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Introduction

At the heart of algebraic geometry lies the study of solutions of polynomial
equations. If we work over the complex numbers and consider

X = {x ∈ An | f1(x) = · · · = fr(x) = 0}

we can also interpret the polynomials fi as holomorphic functions on Cn and their
zeroset as a complex spaceXan. If the di�erential of f = (f1, . . . , fr) has everywhere
maximal rank along Xan then, by the implicit function theorem, Xan is a complex
manifold and can thus be studied with the methods of di�erential geometry.

This local picture can easily be globalised to give a functor

(schemes of �nite type/C) −→ (complex analytic spaces), X 7→ Xan.

Clearly the Zariski topology on X is much coarser than the euclidean topology
on Xan and their local structure is completely di�erent so the following natural
questions arise:

(1) What is the relation between the local and global properties of X and those
of Xan?

(2) Which complex spaces (or manifolds) are algebraic, that is, of the form Xan

for some scheme X?
(3) When does a theorem proved for X resp. Xan translate to a theorem in

the other category?

One instance of the last question is to understand for example the relation between
the cohomology groups Hi(X,OX) and Hi(Xan,OXan). In general they might be
di�erent, but it turns out that for X proper resp. Xan compact there is a general
comparison theorem for all coherent sheaves.

The �rst talks will be used to recall the neccessary de�nition and then prove
the main comparison results, originally due to Serre [Ser56]. The third talk focuses
on examples of manifolds that fail to be projective or algebraic in one way or the
other. The last talk will show that when we go beyond the reach of the comparison
theorem non-trivial di�erences appear. In examples we will see that there are results
for projective varieties that can be proved (at least up to now) only via algebraic
or analytic methods.

Talks

1. The analytic space associated to a scheme. (60 Minutes)
Recall the de�nition of a complex analytic space and of a coherent sheaf in that
context. Mention Oka's theorem of the coherence of the structure sheaf.

The talk covers roughly the �rst three sections of [SGA1, XII]. De�ne the analytic
space associated to a scheme X locally of �nite type over C as a complex analyic
space Xan representing the functor

(analytic spaces)op −→ (sets), T 7→ Homringed spaces/C(T,X)

and show that it always exists. The representing space Xan comes with an universal
morphism of ringed spaces φ : Xan → X. Moreover, the induced morphism of
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formal completions φ̂x : ÔX,x −→ ÔXan,x is an isomorphism. Conclude that φ is
�at.1

We get a morphism between categories of modules

φ∗ : OX -Mod −→ OXan-Mod, F 7→ F an = φ−1(F )⊗OX
OXan

which is faithful, exact, and transforms coherent sheaves into coherent sheaves. To
avoid extensive use of EGA the speaker might want to consult [Ser56, Prop. 2.10].

In the last part of this �rst talk we will compare properties of schemes and
morphisms with their analytic counterparts. This is summarized nicely in sections
2-3 of [SGA1, XII]. For example we have the following.

• A scheme X is regular, reduced, of dimension n if and only if Xan is so.
• A morphism f : X → Y is injective, surjective, proper, �at, smooth, sepa-
rated, normal if and only if fan is so.

As the proofs are all quite similar, we suggest to prepare a slide with all the state-
ments and present the proofs of only one or two of them to examplify the methods.

2. GAGA theorem and coherent cohomology. (60 Minutes)
In this section we proof the main GAGA theorem.
Theorem (Serre, [Ser56]) � If X is a proper scheme over C then

φ∗ : Coh(X) −→ Coh(Xan)

is an equivalence of categories.2

We will give a proof of this theorem in the case X is projective following Serre's
original paper [Ser56]3 sections 2.12-2.17. The general case of a proper X is reduced
to the projective one by using Chow's lemma (see [SGA1, XII,4.1]) and shall not
be explained. The presentation of Serre is phantastic - there is nothing we can add
here to make it more readable. We hope that the clear structure will enable the
speaker to single out the most important steps to be presented at the blackboard
in the given time.

The proof is structured into three parts. The �rst step is a comparison theorem
for cohomology of coherent sheaves which is also of independent interest.
Theorem 1 � For all F ∈ Coh(X) and q ∈ Z we have

Hq(X,F ) ∼= Hq(Xan, F an).

This shows in particular Γ(X,F ) = Γ(Xan, F an). There is also a relative version
[SGA1, 4.2].

The next step is fully faithfulness.
Theorem 2 � For all F,G ∈ Coh(X) we have Hom(F,G) ∼= Hom(F an, Gan).

And eventually, and most di�cult, the essential surjecticity.
Theorem 3�For every coherent analytic sheafM∈ Coh(Xan) there is a coherent
algebraic sheaf F ∈ Coh(X) such that F an ∼=M.

1Serre invented �atness in this context.
2A general philosophy behind this theorem is that algebraic functions or sections can be char-

acterized among the holomorphic ones by some growth condition at in�nity. E.g. C[z] ⊂ O(C)
are the holomorphic functions f : C→ C which satisfy

∃C,D > 0, n ∈ N such that |f(z)| ≤ C||z||n +D.

In the proper case, there is no �in�nity� and hence every holomorphic section is algebraic. In this
vein Deligne proves GAGA theorems for non-proper schemes in [Del70, II.2.22,II.2.24].

3or its translation.
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Figure 1. Relations between categories of complex manifolds.

3. Which manifolds are algebraic? (60 Minutes)
In this talk we look at the image of the functor (Sch/C)→ (complex spaces) in the
smooth case, that is at the question which manifolds are algebraic. The relations
between various categories of complex manifolds is illustrated in Figure 1.

The GAGA theorem shows in particular that every projective complex manifold

is algebraic which was proved earlier by Chow.
De�ne the algebraic dimension a(X) = tr-deg(K(X)) where K(X) is the �eld of

meromorphic functions. Cite the result a(X) ≤ dimX 4. If equality holds we call X
a Moishezon variety [Uen75, p. 24 �.]. Prove that algebraic implies Moishezon and
explain how to construct a Moishezon variety from a complex space via algebraic

reduction.
Then present the two examples from [Har77, Appendix B, 3.4.1, 3.4.2] to show

that there are algebraic varieties that are not projective and there are Moishezon

varieties that are not algebraic . If you want, mention that Moishezon varieties are
the same as Artin's algebraic spaces [Art70].

Then give your favorite de�nition of Kähler manifold and sketch a proof that
every projective complex manifold is Kähler. Cite Moishezon's theorem [Mo��66]5

that projective is equivalent to Kähler + Moishezon.
To construct a Kähler manifold that is not Moishezon we do the following:

Lemma � If X is a compact Kähler manifold with vanishing Neron-Severi group
then a(X) = 0.

Sketch of proof: Assume there is a non-trivial meromorphic function and let D
be the divisor of zeros or poles. Then c1(OX(D)) = [D] in NS(X) = H2(X,Z) ∩
H1,1(X). Integrating a suitable power of the Kähler form over D is non-trivial,
thus [D] is non-trivial � a contradiction.

A concrete example is obtained by takeing X to be a general complex torus.
(Reason: write X = V/Γ. Then for Γ general the intersection of H2(X,Z) = Λ2Γ∗

with H1,1(X) = V ⊗V̄ in Λ2V ∗⊗C = H2(X,C) where we identi�ed V ⊗C = V ⊕V̄ )
As an example of a manifold that is neither Moishezon nor Kähler, construct

a Hopf surface S = C2 \ {0}/Z and show that H2(X,R) = 0 (see e.g. [BHPV, p,
225]). Conclude that S cannot be Kähler. Choose your favorite way to prove that

4I don't know how to call this. It is attributed to Siegel in [Huy05] while it is called Thimm's
theorem in [Rem56].

5If your russian is not �uent see [Moi67, Chapter 1, Theorem 11].
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S is not Moishezon. Suggestions: 1) Recall that smooth Moishezon surfaces are
projective [BHPV, p. 161]. 2) Show that S does not contain enough curves to be
birational to an algebraic surface.

If you have time left give an example of a normal algebraic surface that is not

projective. Several are constructed in [Sch99], the classic by Hironaka is described
in [BHPV, p. 161].

4. Di�erences and interaction. (45 Minutes)
GAGA does not take care of everything, there are some cases where the algebraic
and analytic category behave di�erently. As an example we compare the cohomol-
ogy of the sheaf of rational functions on an algebraic manifold with the cohomology
of the sheaf of meromorphic functions on the associated complex manifold. Explain
the relation to divisors and line bundles and present the main results of [CKL10].
Pay special attention to the fact that the exponential sequence is a tool we can only
exploit in the analytic category.

If you have enough time, also give a hint the following: There are non-isomorphic
algebraic varieties that become isomorphic in the analytic category [Har70, p. 232].

Conclude by mentioning the following 2 theorems that are of obvious interest
but so far can only be proved in one of the categories.
Theorem (Mori '82)� Let X be a projective manifold and C ⊂ X an irreducible
curve such that KX .C = degKX |C < 0. Then X contains a rational curve.

You can �nd a slightly more precise version in [KM98, Theorem 1.13]. The strategy
of the proof is also known as bend & break and uses reduction modulo p.
Theorem (Siu '98) � Let p : X → ∆ be a smooth projective family of compact
complex manifolds parametrized by the open unit 1-disk ∆. Assume that the �bres
Xt = p−1(t) are of general type. Then for every positive integer m the plurigenus
dimH0(Xt,K

⊗m
Xt

) is independent of t ∈ ∆, where KXt is the canonical line bundle
of Xt.

You can �nd this in [Siu98].
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