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In this “Kleine AG” we will dive into a topic which in a beautiful way connects 19th century
complex analysis with 20th century arithmetic geometry, and very simple and intuitive objects
with very abstract concepts.

The motivating question for the theory of dessins d’enfants (French for “children’s draw-
ings”) is the following: given a compact Riemann surface X, it admits a unique structure of
an algebraic curve over the complex numbers; when can this algebraic curve already be defined
over a number field (or, equivalently, over Q, the algebraic closure of Q in C)? In 1979, Bely̆ı
gave a surprisingly simple answer (see [Be79]): X is defined over a number field if and only
if there is a nonconstant holomorphic map X −→ P1(C) which is ramified over at most three
points, which may (after applying a suitable Möbius transformation) be taken as the points
0, 1 and ∞. The “if” part had been known before by quite abstract arguments, whereas the
“only if” part was new but with a completely elementary proof. Once this theorem is known,
other criteria follow: X is defined over a number field if and only if it can be uniformised by a
finite index subgroup in a cocompact triangle group, which in turn is equivalent to saying that
it can be written as Γ\H where Γ is a finite index subgroup of PSL2(Z). The precise meaning
of these conditions will be explained in the seminar.

Bely̆ı’s theorem and its extensions have an interesting consequence: curves over number
fields, which are very difficult to understand, can be described and defined by seemingly very
simple objects. Namely the algebraic isomorphism class of a map X −→ P1

Q as in Bely̆ı’s

theorem is uniquely determined by the holomorphic isomorphism class of X(C) −→ P1(C),
and this is in turn uniquely determined by its topological structure, and also by the topological
structure of the induced unramified covering of P1(C) r {0, 1,∞}. So every algebraic curve
over Q can be defined by giving a finite cover of a sphere minus three points. It also can be
defined by giving a certain type of graph embedded into the topological surface X(C) (i.e.,
forgetting the complex structure) that determines how X(C) is “wrapped” around the sphere
P1(C). Such graphs have been named “dessins d’enfants” by Grothendieck. And, as already
mentioned, it can be defined by giving a finite index subgroup of one of the most classical groups
in number theory or hyperbolic geometry. As all these different data correspond to algebro-
geometric data over number fields, their isomorphism classes are acted upon by the absolute
Galois group Gal(Q|Q), one of the most important and at the same time most mysterious
groups in mathematics. Bely̆ı’s theorem also implies that these actions are faithful, so the
absolute Galois group is embedded in the automorphism groups of some very concrete objects.
It is still a widely open task to understand these actions and these embeddings.

Grothendieck, who initiated the study of dessins d’enfants in his famous paper Esquisse
d’un programme [Gr86], was fascinated by the idea that such simple objects embody such deep
mathematics. In loc. cit., p. 12 he writes:
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Cette découverte, qui techniquement se réduit à si peu de choses, a fait sur moi
une impression très forte, et elle représente un tournant décisif dans le cours de mes
réflexions, un déplacement notamment de mon centre d’intérêt en mathématique,
qui soudain s’est trouvé fortement localisé. Je ne crois pas qu’un fait mathématique
m’ait jamais autant frappé que celui-là, et ait eu un impact psychologique compara-
ble. (Je puis faire exception pourtant d’un autre “fait”, du temps où, vers l’âge de
douze ans, j’étais interné au camp de concentration [...]. C’est là que j’ai appris, par
une détenue, Maria, qui me donnait des leçons particulières bénévoles, la définition
du cercle. Celle-ci m’avait impressionné par sa simplicité et son évidence, alors que
la propriété de “rotondité parfaite” du cercle m’apparaissait auparavant comme une
réalité mystérieuse au-delà des mots. [...]) Cela tient sûrement à la nature tellement
familière, non technique, des objets considérés, dont tout dessin d’enfant griffonné
sur un bout de papier (pour peu que le graphisme soit d’un seul tenant) donne un
exemple parfaitement explicite. A un tel dessin se trouvent associés des invariants
arithmétiques subtils, qui seront chamboulés complètement dès quon y rajoute un
trait de plus.3

We hope to convey in this seminar at least a little of this fascination. It goes without saying
that due to the many facets of the topic — algebraic geometry, number theory, graph theory,
topology, classical and differential geometry, group theory, ... — one can just present a tiny
piece of the whole picture in a one-day seminar; many exciting developments have to remain
completely untouched.

The prerequisites are different than usual: techniques of modern algebraic geometry are
only needed in the first talk (and there also only in a very mild form) to prove Bely̆ı’s Theorem,
the rest is, as Grothendieck said, technically simple. A great part of the programme deals with
combinatorics, complex analysis and geometry, but on an elementary level, so you need not be
a combinatorist, complex analyst or geometer to understand or give these talks.

The Programme

First talk: Riemann surfaces and Bely̆ı’s Theorem (45 minutes). The aim of this
talk is to prove Bely̆ı’s Theorem in its original formulation and derive some easy consequences.

First the proof of Bely̆ı’s Theorem should be explained along the lines of [BoHu00, §1, 2 and
4]. However their presentation only uses the language of algebraic geometry, and the referent
should translate Bely̆ı’s Theorem into an analytic statement about compact Riemann surfaces,
because this is the formulation that leads to all the geometric and topological interpretations.
Also the terminology of [Schn94b, I.§1, Definition 1] should be introduced (pre-clean and clean
Bely̆ı morphisms and Bely̆ı pairs) and the Corollary in [Schn94b, p. 50] should be stated.

3This discovery, which is technically so simple, made a very strong impression on me, and it represents a
decisive turning point in the course of my reflections, a shift in particular of my centre of interest in mathematics,
which suddenly found itself strongly focused. I do not believe that a mathematical fact has ever struck me quite
so strongly as this one, nor had a comparable psychological impact. (With the exception of another “fact”, at
the time when, around the age of twelve, I was interned in the concentration camp [...]. It is there that I learnt,
from another prisoner, Maria, who gave me free private lessons, the definition of the circle. It impressed me by
its simplicity and its evidence, whereas the property of “perfect rotundity” of the circle previously had appeared
to me as a reality mysterious beyond words. [...]) This is surely because of the very familiar, non-technical
nature of the objects considered, of which any childs drawing scrawled on a bit of paper (at least if the drawing
is made without lifting the pencil) gives a perfectly explicit example. To such a dessin, we find associated
subtle arithmetic invariants, which are completely turned topsy-turvy as soon as we add one more stroke. —
Translation by Leila Schneps, [LoSchn97]
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Then the referent should include a reminder of some classical results about ramified coverings
of Riemann surfaces, as e.g. presented in [La09, sect. 1.4, 4.6, 4.8]: finite holomorphic maps
are ramified coverings; for S ⊆ X discrete, every finite topological covering Y0 −→ X r S
bears a canonical holomorphic structure and can uniquely be extended to a ramified covering
Y −→ X of Riemann surfaces; signatures and universal ramified coverings with prescribed
signature. Theorem 4.8.3 in loc. cit. This opens the way to a purely topological description of
Bely̆ı functions which is undertaken in the second talk.

Second talk: Dessins d’enfants (45 minutes). This talk explores the combinatorial and
topological interpretations of Bely̆ı’s Theorem. Since a Bely̆ı pair (X, β : X −→ P1(C)) is
uniquely determined by the underlying topological data, the aim is to codify these topological
data as simply as possible. As to the topological and combinatorial background needed, we
suggest to follow [LaZv04, 1.1.1—1.1.5]. This may seem a lot, but it is not, since this part of
the book is very easy to read and introduces some very basic notions like fundamental groups
and surfaces, which we of course assume to be known. Therefore the discussion should be
restricted to the following: constellations (Def. 1.1.1), the cartographic group (Def. 1.1.2), the
correspondence between constellations and ramified coverings of S2 (section 1.2.3), maps (Def.
1.3.6), isomorphisms of maps (Def. 1.3.7 — subtle notion, see the remarks after that definition),
hypermaps (section 1.5.1), the relation between hypermaps and triangulations (section 1.5.4).

Then these considerations should be connected to Bely̆ı’s Theorem. The content to be
covered is in [Schn94b, II.§2—4]. Please do not use Schneps’ definitions of dessins and (pre-)
clean4 dessins because they are very prone to misunderstanding. What Schneps means by
Definition 2 is Lando and Zvonkin’s hypermaps, and a clean dessin is then simply a map
in the sense of [LaZv04]. The notion of a pre-clean dessin is obtained by allowing “open
edges” in the definition of a map. Using these definitions, loc. cit. becomes perfectly sensible
and understandable. Of importance are §3 and Schneps’ definition of the (abstract, oriented)
cartographical group, the rest is already contained in [LaZv04].

Finally some remarks should be made about the Galois operation on (isomorphism) classes
of dessins, we suggest [Wo06, Prop. 7 (page 23)] without proof, [Schn94b, Prop. II.1] with
proof and [Schn94b, Theorem II.4] without proof. Define the field of moduli of a dessin (see
[LaZv04, sect. 2.4.1.2], quote (and draw) a few of the easier examples in [LaZv04].

Third talk: Uniformisation (45 minutes). This talk develops a more geometric view on
Bely̆ı’s Theorem. The goal of this talk is to state and understand [Si01, Thm. 4.1] and to
indicate some ideas of its proof. Some of the involved concepts (namely triangle groups) are
straightforwardly geometric, and thus here the differential geometry of Riemann surfaces comes
into play. To explain the interplay between complex structures and metrics in general would
consume too much time and hence we advise the referent only to refer to those aspects which
are strictly necessary to understand the theorem.

To begin with, one should talk about the three simply connected Riemann surfaces C, H
and P1(C) and their automorphism groups. If X is a compact surface of genus g with n points
removed, then the isomorphism type of universal covering space of X is determined by the pair
(g, n).

Then discontinuous groups of automorphisms should be recalled, in particular the definition
(see e.g. [La09, 4.3]) and the characterisation of discontinuous groups on C, H and P1(C), i.e.
[Ma74, II. Thm. 2.3]. Discontinuous groups on the Riemann sphere and the complex plane can
easily be classified: on the sphere, every such group is finite and, up to conjugacy, contained in

4In fact, in [Schn94b] the notion of a clean dessin is not even properly introduced, although used
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the group of rotations of the sphere SO(3) ⊂ PGL2(C). Present the list of these groups up to
conjugacy: cyclic, dihedral, tetrahedral, octahedral and icosahedral, see [JoSi87, sect. 2.13] or
[La09, sect. 4.2]. Discontinuous groups on the complex plane are also very few, see e.g. [La09,
sect. 2.6] and list them.

The hyperbolic case is more complicated. The three classes of nontrivial automorphisms of
H (elliptic, parabolic and hyperbolic ones) should be defined, with Prop. 1.13, Prop. 1.16, Prop.
1.17 and Prop. 1.18 in [Shi71]. The referent should then follow [Shi71, 1.3 and 1.5] to explain
the following construction: if Γ ⊂ PSL2(R) is a discrete subgroup, denote by H ⊆ H ∪ P1(R)
the union of H with the cusps of Γ. Then a topology on H and a Riemann surface structure
on Γ\H are constructed. It is important to recall this quite explicitly because it must not be
confused with the orbifold or stack quotient.

Then the referent should outline [Ma74, sect. II.3—5] (triangle groups) and draw some
pictures, e.g. reproduce those in loc.cit. Important examples of triangle groups are given
by the modular groups Γ(1) = PSL2(Z) = T (2, 3,∞) and Γ(2) = T (∞,∞,∞). As to these
examples, please resume the following from [Ma74, chap. III]: Thm. 3.1, Thm. 3.2, Cor. 3.2,
Example 1. One also has Γ0(2) = T (2,∞,∞) which is important because Γ0(2) can be viewed
as the geometric incarnation of the oriented cartographic group, see [JoSt97, §5] which also
contains a combinatorial interpretation of Γ(2).

After all this has been done the referent should discuss [Si01, Thm. 4.1]. However the
presentation in loc. cit. is fairly short, and so she may instead consult [JoSi96, sect. 4].

Fourth talk: Platonic, quasi-platonic and modular surfaces (45 minutes). This talk
discusses some particularly rich examples.

Introduce the principal congruence subgroup Γ(N) = ker(PSL2(Z) −→ PSL2(Z/NZ)) and
the modular curves X(N) = Γ(N)\H. Discuss the interpretation of X(N) as parametrizing
complex elliptic curves with level-N -structures (see e.g. [Hu04, 11.§2—§3]). Discuss [La09, sect.
5.3—5.5 and 5.7]. This comprises basically the special examples for N ≤ 6, the underlying
classical function theory (the j-function and the λ-function) and the fact that the forgetful
morphism X(N) −→ X(1) = P1 is a clean Bely̆ı morphism (this is not explicitly said in loc.
cit. but follows directly). It is helpful also to look at [ShaVo90, pp. 212—213] which brings
the connection to finite automorphism groups of the sphere and platonic solids. Then jump to
[La09, sect. 11.6] where X(7) and Klein’s 14-gon are discussed. This is a really beautiful object
with many very special properties. If time permits, it would be nice to mention some of them;
the referent may look into the collection [Le99] (primarily the articles [KaWe99], [Macb99] and
[El99, sect. 2.1—2.2]) and [Ma74], pp. 94—95, 102—104, 115—116, and talk about what she
finds most interesting.

Then the referent should resume [Si01, sect. 6] about platonic5, quasi-platonic and smooth
Bely̆ı surfaces. Caution: the notion of a “smooth Bely̆ı surface” is somewhat unfortunate since
all Riemann surfaces are smooth, but this is not meant. In the last sentence of subsection 6.1
it must be “smooth Bely̆ı surfaces” instead of “Bely̆ı surfaces”. Then summarise [Wo06, sect.
4.6] (quasi-platonic curves and curves with many automorphisms).

Fifth talk: Relations to Diophantine equations (45 minutes). In this talk four con-
nections between dessins and Diophantine equations are presented. Three of them are set up
by taking a difficult problem about integers, formulating an analogous problem for polynomials
and translating it into the theory of dessins; the fourth one is a consideration of the Fermat

5An equivalent definition of platonicity is in [KaWe99, sect. 2]; this is closer to intuition and geometry
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curves Xn + Y n = Zn from a point of view of dessins. Summarise the following sections of
[LaZv04]:

2.5.1 A Bound of Davenport-Stothers-Zannier. — The corresponding number theory prob-
lem, which is not mentioned in [LaZv04], is Marshall Hall’s Conjecture, see e.g. the
introduction of [El00].

2.5.3 The Fermat Curve.

2.5.4 The abc Conjecture.

2.5.6 Pell Equation for Polynomials. — As to the Pell Equation in number theory see e.g.
[MaPa00, pp. 22, 50—54].
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