Prof. Dr. Matthias Lesch Dr. Boris Vertman

5. Übung Globale Analysis I

Abgabe am Mittwoch, den 20. November nach der Vorlesung

Aufgabe 1. (2-2-1 Punkte)

Es seien M eine Mannigfaltigkeit und $N \subset M$ eine abgeschlossene Untermannigfaltigkeit. Weiter sei $X \in C^{\infty}(TM)$ ein glattes Vektorfeld, so dass für alle $p \in N$ gilt $X(p) \in T_pN$. Man zeige:

- (i) $X|_N$ ist ein glattes Vektorfeld auf N.
- (ii) Sei $\gamma: (-\varepsilon, \varepsilon) \to M$ ein Integralkurve von X mit $\gamma(0) \in N$. Dann ist Bild $\gamma \subset N$ und γ Integralkurve von $X|_{N}$.
- (iii) Jedes glatte Vektorfeld Y auf N ist lokal die Einschränkung eines glatten Vektorfeldes X auf M, d.h. zu jedem Punkt $p \in N$ existiert eine offene Umgebung U von p in M und ein Vektorfeld $X \in C^{\infty}(TU)$ mit

$$Y\big|_{U\cap N} = X\big|_{U\cap N}.$$

Aufgabe 2. (5 Punkte)

Sei M eine Mannigfaltigkeit der Dimension m und E ein reelles Vektorbündel vom Rang k über M. Beweisen Sie, dass folgende Aussagen äquivalent sind.

- (i) E ist trivial, d.h. isomorph zum trivialen Vektorbündel $M \times \mathbb{R}^k$.
- (ii) Es existieren glatte Schnitte $X_1, ..., X_k$ in E, so dass für jedes $p \in M$ die Familie $(X_1(p), ..., X_k(p))$ eine Basis von E_p ist.

Aufgabe 3. (2-3 Punkte)

Eine Euklidische Metrik auf einem reellen Vektorbündel E ist ein Schnitt

$$s \in \Gamma(M, (E \otimes E)^*)$$

so, dass in jeder Faser die zu s(p) gehörende Bilinearform $\langle \cdot, \cdot \rangle_p$ ein positiv-definites inneres Produkt auf E_p ist.

- (i) Zeige, dass jedes reelle Vektorbündel eine Euklidische Metrik besitzt. Hinweis: Konstruktion mittels Zerlegung der Eins.
- (ii) Zeige, falls $F \subset E$ ein Unterbündel ist, dann ist $F^{\perp} = \bigcup_{p \in M} F_p^{\perp}$ ebenfalls ein Unterbündel von E.

Aufgabe 4 (Reduktion der Strukturgruppe). (2-2-1 Punkte)

(i) Zeige, dass es zu jedem reellen Vektorbündel E einen Bündelatlas gibt, dessen Kozykel $(g_{\alpha\beta})$ Werte in der Gruppe O(N) der orthogonalen Matrizen annimmt. (Hinweis: Betrachte zunächst eine Euklidische Metrik auf E, wende dann das Gram-Schmidtsche Orthogonalisierungsverfahren an.)

- (ii) Das Bündel E heißt orientierbar, wenn es einen Bündelatlas gibt, dessen Kozykel Werte in $\mathrm{GL}_+(N,\mathbb{R})=\left\{A\in\mathrm{GL}(N,\mathbb{R})\ \middle|\ \det(A)>0\right\}$ annimmt. Zeige analog, dass $\mathrm{GL}_+(N,\mathbb{R})$ durch $SO(N,\mathbb{R})$ ersetzt werden kann.
- (iii) Zeige durch ein Beispiel, dass nicht jedes Vektorbündel orientierbar ist.

Aufgabe 5. (Zusatzaufgabe, 2-2-2-5 Punkte)

Beweisen Sie folgende Aussagen.

- (i) Für ein Bündel L vom Rang(L) = 1 ist $L \otimes L^*$ trivial.
- (ii) Für jedes beliebige Vektorbündel E ist $E \oplus E$ orientierbar.
- (iii) Das Möbiusband ist nicht orientierbar im Sinne der Aufgabe 4 ii).
- (iv) Zeigen Sie, dass ein Linienbündel (d.h. Vektorbündel vom Rang 1) über S^1 entweder trivial oder isomorph zum Möbiusband ist.