
KLEINE AG: DELIGNE-MUMFORD COMPACTIFICATION

Organisation:

Timo Keller

Alexander Ivanov1

In this “Kleine AG” we will study the moduli space Mg of stable curves of fixed genus

g ≥ 2, following the work of Deligne and Mumford [DM]. The question we have in mind is

that of irreducibility of its geometric fibres. In characteristic 0 the result is classical, and there

is a proof, which can be done over C and is based on analysis of certain coverings of P1(C).

This method was extended by W. Fulton to positive characteristic using specializations from

characteristic 0 to p, but only under the hypothesis p > 2g + 1.

We will follow a different approach presented in [DM], considering the compactified moduli

stack Mg over SpecZ, allowing also singular degenerations of smooth stable curves, thus linking

together the possible different irreducible components. Further, this approach takes into account

all characteristics simultaneously and (following ideas of Grothendieck) uses specialization from

characteristic 0, where Teichmöller theory can be applied.

There are three important aspects of this approach. The first is that, instead of considering

the coarse moduli scheme, Deligne and Mumford work with the fine moduli stack of stable

curves. Compared with usual schemes, such stacks have the advantage that on the one hand,

they give “precise” solutions of moduli problems, and on the other hand they inherit many

geometric properties of schemes. We will see the definition and some geometric properties of

stacks in the first talk.

The second aspect is the properness of the compactified (i. e. with singular “degenerated”

curves allowed) moduli stack Mg. This properness is necessary to reduce to the case of charac-

teristic 0, and is deduced from the stable reduction theorem for curves, which has to be derived

from the stable reduction theorem for abelian varieties by relating the stable reduction of a

curve with that of its Jacobian. This approach will be presented in the third talk.

The third aspect is that in [DM] one shows even more than the irreducibility of Mg. More

precise, one deals with the moduli stack GMg of stable curves with additional Teichmüller

structure of level G (here, G is a finite group), and describes its irreducible components.

All (x.y) without further reference refer to [DM].

The Program

First talk: Deligne-Mumford stacks (45 minutes). The aim of this talk is to give an

overview of what a Deligne-Mumford stack is and to present some of its properties, of which we

will make use later, without going into technical details. There are two parts: the description

of a stack as “an object generalizing schemes and good for solving moduli problems” (plus

possibly a more formal definition) and an overview over geometric properties of stacks. The

(quite compact) reference is §4 of [DM]. There are clearly other, more detailed references for

this talk. For example, a very detailed treatment of stacks can be found in [STACKS], especially
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in the chapters 47, 48. Possibly it will take to much time to give the formal definition, since one

would have many trouble (e.g. to define CFG’s). However,

• A stack is a category over a given category C with a Grothendieck topology,2 generalizing

the notion of a scheme. The fibres of a stack over C are groupoids and a category fibred

in groupoids over C is a stack if and only if isomorphisms form a sheaf and descent data

for objects are effective (4.1), the representable stack X = C/X ; the Yoneda lemma for

stacks; representable morphisms between stacks (4.2). Now the definition of a Deligne-

Mumford stack (4.6) can be given.

• In the second part, one should give a feeling of which geometric concepts from the theory

of schemes can be carried over to the 2-category of algebraic stacks: what it means

for stacks/morphism of stacks to have various (global or of local nature) properties of

schemes/morphisms of schemes (p. 100). In particular: separated (4.7), quasi-compact

and of finite type; proper (4.11).

• One should explain the notions of connected components of a locally noetherian stack

(4.13, 4.14), open and closed substacks, irreducible components of a (noetherian) stack

(4.15). As for schemes, the connected components of a normal stack are irreducible

(4.16). The number of connected components of a geometric fibre of a proper flat stack

over a noetherian scheme is locally constant (4.17). The valuative criterion for separa-

tedness and properness (4.18, 4.19).

• The last feature, which we will need is (4.21), which says that a stack with representable

unramified diagonal for which a smooth cover by a representable stack of finite type

exists (i. e. an Artin stack with unramified diagonal) is a Deligne-Mumford stack of

finite type.

Second talk: Stable curves (45 minutes). The aim of this talk is to define stable curves (not

necessarily smooth!), and to establish certain properties of them, which in particular guarantee

that the corresponding moduli problem is solved by a Deligne-Mumford stack.

• Give the definition of a stable curve over a scheme S (1.1).

• Let now Mg (g ≥ 2) be the CFG as defined in the beginning of §5. The aim is to prove

the theorem (5.1):

Theorem 0.1. Mg is a separated Deligne-Mumford stack over Spec(Z).

To prove it, follow the steps as described at the beginning of §5:

• First of all, Mg is a stack (it is not hard, once one assumes étale descent).

• One needs now a scheme covering Mg: following (1.2) define the scheme Hg, which

represents the “tri-canonically” embedded stable curves of genus g. To obtain it, one

has to prove that higher powers of the canonical sheaf ωC/S on a stable curve C/S are

very ample. This is a corollary of the theorem (1.2), which one should prove (possibly

one can left out certain technical steps in the proof).

• The next step is to show that the diagonal ∆: Mg →Mg×Mg is representable, finite and

unramified: this is the theorem (1.11), which one should prove (assuming the technical

lemma (1.4), needed for unramifiedness) reformulated in terms of stacks.

• Now the forgetful morphism

Hg →Mg

is representable (since ∆ is!), smooth and surjective. All these facts (together with (4.21),

needed since Hg →Mg is only smooth, but not étale) imply the above theorem.

2one can assume C are schemes with étale topology



Third talk: Stable reduction theorem and properties of Mg (45 minutes). The aim of

this talk is to deduce the stable reduction theorem for curves, and to obtain certain properties

of Mg and its universal covering Zg. In particular, the properness of Mg will follow from the

stable reduction theorem.

• Let Zg be the “universal curve” and M0
g the smooth locus of Mg. The result we are

aiming is theorem (5.2):

Theorem 0.2. The algebraic stacks Mg and Zg are proper and smooth over Spec(Z)

and the complement of M0
g in Mg is a divisor with normal crossings relative to Spec(Z).

• The first aspect in the proof is the properness of Mg, which follows (by an application of

the properness criterion in the first talk) from the stable reduction theorem for curves.

One should therefore deduce it (2.7) from the analogous result for abelian varieties,

quoted in the introduction to [DM].

• Therefore define the two senses of “stable reduction” for curves (2.2) and quote their

equivalence (2.3) without proof.3 Then the direction from Jacobian to curve of theorem

(2.4) in the easier case, where the curve has a K-rational point,4 follows from the result

of Raynaud (2.5).

• The second aspect concerns the property of Mg − M0
g to be a divisor with normal

crossings. This follows from the analogous property for the smooth covering scheme Hg

of Mg, and is proven in §1 by using deformation theory to analyze the local analytic

structure of Hg. Probably, it will be too much to do this analysis, so one can just quote

the result.

Fourth talk: Teichmüller structures (45 minutes). The aim of this talk is to introduce the

Teichmüller structure on a stable curve, and to prove that the number of irreducible components

of a geometric fibre of the stack GMg of stable curves with Teichmüller structure of fixed level,

is constant. More concrete:

• Let G be a finite group. A Teichmüller structure on a stable smooth curve X/S of level

G is essentially just a surjective exterior homomorphism from the fundamental group

π1(X/S) to G (5.5-5.6).

• However, one has to be careful with the order of G and the characteristic of the base

scheme S: the stack GM
0
g classifying curves with a Teichmüller structure of level G is

only defined over SpecZ[ 1n ], where n = ord(G).

• The forgetful morphism GM
0
g → M0

g[ 1n ] is representable, finite and étale (5.7-5.8). In

fact, Teichmüller structures on X/S define a sheaf on (Sch/S)et, which by results of

Grothendieck is representable by an étale covering of S.

• Up to now we were restricted to smooth curves. We resolve this problem by considering

the normalization GMg of Mg[ 1n ] with respect to GM
0
g, which is still defined only over

SpecZ[ 1n ]. Now we see the important theorem (5.9):

Theorem 0.3. The geometric fibres of GMg → SpecZ[ 1n ] are normal, and GM
0
g is

fibrewise dense in GMg.

• Its proof makes use of the local5 description of GMg−GM
0
g and of GMg provided by the

Abhyankar-Artin lemma (which holds in a much more general situation). A necessary

3this is reasonable, since we only need one direction, from “sense 1” to “sense 2”, which proof is technical enough,
to just left it out.
4this is the only case required to apply the properness criterion
5for the étale topology



condition to apply it is given by the third talk, from which follows that GMg − GM
0
g is

a divisor with normal crossings.

• Once the theorem is established, it follows (using the result on semicontinuity (4.17)

from the first talk) from the properness and flatness of GM
0
g → SpecZ[ 1n ], that its

geometric fibres (being normal!) have all the same number of connected components.

This is the reason, why in the next talk it is enough to compute the number of connected

components of GM
0
g × SpecC.

Fifth talk. Connected components of GM
0
g (45 minutes). In this talk, the main theorem,

which describes the set of connected components of a geometric fibre of GM
0
g, will be deduced.

Its proof makes use of the Teichmüller theory over C.

• By the results of the last talk every geometric fibre of the projection GM
0
g → SpecZ[ 1n ]

has the same number of connected (or, equivalently, irreducible) components. Hence to

count this number, it is enough to consider GM
0
g×SpecC. To the coarse moduli scheme

underlying this moduli stack, the classical results from the theory of Teichmüller spaces

can be applied:

• Let Π denote the fundamental group of a fixed Riemannian surface of genus g (5.12).

Then a Teichmüller curve of genus g is just a Riemannian surface C of genus g over C plus

an exterior (that means modulo the action of Π on itself by conjugation) isomorphism

of its (topological) fundamental group π1(C) with Π.

• Now, the Teichmüller theory, which ideas should briefly be explained (as, for example,

presented in [We]) , says that the space Tg, classifying Teichmüller curves of genus g is

homeomorphic to a ball, hence connected. From this one obtains the theorem (5.13):

Theorem 0.4. The number of connected components of any geometric fibre of the pro-

jection of GM
0
g onto SpecZ[ 1n ] is equal to the number of orbits of Aut0(Π) in the set of

the exterior epimorphisms from Π to G.

• Now, the irreducibility of the geometric fibres of Mg is just the special case G = 1 of

the above theorem.
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