Klausur zur Vorlesung Analysis I

Bonn, den 12. Februar 2009

Prof. Dr. W. Müller Dr. A. Wotzke

Nachname, Vorname:	A	L
Matrikelnummer:	Nummer der Übungsgruppe:	

- Drehen Sie diesen Zettel bitte erst auf Aufforderung um.
- Sollten Sie neben jemanden aus Ihrer Übungsgruppe sitzen, so setzen Sie sich bitte um.
- Tragen Sie auf diesem Deckblatt Ihren Nach- und Vornamen, Ihre Matrikelnummer und Ihre Übungsgruppe ein.
- Heften Sie dieses Deckblatt vor der Abgabe mit Ihren Lösungsblättern zusammen.
- Zum Bearbeiten der Klausur haben Sie 180 Minuten.
- Hilfsmittel wie Skripte, Notizen, Vorlesungsmitschrifften, Bücher sind nicht zugelassen.
- Technische Geräte wie Taschenrechner, Notebooks, Handys sind nicht zugelassen.
- Schreiben Sie leserlich und verwenden Sie keinen Bleistift oder Füller.
- Bitte füllen Sie die Zeile Bearbeitet in folgender Tabelle aus:

Aufgabe	1	2	3	4	5	6	7	8	9	10	
Bearbeitet											Ja/Nein
maximale Punktezahl	10	10	10	10	10	10	10	10	10	10	$\Sigma = 100$
erreichte Punktezahl											$\Sigma =$

Wir wünschen Ihnen viel Erfolg bei der Klausur.

Bewertung:	
Bonn, den	

- **1** Es seien (x_n) eine Folge reeller Zahlen und $x \in \mathbb{R}$. Kennzeichnen Sie wahre Aussagen mit W und falsche Aussagen mit F.
 - \square Sei (x_n) konvergent und für alle $n \in \mathbb{N}$ gelte $x_n < C, C \in \mathbb{R}$. Dann folgt $\lim_{n \to \infty} x_n < C$.
 - \square Wenn (x_n) nicht gegen x konvergiert, dann gilt $\exists \varepsilon > 0 \exists N \in \mathbb{N}, \forall n \geq N \colon |x_n x| \geq \varepsilon$.
 - \square Für jede Cauchy-Folge (x_n) gilt: $\exists x \in \mathbb{R} : \forall \varepsilon > 0 \,\exists N \in \mathbb{N}, \forall n \geq N : |x_n x| < \varepsilon$.
 - \square Wenn (x_n) beschränkt ist, so besitzt (x_n) einen Häufungspunkt.
 - \square Wenn (x_n) einen Häufungspunkt besitzt, dann ist (x_n) beschränkt. (je ± 2 Punkte)

Hinweis: Bei dieser Aufgabe können Sie maximal Zehn und minimal Null Punkte erreichen.

- **2** Geben Sie die Definition der Stetigkeit von $f: \mathbb{R} \to \mathbb{R}$ im Punkt $x_0 \in \mathbb{R}$ an. (10 Punkte) Tipp: Benutzen Sie die Prädikatenlogik, insbesondere die Quantoren \forall und \exists .
- **3** Es sei (f_n) eine Folge gleichmäßig konvergenter Funktionen $f_n : D \to \mathbb{C}$, $D \subset \mathbb{C}$. Zeigen Sie: Wenn für alle $n \in \mathbb{N}$ die Funktionen f_n in $z_0 \in D$ stetig sind, dann ist $f = \lim_{n \to \infty} f_n$ stetig in z_0 .
- **4** Beweisen Sie mit vollständiger Induktion für $c \in \mathbb{R}$, $c \neq 1$ und $n \in \mathbb{N}$:

$$\sum_{k=1}^{n} kc^{k} = \frac{nc^{n+1}}{c-1} - \frac{c^{n+1}-c}{(c-1)^{2}}.$$
(10 Punkte)

- **5** Es sei $a_n = \sqrt{n}$ für $n \in \mathbb{N}$. Beweisen Sie: $\forall \varepsilon > 0, k \in \mathbb{N} \exists N \in \mathbb{N} \forall n > N : |a_{n+k} a_n| < \varepsilon$.

 (10 Punkte)
- 6 Untersuchen Sie folgende Reihen auf Konvergenz und absolute Konvergenz

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{1+2n^2}$$
;

b)
$$\sum_{n=1}^{\infty} \frac{\log(n)n^2}{\exp(n)}.$$

(je 5 Punkte)

- **7** Es sei (a_n) eine monoton fallende Nullfolge. Zeigen Sie: Wenn $\sum_{n=1}^{\infty} a_n$ konvergiert, dann ist $(n \cdot a_n)$ eine Nullfolge, d.h., $\lim_{n \to \infty} n a_n = 0$. (10 Punkte)
- **8** Beweisen Sie, dass $\exp(x+y) = \exp(x) \exp(y)$, für alle $x, y \in \mathbb{R}$, wobei exp die Exponentialreihe ist. (10 Punkte)
- **9** Bestimmen Sie alle lokalen Extrema von $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2 e^{-x^2}$. (10 Punkte)
- **10** Es sei $f: [0,1] \to \mathbb{R}$ eine stetige Funktion mit f(0) = f(1). Zeigen Sie, dass es dann ein $c \in [0,1]$ existiert mit $f(c) = f(c + \frac{1}{2})$. (10 Punkte)

1 Variante A: F, F, W, W, F.

$$\mathbf{2} \qquad \forall \varepsilon > 0 \,\exists \, \delta > 0 \colon |f(x) - f(x_0)| < \varepsilon \,\forall x \in \mathbb{R}, |x - x_0| < \delta.$$

3 Es sei $\epsilon > 0$. Weil für alle n die Funkionen $f_n : D \to \mathbb{C}$ stetig in $z_0 \in D$ sind, existiert $\delta > 0$, so dass

$$|f_n(z) - f_n(z_0)| < \frac{\epsilon}{3}$$
, für alle $z \in D$ mit $|z - z_0| < \delta$.

Weil (f_n) gleichmäßig konvergent ist, gilt für alle $z \in D$

$$|f(z) - f_n(z)| < \frac{\epsilon}{3} \text{ für } n > N(\epsilon).$$

Damit erhalten wir aus

$$|f(z) - f(z_0)| = |f(z) - f_n(z) + f_n(z) - f_n(z_0) + f_n(z_0) - f(z_0)|$$

mittels der Dreiecksungleichung

$$\leq |f(z) - f_n(z)| + |f_n(z) - f_n(z_0)| + |f_n(z_0) - f(z_0)| \leq \epsilon$$

für alle $z \in D$ mit $|z - z_0| < \delta$.

4 Induktionsanfang: Für n = 1 ist

$$c = \frac{c^2}{c-1} - \frac{c(c-1)}{(c-1)^2} = c.$$

Induktionsverankerung: Aussage ist für $n \in \mathbb{N}$ richtig.

Induktionsschritt $n \rightarrow n + 1$: Nach Induktionsverankerung gilt:

$$\begin{split} \sum_{k=1}^{n+1} kc^k &= \frac{nc^{n+1}}{c-1} - \frac{c^{n+1}-c}{(c-1)^2} + (n+1)c^{n+1} \\ &= \frac{(n+1)c^{n+2}}{c-1} - \frac{-nc^{n+1}(c-1) + c^{n+1} - c + (n+1)c^{n+1}(c-1)}{(c-1)^2} \\ &= \frac{(n+1)c^{n+2}}{c-1} - \frac{c^{n+2}-c}{(c-1)^2}. \end{split}$$

5 Es sei $k \in \mathbb{N}$. Aus

$$\sqrt{n+k} - \sqrt{n} = \frac{k}{\sqrt{n+k} + \sqrt{n}} = \frac{k}{\sqrt{n} \cdot (\sqrt{1+k/n} + 1)}$$

folgt mit $\lim_{n} k/n = 0$

$$\lim_{n} \sqrt{n+k} - \sqrt{n} = \lim_{n} \frac{k}{2\sqrt{n}} = 0.$$

6 $Zu\ a$) Folge $(\frac{n}{1+2n^2})$ ist eine monoton fallende Nullfolge¹. Folglich ist die Reihe nach dem **Leibniz-Kriterium** konvergent.

Zur absoluten Konvergenz bemerken wir, dass für $n \ge 2$ folgendes gilt: $\frac{n}{1+2n^2} = \frac{1}{\frac{1}{n}+2n} > \frac{1}{3n}$. Daraus folgt

$$\sum_{n=2}^{\infty} \frac{n}{1+2n^2} > \frac{1}{3} \sum_{n=2}^{\infty} \frac{1}{n},$$

und aus der Divergenz der **harmonischen Reihe**, dass die Reihe nicht absolut konvergent ist.

Zu b) Wir wenden das Quotienten-Kriterium an. Zunächst stellen wir fest, dass

$$\frac{\exp(n)}{\log(n)n^2} \frac{\log(n+1)(n+1)^2}{\exp(n+1)} = \frac{1}{e} \frac{\log(n+1)}{\log(n)} \left(\frac{n+1}{n}\right)^2 \xrightarrow[n \to \infty]{} \frac{1}{e} < 1,$$

weil $\log(n+1) = \log(n) + \log(1+1/n)$ und $\lim_{x\to 1} \log(x) = 0$. Weil $\exp(n)$ und $\log(n)$ für alle $n \in \mathbb{N}$ positiv sind ist die Reihe absolut konvergent.

7 Aus der Voraussetzung (a_n) monoton und $a_n > 0$ und nach dem Cauchy-Kriterium

$$\sum_{k=0}^{n+p} a_k - \sum_{k=0}^{n+p} a_k = a_{n+1} + \dots + a_n < \epsilon$$

folgt, dass $pa_{n+p} < \epsilon/2$. Dann ist für p = n bzw. p = n + 1:

$$2na_{2n} < \epsilon$$
 bzw. $(2n+1)a_{2n+1} < \epsilon$.

8 Weil für alle $x \in \mathbb{R}$ die Exponentialreihe $\exp(x)$ absolut konvergent ist, folgt aus dem Cauchy-Produktsatz:

$$\exp(x) \exp(y) = \left(\sum_{k=0}^{\infty} \frac{x^k}{k!}\right) \left(\sum_{k=0}^{\infty} \frac{y^k}{k!}\right)$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{x^k}{k!} \frac{y^{n-k}}{(n-k)!}$$

mit Hilfe des Binomialsatzes

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k} = \sum_{n=0}^{\infty} \frac{(x+y)^{n}}{n!}.$$

¹Das muss natürlich gezeigt werden!

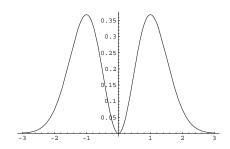
 $oldsymbol{g}$ Die Ableitung von f ist gegeben durch

$$f'(x) = 2xe^{-x^2} - 2x^3e^{-x^2}.$$

Daraus folgt: $f'(x) = 0 \Leftrightarrow x \in \{-1, 0, 1\}$. Wir bestimmen zuerst die zweite Ableitung von f

$$f''(x) = (2 - 10x^2 + 4x^3)e^{-x^2}$$

und stellen dann fest, dass $f''(x_{\text{ext}}) \neq 0$ für alle $x_{\text{ext}} \in \{-1, 0, 1\}$ ist.



 $oldsymbol{10}$ Betrachte die Funktion $g\colon [0,\frac{1}{2}] \to \mathbb{R}$ definiert durch

$$g(x) = f(x) - f(x + \frac{1}{2}).$$

Dann ist $g(0) = f(0) - f(\frac{1}{2})$ und $g(\frac{1}{2}) = f(\frac{1}{2}) - f(1) = -g(0)$ nach Voraussetzung. Aus dem **Zwischenwertsatz** folgt die Existenz eines $c \in [0, 1]$, so dass g(c) = 0, d.h.,

$$f(c) = f(c + \frac{1}{2}).$$

Zur Klausur zugelassen waren 142 Studentinen und Studenten. An der Klausur haben insgesamt 128 Studentinen und Studenten teilgenommen, davon:

- 111 Mathematikerinen und Mathematiker im Bachelor-Studiengang
- neun Physikerinen und Physiker im Bachelor-Studiengang
- drei VWL-Studenten im Bachelor-Studiengang mit Nebenfach Mathematik
- zwei FFF-Studenten eine FFF-Studentin
- zwei Stunden der Mathematik im Diplom-Studiengang

Es wurden 67 Probeklausuren korrigiert. Im Durchschnitt erreichte Punktzahl: 58,9.

