
KLEINE AG: CRYSTALLINE COHOMOLOGY IN CHARACTERISTIC 0

CHRISTIAN KAPPEN AND LARS KINDLER

Crystalline cohomology arose in the search for a “good p-adic cohomology theory”. In Grothendieck’s
words ([Gro68, p. 315]):

Such a cohomology theory should associate, to each scheme X of finite type over a perfect
field k of characteristic p > 0, cohomology groups which are modules over an integral
domain, whose quotient field is of characteristic 0, and which satisfy all the desirable
formal properties (functoriality, finite dimensionality, Poincaré duality, Künneth formula,
invariance under base change, ...). This cohomology should also, most importantly, explain
torsion phenomena, and in particular p-torsion.

Over the field of complex numbers, it is known that algebraic de Rham cohomology, i.e. the hypercoho-
mology of the de Rham complex Ω•X/C, agrees with the analytic singular cohomology H∗(Xan,C) and,

hence, is a theory with the “desirable formal properties” mentioned above. If k is of characteristic p > 0,
algebraic de Rham cohomology is no longer that well behaved, essentially because d(fp) = 0 for every
function f , which has the consequence, for example, that the de Rham cohomology groups are “too big”.

The rough idea of crystalline cohomology then is, for a variety X over a perfect field k of positive
characteristic p, to take a lifting of X to a base of characteristic 0 (e.g. the ring of Witt vectors of k) and
to set H∗Cris equal to the algebraic de Rham cohomology of the lifting. Unfortunately, not every X can
be lifted to characteristic 0, so the definition of crystalline cohomology needs to be formulated in a way
which is independent of liftings. This program has been implemented by Grothendieck, Berthelot and
others; it has turned out that crystalline cohomology theory does satisfies the properties mentioned in the
beginning in the case where X is smooth and proper.

In this Kleine AG we follow parts of [Gro68],where Grothendieck defines crystalline cohomology and
sketches a program later carried out by Pierre Berthelot, [Ber74]. We, however, merely scratch the surface:
If S is a scheme, we define the infinitesimal cohomology of an S-scheme, which agrees with its crystalline
cohomology if S is defined over Q. We then show that, if X is smooth over S, this theory computes the
algebraic de Rham cohomology of X/S. To define crystalline cohomology in positive characteristic, one
would have to add divided power structures to the mix, which we will not touch upon.

We fix a locally noetherian scheme S and a smooth morphism f : X → S. For simplicity, we assume
that f is separated.

Talk 1: Sites, Topoi, Cohomology: In this talk we recall some general facts on sites and topoi. Due
to time restraints we have to gloss over many details; in particular, we ignore set-theoretical issues.
• Define a site as in [SP, 8.6, 8.37], that is, as a category equipped with a pretopology.
• Mention that originally, in [SGA4], sites were defined differently, but that a site according to

our definition gives rise to a site in the original sense.
• Define presheaves and sheaves on a site, e.g. as in [SP, 8.37]. Define the topos of a site as

the category of sheaves of sets on that site.
• Explain the Yoneda embedding of a site C into the associated topos C̃: The Yoneda map
U 7→ hU gives a fully faithful functor from C into the category of presheaves of sets Ĉ of C,
and composing with sheafification yields a morphism εC : C → C̃.

• Given a site C, we put the following topology on its associated topos C̃: Covering families
are families (Fi → F )i such that

∐
i Fi → F is surjective as a map of sheaves. State that

a covering (Ui → U)i in C gives rise to a covering (εC(Ui) → εC(U))i with respect to the

above topology. Mention without proof that this topology on C̃ is the so-called canonical
topology (see e.g. [SP, 8.37]), which is the finest topology (in a suitable sense) such that
every representable presheaf is a sheaf. This is based on the fact that topoi, just like the
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category of sets, admit fibered products. The proofs for these statements can be found in
[SGA4, II.2.5,II.4.3.2] and [SP, 8.12.5].

• State that if the topology of C is coarser than the canonical topology (i.e. if every representable
presheaf is a sheaf), then the functor εC is fully faithful; see e.g. [SP, 8.12] or [SGA4, II.4.40].

• Define the global section functor Γ(T, ·) = ΓT (·) on a topos T to be HomT (eT ,−), where eT is
the final object in T . After restricting ΓT (·) to abelian groups in T , we may consider its right
derived functor (H∗(T, ·), ∂). Similarly, for any object X in T we define Γ(X, ·) = HomT (X, ·)
and H∗(X, ·).

• “Localization/Restriction” of topoi and cohomology, c.f. [BO78, Prop. 5.23, 5.24, 5.25]: If T
is a topos and Z an object of T , then the category T |Z of morphisms X → Z in T is a topos,
again. For any X ∈ T , we have H∗(Z,X) ∼= H∗(T |Z , X|Z), where we write X|Z to denote
object pr2 : X × Z → Z of T |Z .

Talk 2: The Stratifying Topos, Stratifications and Crystals: From now on, we follow [Gro68].
• Define the infinitesimal site Inf(X/S) as in [Gro68, 4.1]; let (X/S)Inf denote the associated

so-called infinitesimal topos.
• Show that an object F of the infinitesimal topos can be described as family of Zariski-sheaves
F(U↪→T ) together with certain morphisms (c.f. [Gro68, 4.1]). For more details, see also [BO78,
Prop. 5.1], where for our purposes every mention of divided power structures should be
ignored, and every occurence of Cris should be replaced by Inf.

• Show that any representable presheaf on Inf(X/S) is a sheaf, so that the Yoneda map
εInf(X/S) : Inf(X/S)→ (X/S)Inf is fully faithful.

• Using the concrete description of objects of (X/S)Inf , define the structural sheaf O(X/S)Inf

which provides (X/S)Inf with the structure of a ringed topos.
• Recall the definition of smoothness via the infinitesimal lifting criterion, and note that for
X → S smooth, any object U ↪→ T of the infinitesimal site T -locally admits a retraction
T → X. Hence, in the smooth case, the infinitesimal site agrees with the stratifying site
defined by Grothendieck in [Gro68, 4.2]. As we restrict ourselves to the smooth case, we will
henceforth use both sites synonymously.

• State the main theorem [Gro68, Thm. 4.1], whose proof is the goal of this Kleine AG. (As a re-
minder, quickly state the definition of algebraic de Rham cohomology as the hypercohomology
of the relative de Rham complex.)

• Define stratifications of OX -modules, following either [Gro68, Appendix] or [BO78, Def. 2.10].
Mention the interpretation of a stratification as an “infinitesimal descent datum”.

• Show that a stratified OX -module F on X defines what Grothendieck calls a “special sheaf”
in [Gro68, 4.2], and which nowadays is called a crystal in O(X/S)Strat -modules. As an example,
show that O(X/S)Strat

is a crystal in O(X/S)Strat -modules.
• Prove or sketch that, conversely, a crystal in (X/S)Inf = (X/S)Strat gives rise to a stratified

sheaf F . Note that this correspondence depends crucially on the S-smoothness of X. For a
more detailed proof (which shows more than we actually need) you can also consult [BO78,
Prop. 2.11].

• You don’t have to adress the relationship between stratifications, connections and DX/S-
modules; this will be the subject of a later talk.

Talk 3: Cohomology of crystals on (X/S)Strat: In this talk, we explain the construction of [Gro68,
5.1], which to a given crystal of O(X/S)Strat-modules F associates a complex F • in XZar whose
hypercohomology computes the cohomology of F .
• Show that in general Inf(X/S) = Strat(X/S) does not have a final object. Let X̃ denote the

object of (X/S)Strat that is represented by idX , and let e be the final object of (X/S)Strat.

Show that the unique morphism X̃ → e is a covering (in the topology introduced in Talk 1)
by using the definition of (formal) smoothness. See also [BO78, 5.28] where, as usual, every
mention of divided powers should be ignored and where Cris should be replaced by Strat or
Inf. (In the notation of loc. cit. we can take X = Y smooth; then the “PD-envelope DX,γ(Y )”
is just X.)

• Follow Grothendieck by writing down the associated Čech-to-derived-functor spectral sequence,
and use it to show that for affine X we have canonical isomorphisms

Hq((X/S)Strat, F ) ∼= Hq(F (X•/X)) = Hq(lim←−
i

F (∆•X/S(i)) .
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The “Mittag-Leffler style arguments” from [Gro68, top of p. 337] may be skipped. The
natural isomorphisms Hq((U ↪→ T ), F ) ∼= Hq(TZar, F(U↪→T )) at [Gro68, bottom of p. 336]
exist because the restriction functor (X/S)Strat/u→ TZar admits an exact left adjoint; for
more details see [BO78, 5.26].

• In the situation where X is not necessarily affine, define the complex F •. It is not necessary
to use simplicial language, simply define the differentials of the complex in terms of alternating
sums. Finally, prove that there are canonical isomorphisms

Hq((X/S)Strat, F ) ∼= Hq(XZar,F
•).

Talk 4: Differential Operators and Linearization: In this talk we define differential operators, and
their linearization.
• Define differential operators, e.g. following [BO78, Ch. 2]. State that for OX -modules F and
G, the differential operators F → G form a sheaf D iffX/S(F,G).

• Describe the local structure of DX/S := D iffX/S(OX ,OX) and PnX/S (notation of [BO78])

in the situation where X is a smooth scheme over Q, cf. [BO78, Prop. 2.2 and Rem. 2.7].
Conclude that in this situation, DX/S-module structures on some OX -module F correspond
to flat connections on F (where a flat connection on F is a morphism of sheaves of Lie
algebras Derf−1(OS)(OX ,OX)→ Endf−1(OS)(F ), where Derf−1(OS)(OX ,OX) is the sheaf of

f−1(OS)-derivations on OX).
• Define the linearization functor Q0 as follows, cf. [Gro68, 6.2]: Let PνX/S(i) denote the

structure sheaf of the i-th infinitesimal neighborhood of the diagonal in the (ν + 1)-fold fiber
product of X over S, and write PνX/S for lim←−i P

ν
X/S(i). Let M be an OX -module; we define

Qν(M) := lim←−i(P
ν+1(i)X/S⊗OX

M) (considered as an OX -module via the left OX -structures

of PνX/S(i), while the tensor product is defined using the right OX -structure). Sketch that

Q0(M) carries an S-stratification (compare [BO78, 2.14], where L is used to denote Q0).
For our purposes, we only need to study Qν(ΩkX/S), which is Pν+1

X/S ⊗ ΩkX/S because ΩkX/S is

coherent.
• Show that Q0 defines a functor from the category of OX -modules with morphisms given by

differential operators to the category of stratified OX -modules with horizontal OX -morphisms:
If D : E → F is a differential operator of order ≤ k, then its linearization P1

X/S(k)⊗OX
E → F

together with the canonical δn−k,k : P1
X/S(n)→ P1

X/S(n− k)⊗OX
P1
X/S(k) induces for every

n an OX -linear morphism P1
X/S(n)⊗OX

E → P1
X/S(n− k)⊗OX

F , see [BO78, 2.14].

Talk 5: Cohomology of Linearizations and Proof of the Main Theorem: In this talk we prove
the main theorem relating crystalline cohomology and algebraic de Rham cohomology.
• Restate the main theorem and summarize the strategy of its proof, e.g. as in [Gro68, 6.1].
• Let M• be a complex of differential operators on X bounded from below. If you wish you

may take M• = Ω•X/S . Show (e.g. by checking termwise) that1 Q•(M•) is a resolution of

M• and that, hence, there is a canonical isomorphism

Hp(XZar,M
•) ∼= Hp(XZar,Tot(Q•(M•))).

To prove that Q•(Mq) is a resolution of Mq, it is important to note that Qν = Pν+1 – that

is, Qν → Qν+1 is defined by
∑ν+1
i=0 (−1)idνi , where dνi : Pν+1 → Pν+2 are the canonical maps.

There are ν + 2 such maps, but the last one is not used! Compare e.g. [Ber74, Lemme
V.2.2.1].
• We have seen that Q0(Mν) carries a stratification for every ν; hence it defines a crystal in

(X/S)Strat, and it follows that we obtain a complex of crystals Q0(M•)Strat on Strat(X/S).
By the calculations from Talk 3, we get, for every p and q, a canonical isomorphism

Hp((X/S)Strat, Q
0(Mq)Strat) ∼= Hp(XZar, C

•(Q0(Mq)Strat)), (1)

where Grothendieck now uses the notation C•(−), for the Zariski complex associated to a
crystal in Talk 3. Show that this implies that we have canonical isomorphisms

Hp((X/S)Strat, Q
0(M•)Strat) ∼= Hp(XZar,Tot(C•(Q0(M•)Strat))).

1Grothendendieck writes lim←−Q•(M•) where we write Q•(M•), because he considers Qν(M)q = (Pν+1
X/S

(n)⊗OX
Mq)n as

pro-object, while we identify it with its limit.
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• Note that C•(Q0(M•)Strat) ∼= Q•(M•) (see end of [Gro68, 6.3]), and show that this implies
the existence of canonical isomorphisms

Hp(XZar,M
•) ∼= Hp((X/S)Strat, Q

0(M•)Strat).

Deduce the existence of a spectral sequence

Ep,q2 = Hp((X/S)Strat,Hq(Q0(M•)Strat)) =⇒ Hp+q(XZar,M
•) . (2)

• For our purposes, we may take F = OX in [Gro68, 6.5]. We then have a complex of differential
operators Ω•X/S , so by what we have sowh above, we have canonical isomorphisms

Hp(XZar,Ω
•
X/S) ∼= Hp((X/S)Strat, Q

0(Ω•X/S)Strat) . (3)

To finish the proof, we must naturally identify the right hand side with the stratified
cohomology of the structural sheaf. To do so, we need a formal Poincaré Lemma which
crucially depends on the assumption that our base S is defined over Q (and that X is smooth):

Lemma (Poincaré Lemma). If S is a Q-scheme, then the morphism

O(X/S)Strat → Q0(Ω•X/S)Strat

of complexes arising from OX → P1
X/S = Q0(OX), x 7→ x⊗ 1 is a quasi-isomorphism.

For the proof, follow [BO78, 6.11,6.12]; a certain amount of care, however, is needed to handle
the differences between our situation and the crystalline case. Here’s a brief outline of the
argument: First note that the map in the statement of the Lemma really defines a morphism
of complexes, i.e. that the composition OX → Q0(OX)→ Q0(Ω1

X/S) is 0. For this, note the

following local description of the complex Q0(ΩX/S): If x1, . . . , xn are local coordinates for

X/S and if ξi denotes the image of 1⊗ xi − xi ⊗ 1 in P1
X/S , then P1

X/S = OXJξ1, . . . ξnK and

Q0(ΩpX/S) =
⊕
OXJξ1, . . . , ξnKdxi1 ∧ . . . ∧ dxip , where the differential Q0(d) is given by

ξi11 · . . . ξinn ω 7→
n∑
j=1

ijξ
i1
1 · . . . · ξ

ij−1
j · . . . ξinn dxj ∧ ω + ξi11 · . . . · ξinn dω .

To prove the Lemma, we may work locally on Strat(X/S), so we may consider (U ↪→
T ) ∈ Strat(X/S), with T small enough such that there exists a lifiting h : T → X; then
h∗Q0(Ω•X/S) = (Q0(Ω•X/S)Strat)(U,T ). Now let x1, . . . , xn be local coordinates on X, then

wee need to check that (
⊕
OT Jξ1, . . . , ξnKdxi1 ∧ . . . ∧ dxir , d)r is a resolution of OT , which

is true and which follows from an explicit calculation because we are in characteristic 0. See
also [Har75, proof of Prop. 7.1].

• The Poincare Lemma now implies that (3) induces a canonical isomorphism

Hp((X/S)Strat,O(X/S)Strat
)→ Hp((X/S)Strat, Q

0(Ω•X/S)Strat) ∼= Hp(XZar,Ω
•
X/S),

which finishes the proof of the theorem.
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