
Seminar on ‘Noether-Lefschetz and Gromov–Witten theory’.
Winter term 2009/101

The aim of this seminar is to understand the relation between Noether–Lefschetz loci and
Gromov–Witten invariants for Calabi–Yau threefolds given by Lefschetz pencils of K3 surfaces.
The main emphasis should be put on the Noether–Lefschetz part and the hope would be to
learn along the way some aspects of the theory of automorphic forms applied to K3 surfaces.
The main reference is the paper of Maulik and Pandharipande [1], but we will have to learn
the background from other sources. See also the survey [2] and the sequel [3].

The main topics that we should try to cover are:
I. Classical Noether-Lefschetz theory.
The classical Noether–Lefschetz locus for hypersurfaces in P3 is the locus where the Picard
rank is bigger than one. One knows that the locus is proper for degree d ≥ 4. There is a
purely algebraic proof (due to Griffiths and Harris) and one that uses Hodge theory. For K3
surfaces the result is easier to prove using pure Hodge theory and standard facts about K3
surfaces. For a complete curve of quasi-polarized K3 surfaces the Noether–Lefschetz number
counts the fibres with higher Picard rank, which can be understood as the intersection of this
curve with the Noether–Lefschetz locus.

II. Noether-Lefschetz numbers and modular forms.
The main input for the paper [1] is a result of Borcherds that says that the generating series
of all Heegner divisors has certain modular forms as coefficients (see the theorem on page 28
in [1]). So we will learn a few things about period domains, arithmetic quotients and Heegner
divisors. The easiest Heegner divisor is related to automorphic forms. For K3 surfaces this has
been used to show the isotriviality of complete families of K3 surfaces with constant Picard
rank (Borchers et al).
We probably will not have time to go into the details of Borcherds’ papers, but we should
at least dig out what is needed. There are other applications of automorphic forms to K3
surfaces. E.g. results of Gritsenko, Hulek and Sankaran on the Kodaira dimension of their
moduli space. But probably, we won’t have time for this either.

III. Relation between NL numbers and Gromov–Witten invariants.
In [1] it is shown that GW invariants of families of K3 surfaces are related to NL numbers.
At this occasion it would be interesting to review work of Beauville and Bryan, Leung on the
Yau-Zaslov conjecture that counts rational curves on K3 surfaces. The final aim would be to
understand Theorem 1 in [1] relating the GV invariants of a pencil of quartics with the NL
numbers of this family.

IV. Application to K3 surfaces.
The paper [1] in particular computes the Noether–Lefschetz number explicitly for a pencil of
quartics. This combines Borcherds’ work with its application to Noether–Lefschetz numbers
and the relation between GV and NL.
Another application (less recent) of Borcherds’ techniques is the result that any complete
family of K3 surfaces with constant Picard number is isotrivial [7]. See also [14, 19, 20, 21].
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Detailed plan of the meetings (subject to changes)

The following has to be read as a suggestion and, of course, the time given for each of the
talks is approximative. We should feel free to change the order or to choose different topics. It
seems that one more session would be good so that we could really cover [7]. Is December 22
is an option? Of course, we are free to schedule complementing talks to cover more material
or discuss details. But the official meetings with Mainz should only take place every other
week. The late start for the seminar is due to beginning of term in Mainz.

I. Meeting. 27 Oct 2009 (Bonn)
1. Introduction and survey (D. Huybrechts, 45min)
2. Noether–Lefschetz theorem. Hodge theoretic approach (H. Hartmann, 1h30)
The original Noether–Lefschetz theorem saying that the generic hypersurface in P3 of degree
d ≥ 4 contains only CI curves goes back to Noether who gave a very intuitive geometric
argument (see the Introduction of [11]). Lefschetz later developed more Hodge theoretic
arguments, in modern form this is in [10].
This talk should give an account of the proof following [23]. Define the Noether–Lefschetz
locus for hypersurfaces and more generally for threefolds with a very ample system (Def.
15.31). State Theorem 15.33 and explain that the classical Noether–Lefschetz theorem is a
consequence (Theorem 15.32). Prove Theorem 15.33 using the irreducibility of the monodromy
representation (Theorem 15.27, Corollary 15.28). (How much do we want to recall about
vanishing cycles?) The NL locus is often dense. Explain Proposition 17.20.
At the end, one might mention the recent result of Maulik, Poonen and Voisin [16] that for a
family over Q̄ there also fibres defined over Q̄ with generic Picard number. (The proof in the
complex case is easier than the p-adic situation.)
3. Noether–Lefschetz theorem. Algebraic approach (S. Rollenske, 45min)
The paper [11] contains a very concrete algebraic proof of the Noether–Lefschetz theorem for
hypersurfaces in P3. It is based on a one-parameter degeneration of a hypersurface of degree
d to the union of a hyperplane and a hypersurface of degree d− 1 (or a certain blow-up of it,
to ensure the smoothness of the whole family). A curve in the generic fibre is then followed
to the degeneration the Picard group of which can be controlled.
Present the main construction of [11] explained in Section 2 a) and 2 b). Mention the remain-
ing technical issue that necessitates further base change of the family, but leave out Section
2 c).

II. Meeting. 10 Nov 2009 (Bonn/Mainz)
1. Noether–Lefschetz locus for K3 surfaces (NN 1h)
Introduce the moduli space of marked K3 surfaces and the period map. State the main results
of the theory (no proofs!): The Global Torelli theorem and the surjectivity of the period map.
Explain the polarized version and the notion of (quasi-)polarized K3 surfaces. Discuss the
Noether–Lefschetz locus for these moduli spaces via the period map. Emphasize that the NL
locus is of codimension one. Sketch the standard results on the density of Kummer, elliptic
and quartic surfaces. Use [4] or any of the other sources (eg. Section 4.8 in [12] for the density
results).
2. Noether–Lefschetz numbers (NN 45min)
The Noether–Lefschetz number for a complete family of quasi-projective K3 surfaces X // C
over a complete curve C roughly measures the number of points ξ ∈ C for which Pic(Xξ) goes
up by a class of given square.
Define the divisors P∆,δ and Dh,d in [1]. Then discuss Sections 1.4 and 1.5 in [1]. In particular,
one needs to prove the finiteness of the Noether–Lefschetz number (Proposition 1).
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3. Discrete groups acting on period domains and Heegner divisors (S. Müller-Stach, 1h15)
The K3 lattice is of signature (3, 19). Choosing a polarization this becomes (2, 19). The two
cases behave differently with respect to the action of the orthogonal group of the lattice on
the period domain. In the first case, the action is not properly discontinuous. Also explain
why in the second case we have to consider finite index subgroups.
Introduce the period domain D ⊂ P(ΛC) for a lattice Λ of signature (2, n) and the action of
the finite index subgroup Γ ⊂ O(Λ) acting trivially on the discriminant. Recall that D/Γ is
quasi-projective (Baily–Borel, see eg. [18] for a discussion). For details in the case n = 2 see
[9], which also contains a few general remarks on the Grassmann, projective and the tube
domain model (see Section 2.4.)
See [9] Section 2.4.3 for the definition of Heegner divisors. Cover Section 4.3 in [1]

III. Meeting. 24 Nov 2009 (Bonn/Mainz)
1. Borcherds’ theorem on Heegner divisors (NN 1h15)
The Heegner divisors of the last talk (recall the definition) can be put in a generating series.
Viewed as an element of the Picard group of D/Γ with coefficients in power series of a for-
mal parameter q, the coefficients turn out to be modular forms. This follows from work of
Borcherds’.
Define the generating series Φ(q) ([1], p. 27). Discuss the notion of modular forms of half-
integral weight ([1], Section 4.2) and state the main theorem ([1], p. 28). Explain why the
Heegner divisors are Cartier (reference?). It would be good to get an impression of the proof
of this result. I have not checked the literature carefully yet.
We have to compare the Heegner divisors with the divisors Dh,d used to define the Noether–
Lefschetz numbers. This is Lemma 4 in [1]. See also Section 8 in [15] for some geometric
aspects related to K3 surfaces.
2. Application to NL numbers (NN 45 min)
The modularity of Borcherds’ theorem allows one to explicitly compute NL numbers. There
is a general result (see Section 4.4) and more precise results for families of quartics. The most
explicit calculations for pencils of quartics are based on the relation between NL numbers and
GW invariants, that will be explained later.
3. Automorphic forms (NN 1h)
Sections of the line bundle associated with the Heegner divisor y0,0 are provided by automor-
phic forms. I have no clear picture yet what we really will need for the next talks and what
a good reference would be. Any comments?

IV. Meeting. 8 Dec 2009 (Bonn/Mainz)
1. Isotriviality of families of K3 surfaces (NN 1h)
A theorem of Borcherds, Katzarkov, Pantev and Shepherd-Barron says that any complete
family of smooth projective K3 surfaces with constant Picard number must be isotrivial [7].
Roughly the idea is that automorphic forms are sections of an ample line bundle on the moduli
space and that their zeros are related to jumps of the Picard rank.
There are other approaches (eg. Jorgenson, Todorov and maybe also Viehweg, Zuo?) and
generalizations to higher dimensional HK manifolds due to Oguiso [19, 20].
2. Moduli spaces of Enriques surfaces (D. Huybrechts 1h)
Borcherds’ proved that the moduli space of Enriques surfaces is quasi-affine. His proof is
based in his theory of infinite products etc. More recently, Pappas [22] gave a new proof
which uses the Grothendieck–Riemann–Roch formula. We follow Pappas’ automorphic free
proof and explain how this implies the isotriviality of complete families of Enriques surfaces.
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3. ?? (NN 1h)
One idea would be to give a survey of results of Gritsenko, Hulek and Sankaran on the Kodaira
dimension of the moduli space, which relies on the asymptotic understanding of the space of
automorphic forms. See [24] for a survey. Any suggestions?

V. Meeting. 19 Jan 2010 (Bonn/Mainz)
1. GW and GV invariants (NN 1h)
We need a little recollection of GW invariants with a special emphasize on K3 fibred Calabi–
Yau threefolds. Recall the concept of a perfect obstruction theory and the virtual fundamental
class. (The reduced version for K3 surfaces is needed in the next talk.) Define the Gopakumar–
Vafa invariants via the formula on page 15 [1]. Let us know what will be known then about
the integrality of the GV invariants nX

g,γ?

2. GW theory for K3 surfaces (NN 1h )
The standard GW invariants for symplectic manifolds are trivial. In order to remedy this one
has to work with a reduced obstruction theory. This needs a little deformation theory. The
reduced virtual class allows one to define GW integrals Rg,β (by integrating the top Chern
class of the Hodge bundle). The BPS counts rg,α are related to the Rg,β in the same way as
the GP invariants nX

g,γ are related to the GW invariants. Follow Section 2.2 and 2.3 of [1],
but leave Conjecture 1 and 2 for the next talk.
3. Higher genus Yau–Zaslow conjecture (NN 1h)
Discuss Conjecture 1 and 2 in [1]. Explain that Conjecture 2 specialize to the Yau–Zaslow for-
mula for genus zero curves on K3 surfaces. Incorporate Section 3.4. How realistic is it to actu-
ally prove (one version of) the Yau–Zaslow conjecture (Beauville, Bryan/Leung,Lee/Leung)?
Duco? See also [7] and a later talk.

VI. Meeting. 2 Feb 2010 (Bonn/Mainz)
1. NL, GV, BPS (NN 1h30)
Prove Theorem 1 in [1], which expresses the GV invariants nX

g,γ for the total space of a one-
dimensional family of quasi-polarized family of K3 surfaces in terms of the NL numbers of
this family. This takes up Section 3.1 in [1]. In [7] this is Theorem 2, generalized to families
with more than one polarization.
2. NL numbers for pencils of quartics (NN )
Prove Theorem 2 in [1], which computes explicitly the NL number for pencil of quartics. This
is contained in Section 0.7, 5.1 and 5.2.
3. Yau–Zaslov conjecture (NN )
We will not have time to prove Theorem 1 in [7], but it would be good to get an idea of the
strategy of that paper. Maybe we can invite the local expert for a talk.
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