
1 Lie-Gruppen

Ein Lie-Gruppe ist eine Gruppe und gleichzeitig differenzierbare Mannigfal-
tigkeit für die gilt:

(a, b) ∈ G 7→ a−1b

ist eine differenzierbare Abbildung. Sei La (bzw. Ra) die Translation auf G
von links (bzw. von rechts), d.h.

Lax = ax Rax = xa ∀a ∈ G

Für a ∈ G sei ad(a) der innere Automorphismus definiert durch:

ad(a)(x) := axa−1 ∀x ∈ G

Sei g die Algebra der linksinvarianten Vektorfelder auf G, d.h. die Menge
aller Vektorfelder X auf G für die gilt:

XRax = Ra∗Xx

Dann gilt g ist isomorph zu TeG. Die Abbildung ad(a) erzeugt eine Darstel-
lung von G in g, die sogenannte adjungierte Darstellung, die wir mit Ad(a)
bezeichnen.
A ∈ g erzeugt eine 1-Parametergruppe auf G. Sei at die Kurve, die die
Gleichung

La−1∗ȧt = Ae a0 = e

löst.Wir definieren

exp(A) := a1 → at = exp(ta)

Operiere nun G auf einer differenzierbaren Mannigfaltigkeit M , d.h.

1. Für alle a ∈ G existiert eine 1 : 1 Transformation x 7→ xa in M

2. (a, x) ∈ G×M → x ∈M ist differenzierbar.

3. x(ab) = (xa)b

Bemerkung 1.1 Wir schreiben Rax für xa und Lax für ax. Da Re, Le
1 : 1 und wegen 3) gilt Le = Re = idM

Definition 1.2 G operiert effektiv (bzw. frei) auf M ⇔ Rax = x für alle
(bzw. für ein) x ∈M , so ist a = e.

1



Definition 1.3 Operiere G von rechts auf M . Sei A ∈ g, dann sei A∗ ∈
X(M) definiert durch:

A∗x :=
d

dt
(exp(tA)x)t=0

wobei X(M) die Vektorfelder auf M sind.

Lemma 1.4 Sei G Lie-Gruppe und M differenzierbare Mannigfaltigkeit. G
operiere auf M von rechts.Die Abbildung

σ : g → X(M)
A 7→ A∗

ist ein Lie-Algebra-Homomorphismus.
Operiert G effektiv auf M so ist σ ein Isomorphismus.
Operiert G frei auf M so gilt für jedes A ∈ g 6= 0, σ(A) verschwindet nie
auf M .
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2 Faserbündel

Sei G Lie-Gruppe und M differenzierbare Mannigfaltigkeit.

Definition 2.1 Ein (diff.bares) Hauptfaserbündel (HFB) P (M,G, π) über
M mit Gruppe G besteht aus einer (diff.baren) Mannigfaltigkeit P und einer
Operation von G auf P mit:

1. G operiert frei auf P von rechts

(u, a) ∈ P ×G→ ua = Rau ∈ P

2. M ist Quotient von P bezüglich der Gruppenoperation von G, d.h M =
P/G und die kanonische Projektion

π : P →M

ist differenzierbar.

3. P ist lokal trivial, d.h. für alle x ∈M existiert eine Umgebung U(x) ⊂
M , sodaß π−1(U(x)) isomorph zu U × G ist, in dem Sinnes, daß ein
Diffeomorphismus

Φ : π−1(U) → U ×G
u 7→ (π(u), ϕ(u))

existiert mit

ϕ : π−1(U)→ G und ϕ(ua) = ϕ(u)a u ∈ P, a ∈ G

Bezeichnungen

1. Ein Hauptfaserbündel wird mit P (M,G, π), P (M,G) oder mit P be-
zeichnet.

2. P heißt “totaler Raum” oder “Bündelraum”.

3. M heißt “Basisraum”

4. G heißt “Strukturgruppe”

5. π−1(x) heißt “Faser” von x und ist Untermannigfaltigkeit von P , dif-
feomorph zu G.
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Bemerkung 2.2 P (M,G) heißt trivial, falls gilt:

P = M ×G und Rbu = (x, ab) mit u = (x, a)

Definition 2.3 Sei P Hauptfaserbündel. Sei

σ : g → X(P )
A 7→ A∗

die von der Operation von G induzierte Abbildung. A∗ heißt Fundamentales
Vektorfeld bezüglich A.

Da die Operation von G Fasern in sich abbildet, ist A∗u tangential an die
Faser in u. Weil G frei auf P operiert, verschwindet A∗ genau dann, wenn
A = 0. Daraus folgt, da die Dimension der Faser gleich der Dimension von
g ist, daß die Abbildung:

A→ (A∗)u
ein linearer Isomorphismus auf den Tangentalraum der Faser in u ist.

Lemma 2.4 Sei A∗ fundamentales Vektorfeld zu A. Dann ist für jedes A ∈
G, (Ra)∗A∗ fundamentales Vektorfeld zu (Ad(a−1))A

Beweis: A∗ ist induziert von der Kurve at mit at = exp(tA). Dann gilt,
(Ra)∗A∗ ist induziert von RaRatRa−1 = Raata−1 . Desweiteren ist aata−1 die
Einparametergruppe erzeugt von (Ad(a−1))A ∈ g.

�

Definition 2.5 Sei P (M,G) HFB und F (diff.bare) Mannigfaltigkeit, auf
der G von links operiert. Das zu P assoziierte Faserbündel E(M,F,G, P )
mit Standartfaser F wird wie folgt konstruiert. Sei eine Operation von G
auf P × F definiert durch:

a : (u, ξ) ∈ P × F 7→ (ua, a−1ξ) ∈ P × F

E sei definiert als P ×G F Quotient bezüglich der obigen Operation. Sei

πE : E →M

die Abbildung, die durch die Abbildung

P × F → M

u× ξ 7→ π(u)

induziert wird.
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Bemerkung 2.6 Es gilt:

π−1(U) ∼= U ×G.

Daher ist die Operation von G auf π−1(U)× F gegeben durch

(x, a, ξ) 7→ (x, ab, b−1ξ) (x, a, ξ) ∈ U ×G× F, b ∈ G

Daher gilt
π−1
E (U) ∼= U × F

E erhält seine differenzierbare Struktur indem wir die Karten

U × F
∼=−→ π−1

E (U)

einführen.

Lemma 2.7 Sei P (M,G) HFB und E(M,F,G, P ) das dazu assoziierte Bündel.
Für alle u ∈ P und ξ ∈ F sei uf definiert als das Bild von (u, ξ) ∈ P × G
unter kanonische Projektion P × F → E. Dann ist jedes u eine Abbildung
von F nach Fx = π−1

E (x) mit π(u) = x und

(ua)ξ = u(aξ)

Beweis: Sei u lokal gleich (x, b), dann gilt

(ua)ξ = (x, ab, ξ) = (x, b, aξ) = u(aξ)

�

Beispiel 1: Rahmenbündel L(M)

Sei M Mfg., dim M=n
Ein linearer Rahmen u an einem Punkt x ∈ M ist eine geordnete Basis
{X1, .., Xn} von TxM . Sei

Lx(M) := {u|u ist linearer Rahmen in x}

Sei L(M) =
⊔
x∈M

Lx(M) disjunkte Vereinigung.

Behauptung: L(M) ist HFB.
Beweis: SeiGL(n;R) die Gruppe der invertierbaren n×n-Matrizen.GL(n;R)
operiert auf L(M) wie folgt:
Sei a = (aij) ∈ GL(n;R) und u = (X1, ..., Xn) ∈ Lx. ua = (Y1, ..., Yn) ∈ Lx
sei definiert durch:

Yj =
n∑
i=1

aijXi

Eine differenzierbare Struktur wird am Ende eingeführt.
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1. G operiert offensichtlich frei auf L(M).

2. Sei
π : L(M) → M

u ∈ Lx 7→ x

Es gilt

π(u) = π(v)⇒ v, u ∈ Lx(M)⇒ ∃a ∈ GL(n;R) : v = ua

Daraus folgt:
M = P/G

3. Seien (∂x1, ..., ∂xn) lokale Koordinaten in U ⊂M . Dann läßt sich jeder
Rahmen u = (X1, . . . , Xn) eindeutig darstellen durch

Xi :=
n∑
j=1

Xij∂xj

wobei (Xij) ∈ GL(n;R). Daraus folgt, daß π−1(U) 1 : 1 mit U ×
GL(n;R) ist.

Die differenzierbare Struktur erhält man nun durch die Karten

U ×GL(n;R) −→ π−1(U)

Beispiel 2:Das Tangentialbündel T (M).

Operiere GL(n;R) von links auf Rn durch Matrixmultiplikation auf Vek-
toren bezüglich der Standartbasis. Das Tangentialbündel T (M) sei das zu
L(M) assoziierte Faserbündel mit Standartfaser Rn. Dann ist T (M) lokal
diffeomorph zu U × Rn und die Fasern über x sind die Tangentialräume
Tx(M). Das wird anschaulich, wenn wir die in Lemma 2.7 erwähnte Abbil-
dung

u : Rn −→ π−1
E (x) mit x = π(u)

betrachten. Sei e1, . . . , en die Standartbasis auf Rn. Dann definieren wir für
u = {X1, . . . , Xn} ∈ Lx(M) die Abbildung:

uei := Xi

durch lineare Fortsetzung. Es ist klar das gilt:

(ua)ξ = u(aξ)
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Definition 2.8 Ein Schnitt eines Bündels E(M,F,G, P ) ist eine Abbildung

s : M → E

für die gilt πE ◦ s = idM

7



3 Zusammenhänge auf Hauptfaserbündeln

Sei P (M,G) HFB. Für u ∈ P bezeichne Gu den Unterraum von Tu(P ), der
tangential an die Faser π−1(x) mit x = π(u) liegt.

Definition 3.1 Ein Zusammenhang Γ in P ist die Zuordnug eines Unter-
raums Qu ⊂ Tu(P ), sodaß für alle u ∈ P gilt:

1. Tu(P ) = Gu +Qu (direkte Summe)

2. Qua = Ra?Qu ∀u ∈ P, a ∈ G

3. Qu hängt differenzierbar von u ab.

Bezeichnungen :

1. Gu heißt “vertikaler Unterraum”, Qu heißt “horizontaler Unterraum”

2. Ein Vektor X heißt vertikal (bzw. horizontal) falls X ∈ Gu (bzw.
X ∈ Qu).

3. Jedes X ∈ Tu(P ) kann eindeutig geschrieben werden als:

X = Y + Z Y ∈ Gu, Z ∈ Qu

Dann heißen Y =: vX vertikale und Z =: hX horizontale Komponente
von X.

Definition 3.2 Sei ω g-wertige 1-Form mit:

ω : Tu(P ) → g
X 7→ A

wobei (A∗)u = vX. ω heißt “Zusammenhangsform” zu Γ.

Lemma 3.3 Die Zusammenhangsform ω erfüllt die folgenden Eigenschaf-
ten:

1. ω((A∗)u) = A für alle u ∈ P,A ∈ g

2. (Ra)∗ω = Ad(a−1)ω d.h. ω((Ra)∗X) = Ad(a−1)ω(X)
für alle X ∈ Tu(P ), a ∈ G

Umgekehrt existiert für jede g-wertige 1-Form ω, die 1) und 2) erfüllt, ein
eindeutiger Zusammenhang Γ mit Zusammenhangsform ω.
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Beweis:1. ist klar.
Da man jedes Vektorfeld auf P eindeutig in horizontalen und vertikalen
Anteil zerlegen kann, betrachten wir die Fälle X ist horizontal und X ist
vertikal.
2a.)Sei X horizontal, dann gilt Ra∗(X) ist horizontal:

⇒ R∗a(ω(X)) = ω(Ra∗(X)) = 0 und Ad(a−1)ω(X) = 0

2b.)Sei X vertikal. Dann können wir annehmen, daß X ein fundamentales
Vektorfeld A∗ ist. Dann ist Ra∗(X) fundamentales Vektorfeld zu Ad(a−1)A
und es gilt:

(R∗a)ωu(X) = ωua((Ra)∗X) = ωua((Ad(a−1)A)∗) = Ad(a−1)A = Ad(a−1)(ωu(X))

Sei nun umgekehrt ω mit 1. und 2. gegeben. Wir definieren:

Qu := {X ∈ TuP |ωu(X) = 0}

Behauptung: u 7→ Qu ist ein Zusammenhang.
p
Sei Gu der Tangentialraum an die Faser in u. Es gilt:

dimTu(P ) = dim(im(ωu)) + dim(ker(ωu))

Da ker(ωu) = Qu, g isomorph zu Gu ist und Qu ∩Gu = ∅ gilt:

Tu(P ) = Gu +Qu

Sei X ∈ Qu, dann gilt:

ωua(Ra∗X) = R∗aωu(X) = Ad(a−1)ωu(X) = 0

Sei Y ∈ Qua, dann gilt:

ωuaa−1(Ra−1∗Y ) = R∗a−1ωua(Y ) = Ad(a1)ωua(Y ) = 0

daraus folgt:
R∗aQu = Qua ∀u ∈ P, a ∈ G

x

�
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Die Projektion π : P →M induziert dπ : Tu(P )→ Tx(M) wobei u ∈ P und
π(u) = x.

Definition 3.4 Sei Γ gegeben. Dann gilt:

dπ : Qu → Tx(M) u ∈ P, π(u) = x

ist ein Vektorraumisomorphismus.
p

1. dimQu = dimTxM ist klar, da P lokal diffeomorph ist zu U ×G

2. dπ(X) = 0⇒ X ∈ Gu ⇒ X 6∈ Qu

x
Der Horizotale Lift eines Vektorfeldes X auf M ist das eindeutige horizon-
tale Vektorfeld XP auf P , für das gilt

dπ(X∗u) = Xπ(u) ∀u ∈ P

3.1 Krümmungsform und Strukturgleichung

Definition 3.5 Sei P (M,G) Hauptfaserbündel und ρ sei eine Darstellung
von G in einem endlichdimesionalen Vektorraum V .Eine pseudotensorielle
Form vom Grad r auf P vom Typ (ρ, V ), ist eine V−wertige r-Form ϕ auf
P für die gilt:

R∗aϕ = ρ(a−1)ϕ a ∈ G

ϕ heißt tensorielle Form falls gilt:

ϕ(X1, . . . , Xr) = 0

sobald ein Vektor Xi vertikal ist.

Sei Γ Zusammenhang auf P mit Tu(P ) = Gu +Qu und

h : Tu(P )→ Qu

sei die Projektion auf den horizontalen Raum.

Lemma 3.6 Sei ϕ pseudotensorielle r-Form auf P vom Typ (ρ, V ), dann
gilt:
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1. Sei ϕh definiert als

(ϕh)u(X1, . . . , Xr) = ϕu(hX1, . . . , hXr)

Dann ist ϕh tensorielle r-Form von Typ (ρ, V ).

2. dϕ is eine pseudotensorielle (r + 1)-Form vom Typ (ρ, V ).

3. Die (r+1)-Form Dϕ := (dϕ)h ist eine tensorielle Form vom Typ
(ρ, V ).

Beweis:

1. folgt daraus, daß gilt
h ◦Ra∗ = Ra∗ ◦ h

p

Ra∗(hX + vX) = Ra∗(hX)︸ ︷︷ ︸
horizontal

+Ra∗(vX)︸ ︷︷ ︸
verikal

= h(Ra∗X) + v(Ra∗X)

aus der Eindeutigkeit der Zerlegung folgt das gewünschte.
x
Es gilt

R∗a(ϕh)u(X1, . . . , Xr) = (ϕh)ua(Ra∗X1, . . . , Ra∗Xr)
= (ϕ)ua(hRa∗X1, . . . , hRa∗Xr)
= (ϕ)ua(Ra∗hX1, . . . , Ra∗hXr)
= R∗a(ϕ)u(hX1, . . . , hXr)
= ρ(a−1)(ϕ)u(hX1, . . . , hXr)
= ρ(a−1)(ϕh)u(X1, . . . , Xr)

Sei nunXi vertikal, dann gilt hXi = 0→ (ϕh)(X1, . . . , hXi, . . . , hXr) =
0

2. Folgt genauso aus der Tatsache das gilt:

d ◦R∗a = R∗a ◦ d

3. folgt aus 1) & 2)

Die Form Dϕ = (dϕ)h heißt äußere kovariante Ableitung von ϕ
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Definition 3.7 Sei ρ = Ad die adjungierte Darstellung von G in der Lie-
Algebra g. Dann ist die Zusammenhangsform ω pseudotensorielle 1-Form
vom Typ (ρ, g) oder auch adG.
Sei Ω := Dω tensorielle 2-Form vom Typ adG. Ω heißt Krümmungsform
von ω.

Theorem 3.8 (Strukturgleichung)
Sei ω Zusammmenhangsform und Ω Krümmungsform.Dann gilt:

dω(X,Y ) = −1
2

[ω(X), ω(X)] + Ω(X,Y ) für X,Y ∈ Tu(P ), u ∈ P

Beweis: Da wirX,Y eindeutig in vertikalen und horzontalen Anteil zerlegen
können und Ω linear auf beiden Stellen ist, betrachen wir:

1. X,Y seien horizontal. Dann gilt:

dω(X,Y ) = dω(hX, hY ) = Dω(X,Y ) = Ω(X,Y )− 1
2

[ω(X), ω(Y )]︸ ︷︷ ︸
=0

2. X,Y seien vertikal. Dann können wir annehmen, daß X = A∗, Y = B∗

in u, wobei a∗, B∗ fundamentale Vektorfelder sind.

2dω(A∗, B∗) = A∗(ω(B∗))−B∗(ω(A∗))− ω([A∗, B∗])
= −ω([A,B]∗) = −[A,B] = −[ω(X), ω(Y )]

Da gilt ω(A∗) = A, [A∗, B∗] = [A,B]∗. Weiter ist

Ω(X,Y ) = dω(hX, hY ) = 0

3. Sei X horizontal, Y vertikal. Wir setzen X horizontal zu einem Vek-
torfeld X fort, sei Y = A∗ in u. Da die rechte Seite der Gleichung
verschwindet bleibt zu zeigen dω(X,A∗) = 0. Es gilt:

2dω(X,A∗) = X(ω(A∗))−A∗(ω(X))− ω([X,A∗]) = −ω([X,A∗])

Es bleibt zu zeigen: Ist X horizontal, so auch [X,A∗].
p
Sei A∗ induziert durch Rat wobei at 1-Parametergruppe zu A ∈ G.
Dann gilt:

[X,A∗] = lim
t→0

1
t
[Rat∗(X)−X]

Nun sind X und RatX horizontal, damit auch [X,A∗].
x
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Theorem 3.9 (Bianchi Identität)

DΩ = 0

3.2 Parallelverschiebung und horizontaler Lift

Definition 3.10 Ein horizontaler Lift einer Kurve τ = xt, a ≤ t ≤ b in
M ist eine horizontale Kurve τ∗ = ut, sodaß gilt:

π(ut) = xt a ≤ t ≤ b

Bemerkung 3.11 Dieser Lift hängt wie folgt mit dem Lift von Vektorfel-
dern zusammen. Sei X∗ Lift von X, dann ist die Intergralkurve von X∗

durch u0 der Lift der Intergralkurve von X durch π(u0) = x0.

Lemma 3.12 Sei τ = xt, 0 ≤ t ≤ 1 C1-Kurve in M , dann gilt: Für alle
u ∈ P mit π(u) = x0 existiert ein eindeutiger Lift τ∗ = ut von τ , sodaß
u = u0.

Beweis: lang!

Wir haben nun durch die Hochhebung von τ zu τ∗ eine Abbildung τ :
π−1(x0)→ π−1(x1).

Definition 3.13 Die Abbildung τ : π(x0)→ π(x1) heißt parallele Verschie-
bung entlang τ . Aufgrund des folgenden Lemmas ist τ ein Isomorphismus.

Lemma 3.14 Die Parallelverschiebung vertauscht mit den Operationen von
G auf P ,d.h.:

τ ◦Ra = Ra ◦ τ ∀a ∈ G

Definition 3.15 Auf E wird der Zusammenhang, d.h. der horizontale Un-
terraum Qω und der vertikale Unterraum Fω von TωE wie folgt definiert:

1. Sei Fω der Tangentialraum an die Faser in ω.

2. Betrachte die Abbildung:

P × F → E

u× ξ 7→ uξ
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Sei nun (u, ξ) so, daß uξ = ω. Dann halte ξ fest und sei f definiert
als:

f : P → E

f(v) = vξ

Dann sei:
Qω := f∗(Qu)

Der Raum Qω ist unabhangig von der Wahl von (u, ξ) und es gilt:

TωE = Qω + Fω direkte Summe

p
habe ich keine Lust zu
x

Definition 3.16 Analog zum horizontalen Lift und der Parallelverschie-
bung auf P werden Lift und Parallelverschiebung auf E definiert.

3.3 Kovariante Ableitung in Vektorbündeln

Sei F = R,C. GL(M,F ) operiere auf Fm durch Multilikation von von links.
Sei P (M,G) HFB und ρ eine Darstellung von G nach GL(M,Fm). Dann
sei E(M,Fm, G, P ) das assoziierte Bündel mit Standartfaser Fm, wobei G
durch ρ auf Fm operiert.
Sei S die Menge der Schnitte

s : E →M

Wie bereits bekannt ist S ein F -Vektorraum und ein Modul über den F -
wertigen Funktionen.

Definition 3.17 Sei ϕ Schnitt in E, definiert auf τ = xt ,sodaß

πE ◦ ϕ(xt) = xt ∀t

Sei ẋt Tangentialvektor an τ in Xt.Dann sei für jedes t die kovariante Ab-
leitung ∇ẋtϕ von ϕ in Richtung ẋt definiert durch:

∇ẋtϕ := lim
t→0

1
h

[τ t+ht (ϕ(xt+h))− ϕ(xt)]

14


