps, )icw is a A}, q-scale on P, . Furthermore
ran(po|Pe,) = &, since for a0 < &, there exists an 7 € w such that a < &.
If there is an z € Py, C P, such that ¢g(z) = o we are done. Otherwise there
exists by construction of the & some z € P, C P, with ¢g(z) = a. O

Corollary 7.2.4. There exists a A%,H_l—reliable ordinal less than 6%n+1 of car-
dinality the predecessor of 83, ..

The following notions and results in connection with reliable ordinals will
also be necessary for the proof of Theorem 4.
We fix now for a reliable ordinal X a scale-coding (;)ic, on W C N.

Definition 7.2.5. Let S be a countable subset of A.
Let £ be in S. The set S is called £&-honest if there exists an w € W such that

wo(w) = ¢ and @, (w) € S for all n € w.
S is called honest if S is €-honest for all £ in S.

The following Theorem we will be crucial in the proof of our main Theorem
4. We remind here on the bijection between w® and (w*“)“ we used in the proof
of Lemma 2.1.2:
Let (,) : w X w — w be a bijection such that (i,0) < and (i, k) < (i,1) for all
1 and k£ < [. Then define

where (z);(m) = z((i,m)).

One last notion is necessary. A function F' : X¥ — Y* is called a Lip-
schitz function if it is already defined on the initial segments of each element
of X%, i.e., the function F' is also defined on X <% and forall z € X and forall
n € w we have F(z|n) = F(z)|n.

Theorem 7.2.6. Let (p;); be a scale-coding on W C N for \.
(i) There exists a Lipschitz function F : \ — N such that range(F) C W
and for f € A¥ the following holds:

{£(0), f(1),...} is £(0) — honest = @o(F(f)) = £(0)

(i1) There exists a Lipschitz function F : \* — N such that range(F) C
{z \Vn(z), € W} and for f € X\¥ the following holds:

{£(0), f(1),...} is honest = Vn oo((F(f))n) = f(n)
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Proof. (i) Let T be the tree on w x X associated to the scale (¢;); on W, i.e.

((koy - ykn)y (0., &n)) €T
< dz € W such that z(i) = k; and p;(z) =& for i <n

Consider now the following game on A

where f(i),h(i) € A and w(i) € w for all i € w.
IT wins the game if

(w, h) € [Tyl Aol € p[Tro)|{f(0), f(1),...}] = ¢o(v) < po(w)]

where T}y is the subtree of T' where each branch s starts with (ng, f(0)) for
some ng € w and Ty [{f(0), f(1),...} is the subtree of Ty where for a se-
quence s = (r,t) of length n we have ¢(i) € {f(0), f(1),...} for all i < n.

Claim: IT has a winning strategy for this game
Proof: Let I start by playing f(0). Then II chooses an w € W such that
wo(w) = f(0) and plays on his n-th move w(n), h(n) = o, (w).
Then we have obviously (w,h) € [Ty]. If v € p[Tyy[{f(0), f(1),...}] then
there exists by construction of the tree a sequence (y;) converging against v
such that ¢q(y;) = f(0) for all 7. (cf the proof of Theorem 2.3.7, “2”) Since
(pi)i is a scale we have pg(v) < f(0) = po(w). g.e.d. Claim
Let 7 be a winning strategy for I1. Define now the function F' by

F(f)=w < f,w,h is a run in the game where IT follows his strategy 7

This function has the required properties. Let F(f) = w. Since IT played w fol-
lowing his strategy 7 this means w € p[Ty ()] C p[T] = W, thus range(F) C W.
Let now {f(0), f(1),...} be f(0)-honest. We have to show ¢o(F(f)) = f(0).
Since the set {f(0), f(1),...} is f(0)-honest there exists an z € W such that

wo(r) = f(0) and ;(z) = f(k) foran k € w. This z is in p[Tyo)[{f(0), f(1),...}].
Since 7 is a winning strategy we have f(0) = ¢o(z) < po(w) = @o(F(f)). On
the other hand one shows as in (1) that po(w) < f(0). This proves everything.

(ii) The idea is to transfer the tree from (i) by the function () to annother tree
and then imitate the proof of (i). So we define a tree T on w x A by

((koy---ykn)y (€0y--,&n)) ET
& dz € N such that Vi(z); € W

and if (i, j) = m then ky, = (2);(4) and &n = ¢;((2):)
For f € \¥ let

Ty ={(t,r) € T| forl; = (i,0) <length(t,r) :r(l;) = f(i)}
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and
Tj = {(t,r) € Ty | r((i,k)) € {£(0), f(1),...}Vk € w}.

Consider now the the following game on A

I £(0) f(1)
I w(0), h(0) w(1), h(1)

where f(i),h(i) € A and w(i) € w for all i € w.

Il wins & (z,h) € [TY]
AVoVi[v € p[T}] = o((v);) < wo(();)]

Now we can do the same as in part (i).

Claim: II has a winning strategy

Proof: We define again a winning strategy for player II. For every f(i)
player T plays IT chooses an w; € W such that po(w;) = f(i) (since g is a
surjection onto A such a w; exists). Player IT wins by playing = ({7, j)) = w;(j)
and h((i,7)) = ¢;(w;). Since (i,7) > i player II has at any time allready the
necessary information.

Now (z,h) € [Ty] since (z); = w; € W and for (i,j) = m we have z(m) =
(#)i(j) = wi(j) and h(m) = ¢;((z);). Farthermore h((i,0)) = wo(w;) = f(i).

Let now v € N, € w and v € p[T}]. That means

Ju € N (v,u) € [T}Zc]
& Jue IVl ew|l,ull) € T}
& Ju € AVl € wy, € N such that Vn(y), € W
and if (n, j) = m then v(m) = (y/)n(j) and u(m) = @;((y1)n)

Thus in particular the sequence (y;); converges (in l) against (v); and g ((y;);) =
f(@@) for all I. Since (¢;); is a scale we have (v); € W and ¢q((v);) < f(i) =
wo(w). g.e.d. Claim

Fix now a winning strategy 7 for player II and define as above F(f) = z if
player IT answers to I's play f by x,h. Note that we used in (1) to show that
(v); € W and ¢o((v);) < f(i) just the fact that v € p[Tf]. So we can prove as
in (1) that (F(f))i = (z); is in W for all 4 and ¢o((F'(f))i) < f(i) since 7 being
a winning strategy for IT implies « € p[TY].

Let now S = {f(0), f(1),...} be honest. Let i € w. Since S is f(k)-honest
for k € w there exists an wy with ¢g(wg) = f(k) and ¢;(wg) = f(m) for some
m € wand alll € w. Let v € N be defined by v((k,n)) = wi(n). Thisv € p[T}].
Since 7 is a winning strategy we have f (i) = ©o((v);) < @o((2)i) = @o((F(f)):)-
Thus wo((F(/))s) = /(0).

U

Now we can finally start with the proof of Theorem 4.
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7.3

Proof of Theorem 4

To prove Theorem 4 and get the characterization of projective sets by finer
topologies we have to prove the following theorem:

Theorem 7.3.1 (ADg). Let (X, T) be a Polish space and let A C X. If there
exists a finer topology t on A such that t is strong Choquet and has a basis of
length less than &), then A € L.

Proof. We work now under ZF+DC+ ADg.
Fix the following objects:

Let X, T, A,t,n be given.

Let B={B; |i € w} be a basis for (X, T).

Let d be a complete metric on X which induces the topology on (X, T).
Let x be a Al-reliable ordinal with cardinality the predecessor of 4,.'
Let C = {C¢ | £ < K} be a basis for (A4,1).

Let o be a winning strategy for player II in the strong Choquet game
Gscn (A, t) which chooses basic sets from C of diameter less or equal 1 in
the 4-th move.

Let W C N be a Al set and ¢; : W — & be a Al-scale on W with
ran(eg) = K.

Let FF : k¥ — w" be a Lipschitz function with the properties from
Theorem 7.2.6.

We start the proof by defining a game G.

A game

We define GG in the following way:

I ag, &0, To a1, €1, 71
IT Bo, Mo Bi,m

where «;,&;, 8,1 € k and z; € A for i € w.

The players must obey the following rule R:
The players must play such that the finite initial segments of

I (Cfoal‘[]) (Cgl,l‘l) . (*)
II C?]o Cﬂl e

!Note that we just proved for n even that  is a cardinal. We do not know this for n odd.
Nevertheless we denote contrary to our usual notation this ordinal by x.
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are legal moves in the strong Choquet game for (A, ¢) with diam(Cy,) < % The
first player to fail loses.

The payoff set is the following:
Let us assume no player violates the rule. Let f = («g, &0, B0, M0, 01, &1, B15M15---) €
k2. Set 1;(f) = po((F(f))ai+3). Let finally

P={fex’|Ir € AYVm cwz € Cy (5}

IT wins the run of the game < f € P.

The following remark turns out to be very important.

Remark 7.3.2. The definition of F' (see Theorem 7.2.6(ii) for the properties
of F') implies that if f is honest, then

0i(f) = eo((F(f))4iv3 = f(4i +3) = n;.

Hence if f is honest, then f € P < II wins the round of the strong Choquet
game ().

We proceed now with the key lemma of this proof. We will show that player
IT has a winning quasi-strategy in this game G independent of the points from
A played by player I. This lemma is the only part of the proof that requires the
axiom ADg.

Lemma 7.3.3. Player II has a winning quasi-strateqy 7 independent of the
points x; played by I in the following sense:
Let

s = ((a07£07x0)7(/Bﬂanﬂ)a"'7(am—1a£m—1axm—1)) and
s = ((a07£07x6)7(/Bﬂanﬂ)a"'7(am—17£m—1ax;n_1))

be two positions in G which are legal and consistent with 7. Let (Bm—1,Mm—1) €
kXK If emor, 2, 1 € Cyp._, and s7(Bm—1,Mm—1) is consistent with T, then
S (Bm=1,Nm—1) 18 also consistent with .

Proof. We will prove this lemma in several steps. Our first aim is to see that
our payoff set P C x“ is A-Suslin? for some ordinal A. Since we are working
under ADp (and this is equivalent to the fact that every subset of the reals
admits scales) we will prove first that P can be seen as the preimage of a subset
R of the reals under the function F. The subset R is then A-Suslin for some
ordinal A by ADgr and we can apply the Lipschitz function F' to transfer a tree
on w X A that witnesses the Suslin representation for R to a tree on x X A that
witnesses that P is A-Suslin.

(1)There exists a subset R C N such that F~![R] = P

*Note that we defined being A-Suslin just for subsets of w® but the generalization for
arbitrary sets of the form X“ for any set X is straightforward.
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Proof: Obviously the only candidate for such an R is F[P]. So we have to
show that F~![F[P]] = P.
“D” clear
“C” Let g € F![F[P]]. Then there is an f € P such that F(f) = F(g). This
implies that for all i € w we have 7;(f) = ©o((F(f))4ir3) = ©o((F(g))airs) =
ni(g). Since f € P there exists an z € A such that © € (¢, Cy,(r)- But
Nicw Cii(r) = Nicw Chi(g)- Therefore g € P by definition of P. g-e.d.(1)

ADg implies that every set of reals admits a scale. So in particular there is
a scale for R and by Theorem 2.3.7 R is Suslin. Let Tg be a tree on w x A for
some ordinal A such that R = p[Tg].

Using the fact that F' is a Lipschitz function we get a tree representation
for P in the following way. Let a tree T on x X A be given by

((€0s- -+ &n1)s (Cosr v vy Cumr)) €T
& (F(&o,---+&n-1),(Co,---,¢n-1)) € TR

€ € p[T*]

& e (¢ €T

& 3¢ € NVE((Cos-- -1 &k), (Cos-- o5 Gr)) €T
& 3CVE(F(&o,-- -, 68),C0, -+, Ck) € TR

& 3C e N(F(),C) € [TR]

& F(é) ep[Trl=R

& e FUR]

& £eP

qed. (2)

The Suslin representation of the payoff set P does not suffice to prove the
determinacy of the game G, but there is a technique of homogenizing a tree
T* on k x A with the help of a strong partition cardinal® y > max{r, A} that
will imply the needed result’. This technique is due to Kechris, Kleinberg,
Moschovakis, Woodin ([KKMW81]) and is described in detail in Philipp Rohde’s
thesis [Rohd01]. Therefore we shall only sketch the following argument and
point to the corresponding proofs in Rohde’s thesis.

First of all we have to quote an important theorem from the paper of Kechris,
Kleinberg, Moschovakis and Woodin:

%A strong partition cardinal is a cardinal & such that for all functions f : [k]® — 2 there
is a subset H C k with cardinality x such that f [ [H]" is constant. For more on strong
partition cardinals, cf. [Kana97] p. 432.

*A definition of homogeneous trees and the general idea how to apply this for determinacy
results can be found in [MaSt89], in particular see their Theorem 2.3. The following aproach
here is slightly different.
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Theorem 7.3.4 (AD). For each k < © there is a p such that kK < p < © and
@ is a strong partition cardinal .

For a proof see [KKMWS81, Theorem 1.1]. We look at the tree T on k x A
and find a strong partition cardinal 4 > max{x, A} according to Theorem 7.3.4°.
Following the outline in [Rohd01] we can assign an ordinal 7(s) to each s €
£<¢ and attach a p-complete ultrafilter U on [u]™®) to s in a way such that
the system (Us)gcn<w becomes a homogeneous system of ultrafilters.”. The
homogenization of T* is done in Satz (5.15) of [Rohd01].

With the homogenized tree (T™, (Us)scx<w) in mind, we can define an aux-
iliary game G":

In the game G’ player I and player II play as in the game G, so in particular
they have to follow the rule R, but in addition, player II plays an object f, in
round n such that the following holds:®

If in round n of the game, before player II plays, the players have produced
a sequence

by = ((040,507130), (/BﬂanﬂafO)a teey (anagnaxn))a

and we let

in = ((a07£0)7 (/807 7)0)7 teey (anagn))a
then f € [ and fr_1 C fo.

The payoff of this game G’ is the same as in G, the additional object f; only
adds to the rules.

It can be seen that the game G’ is an open game, hence quasi-determined
(the proof is Behauptung 1 of Satz (5.16) in [Rohd01]), so either player I or
player II has a winning quasi-strategy in this game. In fact, if player II has a
winning quasi-strategy, then the maximal quasistrategy Tmax (moving to non-
losing positions) is winning and this winning quasi-strategy is independent of
the points in A played by player I in the sense of this key lemma:

(3) The maximal winning quasi-strategy Tmax has the following property:
Let

t = ((a07£07x0)7(/807n07f0)7"'7(am—1a£m—1axm—l)) and
t = ((aovﬁoaxs)a(ﬁUan[)afO)a--'a(amflaﬁmflafﬂ;n_l))

be two positions in G' which are legal and consistent with Tpax. Let (Bm—1,
Nm—1, fmfl) be such that if Tm—1, $;7171 € Cﬂm—l and t7 (5m,1, Nm—1, fmfl) 1s
consistent with Tyax, then ¥ (8m_1,Mm—1, fm—1) is also consistent with 7pax.

%@ is the supremum of all the lengths of prewellorderings of the Baire space.

bk < O since it is the length of AL prewellordering, A < © since A came from a scale of a
subset of N/

"The definition of 7(s) is Definition (5.11) in [Rohd01]

8For the definition of the f,’s and for the following, cf. the proof of Theorem 5.16 in
Rohdes thesis.
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Proof:Let t and ¢’ be as in the statement of (3) and (By—1, Tm—1, fm—1) be an
answer for IT following Tmax. Then ™ (Bm—1,9m—1, fm—1) IS & winning position
for 1T by definition of Tmay, i.e., a position such that player I has no winning
strategy from this position. (That such a quasi-strategy Tmax iS a winning quasi-
strategy for II in a open game see the proof of the Gale-Stewart Theorem for
example in [Kana97, Proposition 27.1].)

Assume towards a contradiction that ¢~ (8,-1,9m—1, fm—1) is no winning
position for II. Then player I has a winning strategy from this position on.
Player II does not lose by violating any rule if he plays (6,1, Nm—1, fm—1) in
round m, so player I really has to play following a winning strategy to win
the run of the game that starts with ¢~ (8,-1,%m-1, fm-1). So the outcome
of this run is an element not in P. If player T would use this strategy from
the position ¢~ (6m-1,Mm—1, fm—1) on he would also produce an outcome not
in P. And he has not violated any rule since the elements from A played in
the beginning initial segment ¢ play no role in his upcoming moves (this is so
by definition of the strong Choquet game). So player T would have a winning
strategy for the run starting with ¢~ (8y,—1,9m-1, fm—1). But this contradicts
the assumption that player IT followed his winning quasi-strategy Tmax. q.e.d.(3)

Because of the homogeneity of the ultrafilter system, being a winning quasi-
strategy for G’ transfers now to the game G as follows:

1. Suppose that player II has a winning quasi-strategy in G'. Then we can
see every quasi-strategy as a quasi-strategy in the game G by forgetting
the f;-moves. Clearly, this quasi-strategy is still winning.

2. Suppose that player I has a winning quasi-strategy in G’. Then we can
construct a winning quasi-strategy for player I in the game G. This claim
uses the homogeneity of the ultrafilter system and is the proof of Behaup-
tung 2 in Satz (5.16) in [Rohd01].”

So we have proved that the game G is quasi-determined and, even more,
that if player II has a quasi-winning strategy he has a winning quasi-strategy
with the demanded property (by (3) and the way player II gets his winning
quasi-strategy for G out of the winning quasi-strategy for G’ ). In order to
finish the proof of this key lemma now we have to show that player I cannot
have a winning quasi-strategy in G.

Assume towards a contradiction that he does have a winning quasi-strategy
in G and let 7 be such a winning quasi-strategy for player I in G. Note that if
we use a surjection from w® onto X (cf. Theorem 2.2.3) for a coding of the Pol-
ish space X by the reals, ¢ as a coding of the ordinals less than x by W C
and if we identify the ¢-basic open sets C¢ with { we can view both GG and the
strong Choquet game for (A, t) as being games on the reals. With this in mind

“Note that Rohde’s game Go(A) does not have real moves, but the real moves do not
matter for the construction of the quasi-strategy for player I. All we have to worry about is
the simulation of the moves f; for player IT that do not occur in the game G but are necessary
to apply the given quasi-strategy.
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the following claim makes sense.

(4) There exists a countable subset Z of w“ such that
(a) The set of ordinals less than x with codes in Z is honest

(b.1) Every position in G consistent with 7 with all moves from Z has an
extension consistent with 7 and all moves from Z.

(b.2) Every position in Ggcp(A,t) is consistent with o and all moves from Z
has an extension consistent with ¢ and all moves from Z.

Proof: We can view the winning quasi-strategy 7 and the winning strategy
oastreeson k X Kk X A x k X k and k X A X k respectively. We want to define
Z by recursion.

Let Zy be the emptyset and let Z; countable be defined. To get Z; 1 consider
the tree 7|Z;. That of course should be 7 restricted to the elements coded by
Z;. Let S be the set of all finite branches in the countable tree 7|Z;. For s € S
let

sT={(,&,z,8,m) EKXKXAXKXEK|S (a,&x,6,m) €T}

By AC,, we can choose for each s € S one element from s~ and let S* be the
set of all chosen elements.

We do the same with the tree 0|Z; and get a countable set R*.

The third set we consider is T* = |,z nw{¢i(2) | i € w}.

Applying AC,,, we get three countable subsets R*, S*,T* of reals coding
R*,S8*,T*. Let now Z; 41 = Z; UR* U S* UT*.
Set Z = UiEw Zz

It is now easy to see that this Z has the demanded properties. For (a) let
a be an ordinal coded by some w € ZNW. Then w € Z; for some i. By
the definition of Z ¢y (w) is coded for all k in Z;11 C Z. For (b)(1) let s be
a position in G consistent with 7 with all elements in s from Z. Since s is a
finite branch there are only finitely many elements in s. So there is a Z; for
some i such that s € 7|Z;. Now s has a proper extension with elements in Z
consistent with 7 since we added exactly such extensions in Z;;. The same
argument holds for (b)(ii). q.e.d.(4)

Fix an Z as in (4).

Then it is clear that there exists a run of G such that
(i) all moves are in Z (again, i.e. all moves are coded in Z)
(ii) this round is consistent with I’s winning quasi-strategy 7 for G

(iii) The &’s, z;’s and n;’s are consistent with II’s winning strategy o for the
strong Choquet game G4 ;).

(iv) Bo, 51, B2, .. is an enumeration of the ordinals with codes in Z.



Chapter 7. Proof of Theorem 4 90

By (ii) I wins this run of G. II does not lose this run by violating rule R
since he follows o by (iii). So the outcome of this run is an f that is not in
P. f is honest, since f consists of all ordinals coded by Z (by (iv), putting
in the By, 41,...) and this set is honest by construction of Z. Hence Remark
7.3.2 implies that I wins the strong Choquet game G4 ). But this contradicts
(iif). O

The tree T
Let 7 be a winning quasi-strategy for IT as in the above Lemma 7.3.3. 7 is
essentially a tree on (k X kK X A X k X k). Let us call this tree Ty and we assume
all positions in Ty legal, that is, if I loses by violating the rule R we remove this
branch from the tree.

By the key lemma the points of A in this tree play no role for our purpose,
so we remove this points and get a tree T} on x*:

The tree T
Define a tree T} on x* by

((aﬂa 507/807770)7 Ty (am—lagm—la /Bm—lanm—l)) S
& dzg, ... T;m—1 € A such that
((aﬂagﬂa Zo, /807 7)0)7 H) (am—la gm—laxm—la /Bm—lanm—l)) € TO
The important Remark 7.3.2 implies the following property of 7.

Lemma 7.3.5. Let f = (o, &0, Bo, 10, @1,&1, 51, M1, - - -) be an infinite branch in
Ty. If f is honest, then [, Cy, contains a point 7 € A.

Proof. Let f be given. We want first find some zg,z1,... in A such that
g = (o, &0, x0, Bos Mo, @1, &1, 21, B1, M1, - - .) 18 an infinite branch through Ty. We
define the z; by induction.

Let xg,x1,...,%Zn_1 be defined such that

(040, anwaBOa no, - - - aan—lagn—la xn—lalgn—la nn—l) € TU-

Since f is an infinite branch in T there exists z{, ..., z], such that

n

(040,60,5176,,60,7’]0, s 70[7171767171’w%—laﬁnflannflaanaﬁnaw;zalgnann) € TO'
Now
s = (0401507370,50,7707 s aan—lagn—laxn—laﬁn—lann—laanagnax%)

is a legal move in G consistent with 7 and

S’A(/Bnann) = (aﬂagﬂaxi)aﬁﬂanOa"'a

N aan—lagn—la x%*l’lgn_lﬂ Mn—-1, an7£n7 x;w/Bna nn)

is a legal move in G consistent with 7 since it is a sequence in Ty. By the
property of 7 we have s"(83,,n,) is a legal move in G consistent with 7. So
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define z,, to be z,.

This definition assures that g = (g, &9, zo, 5o, 10, @1, &1, 1, B1, M1, - - -) 1S an in-
finite branch through Ty. Since 7 is a winning strategy for II ¢ is the outcome
of a round in G in which II wins. So f € P. By the remark to the definition of
the game G II wins the strong Choquet game, so [); Cp, # 0. O

Finally we will define with the help of T} a tree T' on w x x* that will lead
to a definition of a 3} set A’. We will see that A’ equals A and finish in this
way the proof of Theorem 4.

The tree T
Let T be the following tree on w x x*:

((’io, ag, &o, /30,770), ceey ('L'm—la m—1+Em—1, Bm—1, nm—l)) €T &
(i) For all k, diam(B;,) < 1

(ii) For all k, B;, ., C B;,

k41

(111) ((a07£07 /BﬂanO)a ey (am—la gm—lalgm—la nm—l)) € Tl
(iv) For all k, B; NCy, # 0

The definition of the set A’ is now the following:

The set A’
Define A’ C X by

reA & Tyc

w b) B
[(y, Eﬁme

ne
T and x € ﬂ By
and {a(m),g(m),ﬁ(m),ﬁ(m) |'m € w} is honest |

We claim that A’ is a X. set. To see this we want to use the Coding Lemma
5.2.2.

Lemma 7.3.6. A’ is in 3.

Proof. We prove first that the tree T' is A}l—in—the—codes10
Define Code(T™, <,,) the following way:

(y(O),...,y(m— 1),(.’1}0)0,...,(xo)m_l,...,(1‘3)0,...,(1‘ )m 1)
€ Code(T™, <y,)
=

[(4(0), v0((z0)o)s po((w1)0); po((z2)0)s o ((%3)0)),
((y(m = 1), 00((20)m-1), o ((£1)m-1), po((Z2)m-1), Po((£3)m-1))]
eTN(wxrh™

19The notion of a tree being T-in-the-codes is by no means a standard definition. The
definition here seems to us the most natural to apply the coding Lemma to it.
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By Corollary 5.2.2 this set is AL. So if we define that T is Al-in-the-codes
should stand for the fact that the union of all the Code(T™, <,,) is in A} we
have just shown that T is Al-in-the-codes.

Now we can rewrite the defining formula for A’:

r€eA & TyewIny,zr,T0,23 €W
A VE[(zo)r € WA (z1)r € WA (z2) € WA (z3) € W]
A Ym(y(0),....,y(m —1),(20)os- -, (Z0)m—1s-- -,
(3)05 -+, (3)m—1) € Code(T™ <,,)

VkJw € WVivj(w € A2

_Wl =g

AN VYmxeB y(m)

A VEFw € WYivj(w € AL\ A (), € A
A VEIw € WYivj(w € AL A (), € A
A VEIw € WYivj(w € AL\ A (), € a2
A ( A (z3) )

where Aﬁo(w) and Aﬁo((l‘z)]‘) for £ =0,1,2,3 are initial segments of the prewell-

=¥q =@

ordering <, which are in Al following Lemma 5.1.3.

From this formula we see that A’ is indeed in .. O

So we can finish the proof if we show that A = A’.
A'CA
Let z € A'. Let y, @ E B,7 € w” x (k¥)* witness that 2 € A". Let
= (

a07£07ﬁ07n07a17£17ﬁ07n07 B )

Then (y, f) € [T] and f is honest. By definition of 7" we have f € [T1]. So by
Lemma 7.3.5 there exists an 2y € A such that z; € ,, C,,. Since z is the
only point in [,, Bym) (by (i) of the definition of T') it suffices to show that
Ty € (), By(m) because then z =z € A.

Claim: zy € (,,, By(m)

Proof: Assume not. So there is an m € w with zy ¢ By(y). There-
fore d(xs, By(m)) > 0, let us say d(zy, Byom)) = € > 0. But now there ex-
ists an k > m with diam(Cy,) < % (because of rule R in the definition of
G) and zy € Cy,. Also diam(Byy;)) < § by (i) of the definition of T and
Byky € Bym)- By (iv) of the definition there is an z € By;y N Cy,. Since
z,xy € Cp, we have d(z,z7) < §. But also z € Byy) C By, and hence
d(zf, Byom)) = inf{d(',zy) | 2/ € By} < d(z,75) < 7. This contradicts
d(By(m),Tf) > €. g.e.d. Claim

This proves that A’ C A.
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ACA
Let z € A. Let h: w*” — A be a coding of A by the reals. !

Let Z be a countable subset of w“ such that

1. thereis an 7 € Z with h(Z) =z

2. the set of ordinals less than x with codes in Z is honest
3. dv < Kk such that x € C, and v has a code in Z

4. every position in G consistent with 7 with all moves from elements coded
from Z has an extension consistent with 7 and with all moves from ele-
ments coded from 7

To prove the existence of such a set we define by recursion countable sets Z;
for 1 € w (using AC,, in every other step of the construction) and the take Z
to be the union of all Z;. To make an easy thing not look to complicated (by
jumping back and forth between the “coded game” and G) note that if there is
a countable set of ordinals less than x one can get by AC,, a countable subset
of W coding these ordinals. Simultaneously one can get for a countable subset
of A a countable set of reals coding the elements of the subset throug h.

Let T € w® such that h(Z) =z € A and let § € W such that y(y) = v and
x € Cy. Set Zy = {Z,7}.

Let now Z; countable be given for an 1 € w. We want to define Z; ;.
Let Ty | Z; be the tree on k X k X A X k X k restricted to elements coded by
Z;. Consider in Ty [ Z; the countable set of all finite sequences s € Ty | Z;
which have no proper extension. Let s be such a finite sequence and let s" =
{(a,&,2,8,n) € k x k x Ax kK x kK| s™Na,é,1,8,n) € To}. By AC,, we find
a countable set Z,;H such that for all such s there is a proper extension of s
from s" in ZH. Again by AC, and the above remark there is a countable
set Z;,, of reals coding these elements. Choose further codes for the ordinals
r(Z) for z € Z; N W,k € w and let M; be the set of these codes. Then let
Ziv1 = Z; UM; U Z,L{+1. Zi+1 is countable. Set 7 = UiEw Z;.

By definition of Zy 1. and 3. are satisfied. If w € Z; for some 7 € w then
for @i (w) there is a code in M; C Z; 1 for all k € w. Hence the set of ordinals
less than k with codes in Z is honest. If s is a position in G consistent with 7
and all moves are in Z then there is an 7 € w such that s € Ty [ Z; and there is
an extension so s € Ty [ Z;11 C Ty [ Z. So this extension is also consistent with 7.

Using such an Z there is a run of the game G such that
(i) all moves are in Z (that is, coded by Z)
(ii) the run is consistent with IT’s winning quasi-strategy 7 for G

(iii) x,, = x for all m (so player I always plays the same element = € A)

"such a coding exists by Theorem 2.2.3
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(iv) o = v, &ms1 = Mmt1
(v) ag,aq,... is an enumeration of the ordinals less than x with codes in Z

Since such a run g = («ayg, &0, %, Bo, Mo, @1, &1, T, B1,M1, . . .) of G is consistent with
7, we know that ¢ is an infinite branch in Ty. By definition of T the sequence
f = (ao,&0, B0, m0,01,&1,P81,Mm1,-..) is an infinite branch through T7.

Using this f we want to get an infinite branch in T. Property (iii) in the
definition of T' is already satisfied. Now let ig,41,... be such that = € (", B;,,
and (i) and (ii) of the definition of T holds. Since IT wins the run g of G all
C., are legal moves of II and therefore are moves in the strong Choquet game.
So z € Cy,, for all m. This implies B;,, N Cy,, # 0 for all m and therefore (iv)
in the definition of T" holds. So (i, g, &0, Bo, Mo, 91, @1, &1, B1, M, - -.) € [T].

To show now that x € A’ it remains (by the definition of A’) to show that
{msZTm, Bm,Mm | m € w} is honest. But all this elements were chosen in Z
and the «,, are all ordinals less than x coded by Z and this set is honest by
the construction of Z. O

Together with Theorem 7.1.1 we have now proved the main Theorem 4 under
the assumption of ZF+DC+ ADg. The assumption that every set of reals has
a scale is essential for the proof of the key lemma, Lemma 7.3.3, in our proof
of Theorem 7.3.1. So it seems, unfortunately, not possible to proof the main
Theorem 4 under the weaker assumption of ZF+DC+ AD in this fashion. But,
as a compensation, Becker suggests that this proof of the Theorem generalizes
to pointclasses beyond the projective hierarchy which are scaled and projective-
like. For further remarks and results we could not cover here we refer to the
notes of Howard Becker, [Beck91] and [Beck92].
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