1 Lie-Gruppen

Ein Lie-Gruppe ist eine Gruppe und gleichzeitig differenzierbare Mannigfal-
tigkeit fiir die gilt:
(a,b) € G—atb

ist eine differenzierbare Abbildung. Sei L, (bzw. R,) die Translation auf G
von links (bzw. von rechts), d.h.

Lox = ax R,x=xa VYaed@G
Fiir a € G sei ad(a) der innere Automorphismus definiert durch:
ad(a)(z) ;== axa™' Vzre G

Sei g die Algebra der linksinvarianten Vektorfelder auf G, d.h. die Menge
aller Vektorfelder X auf G fiir die gilt:

XRax - Ra*X:v

Dann gilt g ist isomorph zu T.G. Die Abbildung ad(a) erzeugt eine Darstel-
lung von G in g, die sogenannte adjungierte Darstellung, die wir mit Ad(a)
bezeichnen.
A € g erzeugt eine 1-Parametergruppe auf G. Sei a; die Kurve, die die
Gleichung

La—l*dt = Ae apg = €

16st.Wir definieren
exp(A):=a1 — a = exp(ta)
Operiere nun G auf einer differenzierbaren Mannigfaltigkeit M, d.h.
1. Fiir alle a € G existiert eine 1 : 1 Transformation x +— za in M
2. (a,x) € Gx M — x € M ist differenzierbar.
3. z(ab) = (za)b

Bemerkung 1.1 Wir schreiben Rq,x fir xa und Lqx fir ax. Da R, Le
1:1 und wegen 3) gilt Lo = Re = idyg

Definition 1.2 G operiert effektiv (bzw. frei) auf M < Rqx = x fir alle
(bzw. fir ein) x € M, so ist a = e.



Definition 1.3 Operiere G von rechts auf M. Sei A € g, dann sei A* €
X(M) definiert durch:

. d
Al = E(exp(tA)x)t:o

wobei X (M) die Vektorfelder auf M sind.

Lemma 1.4 Sei G Lie-Gruppe und M differenzierbare Mannigfaltigkeit. G
operiere auf M von rechts. Die Abbildung

o:g — X(M)
A — A7

ist ein Lie-Algebra-Homomorphismus.

Operiert G effektiv auf M so ist o ein Isomorphismus.

Operiert G frei auf M so gilt fiir jedes A € g # 0, o(A) verschwindet nie
auf M.



2 Faserbiindel

Sei G Lie-Gruppe und M differenzierbare Mannigfaltigkeit.

Definition 2.1 Ein (diff.bares) Hauptfaserbindel (HFB) P(M,G,m) dber
M mit Gruppe G besteht aus einer (diff.baren) Mannigfaltigkeit P und einer
Operation von G auf P mit:

1.

G operiert frei auf P von rechts

(u,a) € P x G —ua= Rqu € P

2. M ist Quotient von P beziiglich der Gruppenoperation von G, d.h M =

P/G und die kanonische Projektion
T P—-M

ist differenzierbar.

3. P st lokal trivial, d.h. fir alle x € M ezistiert eine Umgebung U(x) C
M, sodafi 7= 1(U(x)) isomorph zu U x G ist, in dem Sinnes, daf ein
Diffeomorphismus

.7 U) — UxG
u = (m(u), o(u))
extstiert mit
o : 1 Y U) = G und p(ua) = p(u)a u € Pa € G
Bezeichnungen

1. Ein Hauptfaserbiindel wird mit P(M,G,n), P(M,G) oder mit P be-
zeichnet.

2. P heifit “totaler Raum” oder “Biindelraum”.

3. M heifit “Basisraum”

4. G heifit “Strukturgruppe”

5. 7~ !(x) heifit “Faser” von z und ist Untermannigfaltigkeit von P, dif-

feomorph zu G.



Bemerkung 2.2 P(M,G) heifst trivial, falls gilt:
P =M x G und Ryu = (z,ab) mit u = (z,a)
Definition 2.3 Sei P Hauptfaserbiindel. Sei
c:g — X(P)
A — A"

die von der Operation von G induzierte Abbildung. A* heif$t Fundamentales

Vektorfeld beziiglich A.

Da die Operation von G Fasern in sich abbildet, ist A}, tangential an die
Faser in u. Weil G frei auf P operiert, verschwindet A* genau dann, wenn
A = 0. Daraus folgt, da die Dimension der Faser gleich der Dimension von
g ist, daf} die Abbildung:

A — (A%,

ein linearer Isomorphismus auf den Tangentalraum der Faser in u ist.

Lemma 2.4 Sei A* fundamentales Vektorfeld zu A. Dann ist fiir jedes A €
G, (Ry)+A* fundamentales Vektorfeld zu (Ad(a=1))A

Beweis: A* ist induziert von der Kurve a; mit a; = exp(tA). Dann gilt,
(Rq)+A* ist induziert von RyRq, Rq—1 = Ryq,q-1. Desweiteren ist aaia™! die
Einparametergruppe erzeugt von (Ad(a™'))A € g.

g

Definition 2.5 Sei P(M,G) HFB und F (diff.bare) Mannigfaltigkeit, auf
der G wvon links operiert. Das zu P assoziierte Faserbiindel E(M, F,G, P)
mit Standartfaser F wird wie folgt konstruiert. Sei eine Operation von G
auf P x F definiert durch:

a:(u,§) € Px F (ua,a'€) e Px F
E sei definiert als P xg F' Quotient beziiglich der obigen Operation. Sei

g E— M
die Abbildung, die durch die Abbildung
PxF — M

ux§& — w(u)

nduziert wird.



Bemerkung 2.6 Es gilt:
7N U)=2U xG.
Dabher ist die Operation von G auf 7=1(U) x F gegeben durch
(z,a,6) — (z,ab,b71&)  (2,0,§) eUxGxF, beG

Daher gilt
p (U) =2 U X F

E erhilt seine differenzierbare Struktur indem wir die Karten
UxF—75;'(U)
einfihren.

Lemma 2.7 Sei P(M,G) HFB und E(M, F, G, P) das dazu assoziierte Biindel.
Fir allew € P und § € F sei uf definiert als das Bild von (u,§) € P x G
unter kanonische Projektion P x ' — E. Dann ist jedes u eine Abbildung
von F nach Fy = 75" (x) mit 7(u) = z und

(ua)§ = u(af)
Beweis: Sei u lokal gleich (z,b), dann gilt

(ua)§ - (.%', ab, {) = (.%, b, a§) = u(a{)

Beispiel 1: Rahmenbiindel L(M)

Sei M Mfg., dim M=n
Ein linearer Rahmen w an einem Punkt x € M ist eine geordnete Basis
{Xy,.., X, } von T, M. Sei

L,(M) := {u]u ist linearer Rahmen in =}

Sei L(M) = || Lz(M) disjunkte Vereinigung.
zeM
Behauptung: L(M) ist HFB.

Beweis: Sei GL(n;R) die Gruppe der invertierbaren nxn-Matrizen. GL(n; R)
operiert auf L(M) wie folgt:

Sei a = (a;j) € GL(n;R) und v = (X1,...,Xy) € Ly. va = (Y1,...,Y,) € L,
sei definiert durch:

n
¥ =3
=1

Eine differenzierbare Struktur wird am Ende eingefiihrt.



1. G operiert offensichtlich frei auf L(M).

2. Sei
T LM) — M

uel, —
Es gilt
m(u) =7(v) = v,u € Ly(M) = Ja € GL(n;R) : v = ua
Daraus folgt:
M =P/G

3. Seien (0x1, ..., 0x,) lokale Koordinaten in U C M. Dann lé8t sich jeder
Rahmen u = (X1, ..., X,) eindeutig darstellen durch

n
Xl' = Z Xijal‘j
7=1

wobei (X;;) € GL(n;R). Daraus folgt, da 7#=1(U) 1 : 1 mit U x
GL(n;R) ist.

Die differenzierbare Struktur erhilt man nun durch die Karten
U x GL(n;R) — 7~ Y(U)

Beispiel 2:Das Tangentialbiindel T'(M).

Operiere GL(n;R) von links auf R” durch Matrixmultiplikation auf Vek-
toren beziiglich der Standartbasis. Das Tangentialbiindel T'(M) sei das zu
L(M) assoziierte Faserbiindel mit Standartfaser R"”. Dann ist T'(M) lokal
diffeomorph zu U x R™ und die Fasern iiber x sind die Tangentialriume
T,(M). Das wird anschaulich, wenn wir die in Lemma 2.7 erw&hnte Abbil-
dung
w:R" — 15 (x) mit z = 7(u)

betrachten. Sei ey, ..., e, die Standartbasis auf R™. Dann definieren wir fiir
u={X1,...,X,} € Ly(M) die Abbildung:

ue; = X;
durch lineare Fortsetzung. Es ist klar das gilt:

(ua)§ = u(ag)



Definition 2.8 Ein Schnitt eines Biindels E(M, F, G, P) ist eine Abbildung
s:M—FE

fiir die gilt 7 o s = idyy



3 Zusammenhinge auf Hauptfaserbiindeln

Sei P(M,G) HFB. Fiir u € P bezeichne G,, den Unterraum von T;,(P), der
tangential an die Faser 7~ !(x) mit z = 7(u) liegt.

Definition 3.1 Ein Zusammenhang I' in P ist die Zuordnug eines Unter-
raums Q. C T, (P), sodaf$ fiir alle u € P gilt:

1. Ty(P) = Gy + Qy (direkte Summe)
2. Qua = Rox@Qy Yu€ePacG

3. Qqu hingt differenzierbar von u ab.

Bezeichnungen :

1. Gy heifit “vertikaler Unterraum”, ), heiflt “horizontaler Unterraum”

2. Ein Vektor X heifit vertikal (bzw. horizontal) falls X € G, (bzw.
X € Qu).

3. Jedes X € T, (P) kann eindeutig geschrieben werden als:
X=Y+Z7 YeGy,ZeQu

Dann heiflen Y =: vX vertikale und Z =: hX horizontale Komponente
von X.

Definition 3.2 Sei w g-wertige 1-Form mit:

w: Tyu(P) — g
X — A

wobei (A*), = vX. w heifst “Zusammenhangsform” zu T.

Lemma 3.3 Die Zusammenhangsform w erfillt die folgenden Figenschaf-
ten:

1. w((A*)y) = A firalleue PAcg

2. (Ry)*w=Ad(aHw dh w((Ry):X)=Ad(a Hw(X)
fiir alle X € T,(P),a € G

Umgekehrt existiert fir jede g-wertige 1-Form w, die 1) und 2) erfillt, ein
eindeutiger Zusammenhang I' mit Zusammenhangsform w.



Beweis:1. ist klar.

Da man jedes Vektorfeld auf P eindeutig in horizontalen und vertikalen
Anteil zerlegen kann, betrachten wir die Falle X ist horizontal und X ist
vertikal.

2a.)Sei X horizontal, dann gilt R,.(X) ist horizontal:

= Ri(w(X))=wRe(X))=0 und Ad(a"w(X)=0

2b.)Sei X vertikal. Dann kénnen wir annehmen, dafl X ein fundamentales
Vektorfeld A* ist. Dann ist Rq«(X) fundamentales Vektorfeld zu Ad(a=!)A
und es gilt:

(R3)wu(X) = wua((Ra)X) = wua((Ad(a™)A)*) = Ad(a™ 1) A = Ad(a™") (wu (X))
Sei nun umgekehrt w mit 1. und 2. gegeben. Wir definieren:
Qy = {X € T, P|lw,(X) =0}

Behauptung: u +— @, ist ein Zusammenhang.
-

Sei G, der Tangentialraum an die Faser in u. Es gilt:
dimT,(P) = dim(im(wy)) + dim(ker(w,,))
Da ker(wy) = Qu, g isomorph zu G, ist und Q, NG, = ( gilt:
Tu(P) = Gu+ Qu
Sei X € Q,, dann gilt:
Wua(Rax X) = Riwy(X) = Ad(a™Hw,(X) =0
Sei Y € Quq, dann gilt:
Guaat (Ra1,Y) = R 1ua(Y) = Ad(a" oY) = 0

daraus folgt:
RQu=Qu. YuePacCG



Die Projektion 7 : P — M induziert dr : T,,(P) — T(M) wobei u € P und
m(u) = x.

Definition 3.4 Sei I' gegeben. Dann gilt:
dr: Qy — Tp(M) u€ Pr(u)=ux

ist ein Vektorraumisomorphismus.
-

1. dimQy = dimT,M ist klar, da P lokal diffeomorph ist zu U x G

2.dn(X)=0=>Xe€G, = X € Qu

L
Der Horizotale Lift eines Vektorfeldes X auf M ist das eindeutige horizon-
tale Vektorfeld X* auf P, fir das gilt

u

dW(X*> = X7r(u) Yu € P

3.1 Kriimmungsform und Strukturgleichung

Definition 3.5 Sei P(M,G) Hauptfaserbiindel und p sei eine Darstellung
von G in einem endlichdimesionalen Vektorraum V .FEine pseudotensorielle
Form vom Grad r auf P vom Typ (p,V'), ist eine V—wertige r-Form ¢ auf
P fiir die gilt:

Ryp=pla)p a€G

p heifit tensorielle Form falls gilt:
o(Xy,...,X,)=0
sobald ein Vektor X; wvertikal ist.
Sei I' Zusammenhang auf P mit T,,(P) = G, + @, und
h:Tu(P) = Qu
sei die Projektion auf den horizontalen Raum.

Lemma 3.6 Sei ¢ pseudotensorielle r-Form auf P vom Typ (p,V), dann
gilt:
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1. Sei ph definiert als
(Ph)u(X1,..., Xy) = ou(hX1, ..., hX;)
Dann ist ph tensorielle r-Form von Typ (p, V).
2. dy is eine pseudotensorielle (r + 1)-Form vom Typ (p, V).

3. Die (r+1)-Form Dy = (dp)h ist eine tensorielle Form vom Typ
(p, V).

Beweis:

1. folgt daraus, daf} gilt
hoRy = Ryx0oh

Raw(hX 4 0X) = Rge(hX) + Ray(vX) = h(Rgu X) 4 v(Rgse X)
———— N——

horizontal verikal

aus der Eindeutigkeit der Zerlegung folgt das gewiinschte.

L

Es gilt

R:(ph)u(X1y. o, X)) = (¢h)ua(RasX1, .- -, RaxXy)
= (Q)ua(hRaxX1, ..., hReX,)
(0)ua

Sei nun X; vertikal, dann gilt hX; = 0 — (¢h)(X1,...,hX;, ..., hX,) =
0

2. Folgt genauso aus der Tatsache das gilt:

doR, =R)od

3. folgt aus 1) & 2)

Die Form Dy = (dp)h heifit duere kovariante Ableitung von ¢

11



Definition 3.7 Sei p = Ad die adjungierte Darstellung von G in der Lie-
Algebra g. Dann ist die Zusammenhangsform w pseudotensorielle 1-Form
vom Typ (p,g) oder auch adG.

Sei Q := Dw tensorielle 2-Form vom Typ adG. Q heifst Krimmungsform
von w.

Theorem 3.8 (Strukturgleichung)
Sei w Zusammmenhangsform und Q Krimmungsform.Dann gilt:

dw(X,Y) = —%[w(X),w(X)] LOX,Y)  fir X,Y € Tu(P),ue P

Beweis: Da wir X, Y eindeutig in vertikalen und horzontalen Anteil zerlegen
koénnen und €2 linear auf beiden Stellen ist, betrachen wir:

1. X,Y seien horizontal. Dann gilt:

dw(X,Y) = dw(hX,hY) = Dw(X,Y) = Q(X,Y) — = [w(X),w(Y)]

2. X,Y seien vertikal. Dann kénnen wir annehmen, dafl X = A*,Y = B*
in u, wobei a*, B* fundamentale Vektorfelder sind.

2dw(A%, BY) = A"(w(B")) - B (w(A")) —w([4", BT])
= —w([4, Bl") = =[A, B] = —[w(X),w(Y)]

Da gilt w(A*) = A, [A*, B*] = [A, B]*. Weiter ist
QX,Y) =dw(hX,hY) =0
3. Sei X horizontal, Y vertikal. Wir setzen X horizontal zu einem Vek-

torfeld X fort, sei Y = A* in u. Da die rechte Seite der Gleichung
verschwindet bleibt zu zeigen dw(X, A*) = 0. Es gilt:

2dw (X, A”) = X (w(A7)) — A (w(X)) - w([X, A7) = —w([X, A™])
Es bleibt zu zeigen: Ist X horizontal, so auch [X, A*].

r

Sei A* induziert durch R,, wobei a; 1-Parametergruppe zu A € G.
Dann gilt:

1
[X, A*] = lim —[Rg,+«(X) — X]
t—0 ¢
Nun sind X und R,, X horizontal, damit auch [X, A*].

L
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Theorem 3.9 (Bianchi Identitdt)

DQ=0

3.2 Parallelverschiebung und horizontaler Lift

Definition 3.10 FEin horizontaler Lift einer Kurve 7 = x4, a <t < b in
M ist eine horizontale Kurve 7 = uy, sodaf$ gilt:

m(ug) =2 a<t<b

Bemerkung 3.11 Dieser Lift hingt wie folgt mit dem Lift von Vektorfel-
dern zusammen. Sei X* Lift von X, dann ist die Intergralkurve von X*
durch wy der Lift der Intergralkurve von X durch m(uy) = xp.

Lemma 3.12 Sei 7 =x;, 0<t <1 C"“Kurvein M, dann gilt: Fir alle
u € P mit m(u) = zy existiert ein eindeutiger Lift T* = u; von T, sodafs
U = ug.

Beweis: lang!

Wir haben nun durch die Hochhebung von 7 zu 7* eine Abbildung 7 :
7 (zg) — 7 H(z1).

Definition 3.13 Die Abbildung 7 : w(xo) — 7(x1) heifit parallele Verschie-
bung entlang 7. Aufgrund des folgenden Lemmas ist T ein Isomorphismus.

Lemma 3.14 Die Parallelverschiebung vertauscht mit den Operationen von
G auf P,d.h.:
ToR,=R,o0T Va € G

Definition 3.15 Auf E wird der Zusammenhang, d.h. der horizontale Un-
terraum Q. und der vertikale Unterraum F,, von T, E wie folgt definiert:

1. Sei F,, der Tangentialraum an die Faser in w.

2. Betrachte die Abbildung:

PxF — E

ux§& — uf
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Sei nun (u,§) so, daff u§& = w. Dann halte & fest und sei f definiert

als:
f:P — FE
flv) = o€
Dann sei:
Qo = f*(Qu)

Der Raum Q,, ist unabhangig von der Wahl von (u,§) und es gilt:

T,E=Q, + F, direkte Summe

r

habe ich keine Lust zu

L

Definition 3.16 Analog zum horizontalen Lift und der Parallelverschie-
bung auf P werden Lift und Parallelverschiebung auf E definiert.
3.3 Kovariante Ableitung in Vektorbiindeln

Sei F'=R,C. GL(M, F) operiere auf F™ durch Multilikation von von links.
Sei P(M,G) HFB und p eine Darstellung von G nach GL(M, F™). Dann
sei E(M, F™, G, P) das assoziierte Biindel mit Standartfaser F™, wobei G
durch p auf F™ operiert.

Sei S die Menge der Schnitte

s: E— M

Wie bereits bekannt ist S ein F-Vektorraum und ein Modul iiber den F-
wertigen Funktionen.

Definition 3.17 Sei ¢ Schnitt in E, defintert auf T = x¢ ,sodaf
mEo@(xy) = xy Vit

Sei x; Tangentialvektor an T in X¢.Dann sei fiir jedes t die kovariante Ab-
leitung Vi, von ¢ in Richtung ¢ definiert durch:

h
LA

Vi = lim = [ (plan) - p(e0)]
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