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1. Einführung

1.1. Clifford Algebra. Sei V ein k–Vektorraum mit char(k) 6= 2, b bilineare
Form auf V und q die dazu assoziierte, quadratische Form auf V . Sei ferner

T (V ) =
⊕
k≥0

⊗kV = k⊕ V ⊕ (V ⊗ V )⊕ (⊗3V )⊕ . . .

Tensoralgebra auf V und Iq(V ) ein Ideal in T (V ), der durch Elemente der Form

v ⊗ w + w ⊗ v + 2b(v, w)1

mit v, w ∈ V erzeugt wird, d.h.,

Iq =
{ ∑

endlich

Vi⊗(vi⊗wi+wi⊗vi+2b(vi, wi)1)⊗Wi| vi, wi ∈ V, Vi,Wi ∈ T (V )
}
.

Definition 1.1. Ein Paar (Cl(V, q), iq) = Cl(V, q) heißt Cliffordalgebra von
(V, q) falls
(1) Cl(V, q) ist eine assoziative k–Algebra mit Eins.
(2) iq : V → Cl(V, q) ist eine lineare Abbildung und

iq(v)2 = −q(v) · 1

gilt für alle v ∈ V .
(3) (Universelle Eigenschaft) IstA eine weitere assoziative k–Algebra mit

1A sowie u : V → A eine k–lineare Abbildung mit u(v)2 = −q(v) · 1A, so
existiert genau ein Algebrahomomorphismus ũ : Cl(V, q)→ Amit u = ũ◦iq.

V

u
''PPPPPPPPPPPPPPPP

iq
// Cl(V, q)

∃! ũ
��

A
Satz 1.2. Sei V ein k–Vektorraum.

i) Jede quadratische Form q auf V induziert eine Cliffordalgebra Cl(V, q).

Datum: Mai 2001.
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2 SEMINAR ÜBER DIRAC–OPERATOREN

ii) Seien Cl(V, q) und Ĉl(V, q) zwei Cliffordalgebren der gleiche quadratischen

Form q, dann existiert ein Isomorphismus Ψ : Cl(V, q) → Ĉl(V, q) der Al-

gebren mit Ψ ◦ iq = îq, d.h.,

V

�

iq
//

îq ''OOOOOOOOOOOOO Cl(V, q)

Ψ
��

Ĉl(V, q).

Beweis. (Existenz) Sei Cl(V, q) = T (v)/Iq(V ) und π : T (V ) → Cl(V, q) die
Projektion sowie i : ↪→ T (V ) natürliche Inklusion, so wird durch

iq = π ◦ i
eine lineare Abbildung iq : V → Cl(V, q) definiert, für die iq(v)2 = −q(v) · 1
nach Konstruktion gilt. Weiterhin, jede lineare Abbildung u : V → A in eine
Algebra setzt sich mittels

U(v1 ⊗ · · · ⊗ vk) = u(v1) · · ·u(vk)

zu einem Algebrahomomorphismus U : T (V ) → A fort. Gilt u(v)2 = −q(v)1A,
so erhalten wir

Iq(V ) ⊂ ker(U)
und daher induziert U einen Homomorphismus

ũ : Cl(V, q)→ A
mit der gewünschten Eigenschaft. Ist ũ′ : Cl(V, q)→ A ein weiterer Homomor-
phismus mit

u = ũ ◦ iq = ũ′ ◦ iq.
Dann stimmen ũ und ũ′ auf iq(V ) ⊂ Cl(V, q) überein. Nun erzeugen aber die
Elemente aus dem Vektorraum V die Tensoralgebra T (V ) und damit auch die
Cliffordalgebra Cl(V, q) multiplikativ. Demnach ist ũ ≡ ũ′.
Eindeutigkeit ist eine direkte Konsequenz der dritten Bedingung für Cl(V, q).

�

Folgerung. Die lineare Abbildung iq : V → Cl(V, q) ist injektiv. Die Menge
iq(V ) ⊂ Cl(V, q) erzeugt die Algebra Cl(V, q) multiplikativ, d.h., für eine Basis
{v1, . . . , vn} von V kann ϕ ∈ Cl(V, q) in der Form

(S) ϕ =
∑

iν∈{0,1}

fi1...inv
i1
1 · · · v

in
n , mit fi1...in ∈ R

geschrieben werden (Diese Darstellung ist eindeutig).
Wir wollen mit Cl [k](V, q) die Menge der Elemente der Cliffordalgebra Cl(v, q)

beschreiben, die von der Form (S) sind mit j1+· · ·+jn = k. Also ist Cl [0](V, q) =
k und Cl [1](V, q) = V . Ferner lassen sich sofort Cliffordmultiplikationsregeln ab-
leiten

(R) vi · vj + vj · vi = −2b(vi, vj).
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Spin–DARSTELLUNG 3

Auf der Cliffordalgebra Cl(V, q) definieren wir eine Involution

(1.1) α : Cl(V, q)→ Cl(V, q) mit α(v) = −v auf V,

genauer α(iq(v)) = −iq(v).
Weil α2 = idV ist, existiert eine Zerlegung

Cl(V, q) = Cl (0)(V, q)⊕ Cl (1)(V, q),

wobei Cl (k) := {ϕ ∈ Cl(V, q)|α(ϕ) = (−1)kϕ für k = 0, 1} Eigenräume von α
sind. Es gilt

Cl (j)(V, q) · Cl (k)(V, q) ⊂ Cl (j+k)(V, q).
Es ist einfach einzusehen, dass

Cl (0)(V, q) =
⊕

k=2(m+1)

Cl [k](V, q) und Cl (1)(V, q) =
⊕

k=2m+1

Cl [k](V, q)

ist, wobei m = 1, . . . , [n−1
2 ] und n = dimk V .

Sei v1, . . . , vn ONq–Basis von V , dann ist

(1.2) > : Cl(V, q)→ Cl(V, q) mit a 7→ a>

definiert durch

(1.3) (vi1 · · · vik)> = vik · · · vi1 = (−1)(
k
2)vi1 · · · vik , weil b(vi, vj) = δij ,

wobei vi1 · · · vik mit 1 ≤ i1 < . . . < ik ≤ n Basisvektoren der Clifforgalgebra
Cl(V, q) sind, mit deg(vi1 · · · vik) = k. Für alle a, b ∈ Cl(V, q) gilt

(a · b)> = b> · a>,

also ist insbesondere für a ∈ Pin(V, q)

a · a> = a> · a =

{
+1, falls deg(a) = 0(2)
−1, falls deg(a) = 1(2).

Damit können wir im Fall deg(a) = 0(2) auch vom Inversen von a sprechen,
mit a> = a−1 und im Fall deg a = 1(2) setzen wir a−1 = α(a)a>.
Satz 1.3. a) Das Zentrum der Cliffordalgebra Cl(V, q) ist gegeben durch

(Z) Zent(Cl(V, q)) =

{
k, falls dimk V = 0(2),
k⊕ k[v1 · · · vn], falls dimk V = 1(2).

b) Das Zentrum der Algebra Cl (0)(V, q) ist gegeben durch

(Z(0)) Zent(Cl (0)(V, q)) =

{
k⊕ k[v1 · · · vn], falls dimk V = 0(2),
k, falls dimk V = 1(2).

Bemerkung. Wir werden in Theorem 1.4 den tieferen Grund für dieses Ver-
halten kennen lernen.

Beweis. Sei ik := {i1, . . . , ik} mit 1 ≤ i1 < . . . < ik ≤ n und vik := vi1 · · · vik
mit vij ∈ V . Dann muss für ein a aus dem Zentrum

(∗) vik · a = a · vik für alle ik ∈ P+({1, . . . , n}) = P+
n
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gelten, also insbesondere für alle i2 ∈ P+
n , wobei P+

n Menge mit monoton geor-
denten Teilmengen ist. Sei also a =

∑
j`
aj`vj` , dann ist (∗) equivalent zu∑

j`∈P+
n

aj`vi2 · vj` · v
−1
i2

=
∑

j`∈P+
n

aj`vj` .

Es gilt

(V) vik · vj` · v
>
ik

= (−1)k·`−](ik∩j`)vj` .

Da nun vi2 · vj` · v
−1
i2

= (−1)](j`)](i2)−](j`∩i2)vi2 · v
−1
i2
· vj` = (−1)](j`∩i2)vj` , so ist

aj` = (−1)](j`∩i2)aj` für alle i2 ∈ P+
n

eine notwendige Bedingung für zentrale Elemente. Daraus folgt sofort

aj` = 0, falls j` 6= ∅, {1, . . . , n},
d.h.,

Zent(Cl(V, q)), Zent(Cl (0)(V, q)) ⊂ k⊕ k[v1 · · · vn].

a Ist n = 2m+ 1 ungerade, so liegt v1 · · · vn nicht in Cl (0)(V, q) und damit gilt

Zent(Cl (0)(V, q)) = k.

Andererseits, gilt für ungerade n und j` = {1, . . . , n}, also ` = n

vik · vjn · v>ik = (−1)(2m+1)·k−kvjn = vjn ⇒ vik · vjn = vjn · vik .

Damit kommutiert vjn = v1 · · · vn mit allen Elementen der Algebra Cl(V, q),
und es folgt

Zent(Cl(V, q)) = k⊕ k[v1 · · · vn].
a Ist n gerade, so ist ](jn ∩ ik) = 0 resp. 1(2), falls k gerade resp. ungera-
de ist. Damit ist also nach Vertauschungsregel (V) Zent(Cl(V, q)) = k, sowie
Zent(Cl (0)(V, q)) = k⊕ k[v1 · · · vn]. �

Wir wollen einige zusätzliche Bezeichnungen einführen, wie z.B.

Clr,s := Cl(Rr,s, 〈. , .〉sr),
wobei 〈x, x〉sr =

∑r
i=1(xi)2 −

∑s
i=r+1(xi)2 und insbesondere

Cln := Cln,0,

mit euklidischem Skalarprodukt 〈. , .〉. Entsprechend erhalten wir

Cl(V, q) = ClC(V, q) = Cl(V, q)⊗R C.
Wir wollen uns jetzt mit der folgenden Zerlegung der Cliffordalgebra Cl(V, q)

Cl(V, q) = Cl (0)(V, q)⊕ Cl (1)(V, q)

beschäftigen, dabei ist Cl (0)(V, q) = Fixα(Cl(V, q)).
Theorem 1.4. Es existiert ein Algebraisomorphismus

Clr,s ∼= Cl (0)
r+1,s

für alle r, s, insbesondere gilt für alle n

(1.4) Cln,0 = Cln ∼= Cl (0)
n+1.
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Beweis. Wir werden nur die zweite Aussage beweisen, weil diese für spätere
Überlegungen wichtig wird. Die allegemeine Aussage wird jedoch analog bewie-
sen.

Wähle eine ON–Basis {e1, . . . , en+1} des Rn+1. Sei dann Rn = span
R
{ei| i =

1, . . . , n} und eine Abbildung

Φ : Rn → Cl (0)
n+1, mit Φ(ei) = en+1 · ei,

die wir durch lineare Fortsetzung erhalten. Beachte, dass der Bildraum richtig
ist, denn

α(Φ(ei)) = α(en+1 · ei) = α(en+1) · α(ei) = (−1)2en+1 · ei.

Für Rn 3 x =
∑n

i=1 x
iei erhalten wir

Φ(x)2 =
n∑

i,j=1

xixj · en+1 · ei · en+1 · ej

(R)
=

n∑
i,j=1

xi · xj · ei · ej

= −〈x, x〉n · 1,

denn ei · ej + ej · ei = −2δij und damit∑
1≤i<j≤n

xi · xj · ei · ej +
∑

1≤j<i≤n
xi · xj · ei · ej = 0.

Aus der universellen Eigenschaft der Cliffordalgebra wissen wir, dass Φ ein
eindeutiges Algebrahomomorphismus

Φ̃ : Cln → Cl (0)
n+1

induziert, d.h.,

R
n

i〈.,.〉n
//

Φ ""EEEEEEEE Cln

∃! Φ̃
��

Cl (0)
n+1.

Sei e = ei1 · · · eik ∈ Cln, mit 1 ≤ i1 < . . . < ik ≤ n, dann ist

Φ̃(e) = Φ(ei1) · · ·Φ(eik) = en+1 · ei1 · · · en+1 · eik
(R)
=

{
(−1)ei1 · en+1 · en+1 · ei2 · · · (−1)eik−1

· en+1 · en+1 · eik
(−1)ei1 · en+1 · en+1 · ei2 · · · en+1 · eik−1

· en+1 · eik

=

{
ei1 · · · eik , falls k = 0(2)
−ei1 · · · eik−1

· eik · en+1, falls k = 1(2)

und das sind genau die Basisvektoren von Cl (0)
n+1. �
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1.2. Darstellung.
Definition 1.5. Sei K ⊇ k Oberkörper von k. Dann heißt k–Algebra Homo-
morphismus

ρ : Cl(V, q)→ EndK(W )
eine K–Darstellung der Cliffordalgebra Cl(V, q), wobei W ein endlich diminsio-
naler Vektorraum über K ist. Der Vektorraum W heißt Cl(V, q)–Modul über
K. Wir wollen ferner eine vereinfachte Darstellung

ρ(ϕ)(w) def== ϕ.w

benutzen.
Bemerkung. In der Definition benutzter Ausdruck k–Algebra Homomorphis-
mus bedeutet, daß ρ k–lineare Abbildung ist, die zusätzlich folgende Bedingung
erfüllt

ρ(ϕ · ψ) = ρ(ϕ) ◦ ρ(ψ)
für alle ϕ,ψ ∈ Cl(V, q). Beachte ferner, dass wir aus φ · ψ + ψ · φ = −2b(φ, ψ)

ρ(φ) ◦ ρ(ψ) + ρ(ψ) ◦ ρ(φ) = −2b(φ, ψ)1

erhalten.
Wir sind an der K–Darstellung der Clifford Algebra Clr,s für K ∈ {R,C,H}

interessiert. Es ist zu beachten, daß ein komplexer Vektorraum ein reeller Vek-
torraum W ist, mit einer R–linearen Abbildung J : W → W , mit J2 = −1.
Damit ist eine C–Darstellung der Clifford Algebra Clr,s eine reelle Darstellung

ρ : Clr,s → EndR(W ),

so daß
ρ(ϕ) ◦ J = J ◦ ρ(ϕ)

für alle ϕ ∈ Clr,s gilt. Denn das Bild von ρ kommutiert mit der Teilalgebra
span

R
{1, J} ∼= C.

Analog verhält sich das mit der Quaterninonen Darstellung von Clr,s. Hier
müssen wir drei R–lineare Transformationen I, J,K auf W betrachten, mit

I2 = J2 = K2 = −1

IJ = −JI = K, JK = −KJ = I, KI = −IK = J.

Damit ist W ein H-Modul. Eine R–Darstellung ρ : Clr,s → EndR(W ) ist quan-
tornionische, wenn

[ρ(ϕ), I] = 0, [ρ(ϕ), J ] = 0, [ρ(ϕ),K] = 0

für alle ϕ ∈ Clr,s ist.
Bemerkung 1.6. Jede komplexe Darstellung von Clr,s läßt sich zu Darstellung
der komplexen Cliffordalgebra ClCr,s = Clr,s erweitern.
Definition 1.7. Sei K ⊃ k, V k–Vektorraum und q quadratische Form auf V .
Dann heißt eine K–Darstellung ρ : Cl(V, q) → EndK(W ) reduzibel, wenn der
Vektorraum W in direkte nicht triviale Unterräume W1 und W2 zerfällt, d.h.,

W = W1 ⊕W2,
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so dass ρ(ϕ)Wj = ϕ.Wj ⊆ Wj für j = 1, 2 und für alle ϕ ∈ Cl(V, q). Beachte,
dass in diesem Fall wir ρ wie folgt aufschreiben können

ρ = ρ1 ⊕ ρ2,

mit ρj(ϕ) = ρ(φ)|Wj für j = 1, 2. Eine Darstellung heißt irreduzibel, wenn sie
nicht reduzibel ist.
Satz 1.8. Jede K–Darstellung ρ einer Cliffordalgebra Cl(V, q) kann in direkte
Summe

ρ = ρ1 ⊕ . . .⊕ ρm
irreduziblen Darstellungen ρj für j = 1, . . . ,m zerlegt werden.

Beweis. Wenn ρ reduzibel ist, dann können wir diese Darstellung in ρ = ρ1⊕ρ2

zerlegen. Wenn nun entweder ρ1 oder ρ2 reduzibel ist, können wir ρ weiter
zerlegen. Diese Zerlegung ist endlich, da dimKW <∞ ist. �

Weil wir nicht an einzelnen Darstellungen der Cliffordalgebra interessiert
sind, sondern nur an den Äquivalenz Klassen, führen wir deshalb folgende De-
finition ein:
Definition 1.9. Zwei Darstellungen ρj : Cl(V, q) → EndK(Wj), mit j = 1, 2
heißen äquivalent, wenn ein F ∈ IsoK(W1,W2) existiert, so dass

F ◦ ρ1(ϕ) = ρ2(ϕ) ◦ F2

für alle ϕ ∈ Cl(V, q) gilt.
Theorem 1.10. Sei K ∈ {R,C,H} und betrachte den Ring K(n) = Mat(n ×
n,K) als eine Algebra über R. Dann ist die natürliche Darstellung ρ von K(n)
auf den Vektorraum K

n, bis auf die Äquivalenz, die einziege irreduzible reelle
Darstellung von K(n).

Die Algebra K(n)⊕K(n) hat genau zwei Äquivalenzklassen der irreduziblen
reellen Darstellungen. Diese sind durch

ρ1(φ1, φ2) = ρ(φ1) und ρ2(φ1, φ2) = ρ(φ2)

gegeben.

2. Darstellung der Cliffordalgebra

Tabelle
n Cln = Cl (0)

n+1 Cln = Cl
(0)
n+1

1 C C⊕ C
2 H C

2×2

3 H⊕H C
2×2 ⊕ C2×2

4 H
2×2

C
22×22

5 C
22×22

C
22×22 ⊕ C22×22

6 R
23×23

C
23×23

7 R
23×23 ⊕ R23×23

C
23×23 ⊕ C23×23

8 R
24×24

C
24×24

Wir haben bereits bewiesen ,dass
i) wenn dimR V = 2k, dann ist Cl(V, q) ∼= End(C2k) und
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ii) wenn dimR V = 2k + 1, dann ist Cl(V, q) ∼= End(C2k)⊕ End(C2k).
Jetzt wollen wir eine zusätzliche Struktur in der Darstellugn bestimmen.
Definition 2.1. Sei (e1, . . . , en) ON+–Basis des Rn. Dann ist

ω = e1 · · · en ∈ R[e1 · · · en] ⊂ Cln
der assoziierte Volumenelement. Wir definieren das entsprechende komplexe
Volumenelement ωC ∈ Cln durch

ωC =

{
i
me1 · · · en, falls n = 0(2), n = 2m

i
n+1

2 e1 · · · en, falls n = 1(2).

Man nennt ωC auch Chiralitäts–Operator.
Lemma. Der Volumenelement ω und damit auch ωC sind unabhängig von der
gewählten Basis, d.h., die Definition ist korrekt.

Beweis. Sei dazu (ê1, . . . , ên) eine weitere ON+–Basis des Rn, dann ist

êj = Aijei,

wobei A := (Aij) ∈ SO(n) und nach der Multiplikationsregel,

(R) eiej + eiej = −2δij ,

ê1 · · · ên = Ai11 ei1 · · ·A
in
n ein

= det(A)e1 · · · en = e1 · · · en.
Zu besserem Verständnis betrachten wir den Fall n = 2, dann ist

ê1 = cos θe1 + sin θe2

ê2 = − sin θe1 + cos θe2,

wobei

A =
(

cos θ sin θ
− sin θ cos θ

)
ist. Dann ist

ê1ê2 = − sin θ cos θe1e1 + sin θ cos θe2e2 + cos2 θe1e2 − sin2 θe2e1

(R)
= e1e2,

�

Satz 2.2. Für das Volumenelement ω gilt

1)

(2.1) ω2 = (−1)(
n+1

2 ),

2)

(2.2) v · ω = (−1)n−1ω · v für alle v ∈ V,
d.h.,

n = 1(2)⇒ ω ∈ Zent(Cln)

n = 0(2)⇒ ϕω = ωα(ϕ) für alle ϕ ∈ i〈.,.〉(Rn) ⊂ Cln.
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Für das komplexe Volumenelement ωC gilt

1)C Für alle n gilt

(2.3) (ωC)2 = 1.

2)C Für n = 1(2) ist ωC ∈ Zent(Cln) = C⊕ C[e1 · · · en].
Bemerkung. Wir können die Beziehung (2.1) auch wie folgt aufschreiben

ω2 =

{
+1 , falls n = 3 oder 4(4)
−1 , falls n = 1 oder 2(4).

Beweis. Sei (e1, . . . , en) ON+–Basis des Rn.
1) Dann ist ω = e1 · · · en und

ω2 = (e1 · · · en) · (e1 · · · en) = e1 · · · en · (en · · · e1)>

(1.3)
= (−1)(

n
2)e1 · · · en · en · · · e1

(R)
= (−1)

(n−1)n
2 (−1)n = (−1)

(n+1)n
2 .

2) Weil (e1, . . . , en) Basis des Rn ist, ist v = vjej . Damit reicht es die Beziehung
für Basisvektoren zu beweisen, sei dazu ej ∈ (e1, . . . , en), dann ist nach (R)

ej · e1 · · · en = (−1)e1 · ej · e2 · · · en = (−1)je1 · · · ej · ej · · · en
= (−1)j+(n−j)−1e1 · · · en · ej .

1)C Wir wissen, dass

ω2 =

{
+1, n = 3 oder 4(4)
−1, n = 1 oder 2(4).

Sei n = 1(2), dann ist (ωC)2 = i
n+1ω2 und damit

(ωC)2 = 1 =

{
i

4k+2(−1), n = 1(4)
i

4k+4(+1), n = 3(4).

Für n = 2m = 0(2) ist (ωC)2 = i
2mω2 und damit

(ωC)2 = 1 =

{
i

4k+2(−1), n = 2(4)
i

4k(+1), n = 0(4).

2)C Folgt unmittelbar aus 2); oder allgemeiner aus Satz 1.3 für ungerade n. �

Lemma 2.3. Sei ω das Volumennelement auf Cln, mit ω2 = 1 und seien ferner

π+ := 1
2(1 + ω) und π− := 1

2(1− ω).

Dann gilt für π±:

(2.4) π+ + π− = 1,

(2.5) (π+)2 = π+ und (π−)2 = π−,

(2.6) π+ · π− = π− · π+ = 0.
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Sei ωC komplexes Volumenelement auf Cln, dann gelten für

π+
C

:= 1
2(1 + ωC) und π−

C
:= 1

2(1− ωC)

entsprechende Aussagen:

(2.5C) π+
C

+ π−
C

= 1,

(2.6C) (π+
C

)2 = π+
C

und (π−
C

)2 = π−
C
,

(2.7C) π+
C
· π−
C

= π−
C
· π+
C

= 0.

Beweis. Die erste Aussage ist trivial; die restlichen folgen unmittelbar aus der
Voraussetzung ω2 = 1. So ist z.B.

(π+)2 = 1
4(1 + 2ω + ω2) = π+.

�

Daraus folgen triviale jedoch wichtige Aussagen:
Satz 2.4. Sei ω das Volumenelement auf Cln, mit ω2 = 1 und dimRR

n = n
ungerade, d.h., nach der obigen Bemerkung n = 3(4). Dann kann man Cln in
direkte Summe zwei isomorpher Unteralgebren Cl+

n , Cl−n zerlegen, d.h.,

(2.7) Cln = Cl+
n ⊕ Cl−n ,

wobei Cl±n = π± · Cln = Cln · π± und α(Cl±n ) = Cl∓n ist.
Für ungerade n gilt die entsprechende Aussage für die Cln:

(2.8) Cln = Cl+n ⊕ Cl−n ,

wobei

(2.9) Cl±n = π±
C
· Cln.

Beweis. Weil n ungerade ist, wissen wir nach Satz 2.2, dass ω ∈ R[e1 · · · en] ⊂
Zent(Cln) = R ⊕ R[e1 · · · en]. Damit sind auch π+ und π− Elemente des Zen-
trums von Cln und die Zerlegung (2.7) in Ideale folgt unmittelbar aus (2.4),(2.5)
und (2.6). Weil ω ein ungerades Element ist, d.h., degω = n, ist

α(π±) = π∓

und damit α(Cl±n ) = Cl∓n . Weil ferner α ein Automorphismus ist, sind die Ideale
Cl±n isomorph zueinander. Der komplexe Fall wird analog bewiesen �

Bemerkung. 1) Es wird auch sofort klar warum diese Zerlegung für gerade n
nicht finktioniert: Für gerade n liegt ω, bzw. ωC nicht im Zentrum von Cln,
bzw. Cln, d.h., die oben angegebene Cl±n , bzw. Cl±n sind nicht definiert.

2) Die Teilalgebra Cl (0)
n , bzw Cl

(0)
n liegt diagonal in der Zerlegung (2.8), bzw.

(2.9), d.h.,

Cl (0)
n

def== {φ ∈ Cln|α(φ) = φ} = X = {(ϕ, α(ϕ)) ∈ Cl+
n ⊕ Cl−n |ϕ ∈ Cl+

n }.

In der Tat sei (ϕ, αϕ) ∈ X mit degϕ = k, also ϕ ∈ Cl [k]
n , dann ist α(ϕ ·

α(ϕ)) = α(ϕ) · ϕ = (−1)kϕ · ϕ = ϕ · (−1)kϕ = ϕ · α(ϕ).
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Satz 2.5. Sei ρ : Cln → EndR(W ) eine irreduzible R–Darstellung, mit n =
3 + 4m. Dann ist entweder

ρ(ω) = 1 oder ρ(ω) = −1.

Beide Möglichkeiten können auftreten, und die entsprechenden Darstellungen
sind nicht äquivalent.

Analoge Aussage gilt auch für Cln, wenn n ungerade ist.

Beweis. Weil ω2 = 1 und ρ(1) = 1 ist ρ(ω2) = ρ(ω)2 = 1 und deshalb können
wir W in W+ und W− direkt zerlegen, also W = W+ ⊕ W−, wobei W±

Eigenräume von ρ(ω) zu Eigenwerten ±1 sind. Weil ω ∈ Zent(Cln) ist, gilt
ϕ · ω = ω · ϕ für alle ϕ ∈ Cln, und damit sind W± Cln–invariant, denn

ρ(ϕ) ◦ ρ(ω) = ρ(ω) ◦ ρ(ϕ).

Weil die Darstellung ρ irreduzibel nach Voraussetzung ist, ist entweder W =
W+ oder W = W−.

Um die nicht Äquivalenz der beiden Darstellungen ρ+ und ρ−, mit ρ±(ω) =
±1 zu beweisen, sei F ∈ Aut(W ) und ρ(ω) = λ1, mit λ ∈ {−1,+1}, dann ist
F ◦ ρ(ω) ◦F−1 = λ1 und nicht −λ1 wie nach der Definition der Äquivalenz der
Darstellungen nötig wäre. �

Satz 2.6. Sei ω das Volumenelement auf Cln, mit ω2 = 1 und dimRR
n = n

gerade, d.h., nach der obigen Bemerkung n = 0(4). Sei ferner W ein Cln–Modul,
d.h., W ist ein R–Vektorraum mit einem Algebrahomomorphismus

Cln
ρ−→ EndR(W ).

Dann existiert eine Zerlegung

(2.10) W = W+ ⊕W−,

wobei W± Eigenräume zu Eigenwerten +1 und −1 bezüglich Multiplikation mit
ω sind, d.h., W± = {w ∈W | ρ(ω)w = ±w}. Es gilt

W+ = π+.W und W− = π−.W,

und für alle v ∈ Rn mit q(v) 6= 0 ist ρ(v) ein Automorphsmus von W der Form

(2.11) ρ(v) : W+ →W− und ρ(v) : W− →W+.

Die linearen Teilräume W± sind invariant unter der Multiplikation mit Cl (0)
n ,

d.h., für ϕ ∈ Cl (0)
n gilt

ρ(ϕ) : W± →W±.

Also ist insbesondere dimRW
+ = dimRW

−.

Nach Theorem 1.4 ist Cl (0)
n
∼= Cln−1, und deshalb entsprechen diese Räume

W± zwei verschiedenen irreduziblen R–Darstellungen von Cln−1.
Entsprechende Aussagen gelten für Cln für gerade n.

Bemerkung. Die Beziehung (2.11) können wir in folgender Form aufschreiben

ρ : Rn \ {o} ⊗W± →W∓.
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Beweis. Die Zerlegung ist unmittelbare Folgerung aus (2.4),(2.5) und (2.6) und
der Tatsache, dass für ρ : Cln → EndR(W )

ρ(φ · ψ) = ρ(φ) ◦ ρ(ψ) für alle φ, ψ ∈ Cln

und damit ρ(ω2) = ρ(1) = 1 gilt, d.h. für w ∈ W gilt ρ(ω2)w = ρ2(ω)w =
ω2.w = w und π±.w =: w± ∈W±. Die Eigenwerte lassen sich durch

ω · π± = 1
2ω · (1± ω) = ±1

2(1± ω) = ±π±

bestimmen.
Die Aussage (2.11) folgt aus

v · π+ = 1
2v · (1 + ω)

(2.2)
= 1

2(1− ω) · v = π− · v,

v · π− = 1
2v · (1− ω)

(2.2)
= 1

2(1 + ω) · v = π+ · v

und v · v = −q(v) · 1⇒ ρ(v) = −q(v)1 6= o.
Weil für gerade n ω ∈ Zent(Cl (0)

n ), d.h., ω · ψ = ψ · ω für alle ψ ∈ Cl (0)
n , so

gilt auch
ρ(ω) ◦ ρ(ψ) = ρ(ψ) ◦ ρ(ω)

und damit sind W± invariant unter Cl (0)
n . Unter Benutzung des Isomorphismus

Φ : Cln−1 → Cl (0)
n aus dem Theorem 1.4 transformiert sich das Volumenelment

ω′ = e1 · · · en−1 von Cln−1 zum Volumenelement ω ∈ Cl (0)
n . Um dies zu sehen

betrachten wir

(e1 · en) · · · (en−1 · en) = (−1)(
n−1

2 )e1 · · · en−1 · (en)n−1

= e1 · · · en,

denn für n = 4m (en)4m−1 = (en)4(m−1)+3 = (en)3 = −en, weil (en)4 = 1 und
damit (−1)(

n−1
2 ) · (−1) = 1, dazu

(4m−1)(4m−2)
2 + 1 = (4m− 1)(2m− 1) + 1 = 0(2).

Daraus folgt, dass ρ(ω′) = 1 auf W+ und ρ(ω′) = −1 auf W−. Nun ist n− 1 =
4m − 3 und damit sind, nach Satz 2.5, diese Darstellungen von Cln−1 nicht
äquivalent.

Der komplexe Fall wird analog bewiesen. �

2.1. Spin–Darstellung. Sei Cl×(V, q) multiplikative Gruppe aller invertierba-
rer Elemente aus Cl(V, q), d.h.,

Cl×(V, q) = {v ∈ Cl(V, q)| ∃ v−1 ∈ Cl(V, q) : v · v−1 = 1}.

Beachte, dass Spin–Gruppe

Spin(n) ⊂ Cl (0)
n ⊂ Cln,

denn Spin(n) = Pin(n) ∩ Cl (0)
n und Pinn ⊂ Cl×n .

Definition 2.7. Die reelle Spin–Darstellung von Spin(n) ist der Homomor-
phismus

∆n : Spin(n)→ Aut(S),
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der durch Einschränkung einer irreduziblen reellen Darstellung ρn : Cln →
EndR(S) auf Spin(n) ⊂ Cl (0)

n ⊂ Cln definiert ist.
Bemerkung. Es sit klar, dass die Darstellung in die multiplikative Untergrup-
pe Aut(S) der End(S) abbildet, denn für v ∈ Spin(n) existiert ein v−1 und
damit ist auch das Inverse von ∆n(v), d.h., ∆n(v−1) = ∆n(v)−1.
Satz 2.8. Wenn n = 3(4) ist, ist die Definition von ∆n unabhängig von der
Wahl der irreduziblen Darstellung von Cln.
Für n 6= 0(4) ist die Darstellung ∆n entweder irreduzlibel oder ist Summe von
zwei äquivalenten irreduziblen Darstellungen. (der zweite Fall tritt genau für
n = 1 oder 2(8) auf)
Im verbleibenden Fällen existiert eine Zerlegung

∆4m = ∆+
4m ⊕∆−4m,

wobei ∆+
4m und ∆−4m nicht äquivalente irreduzible Darstellungen von Spin(4m)

sind.

Beweis. Weil für n = 3(4) die Involution α : Cln → Cln die Unteralgebren Cl±n
vertauscht und

(2.12) Cln = Cl+
n ⊕ Cl−n

ist, gilt
Cl (0)

n = {(ϕ, α(ϕ)) ∈ Cl+
n ⊕ Cl−n |ϕ ∈ Cl+

n },
d.h., liegt diagonal in der Zerlegung (2.12). Die beiden irreduziblen Darstellun-
gen von Cln unterscheiden sich durch die Multiplikation mit dem Automorphis-
mus α, und sind äquivalent wenn man diese auf Cl (0)

n ⊃ Spin(n) einschränkt.
Aus der Tabelle ist es sofort ersichtlich, dass Einschränkung einer irreduziblen
Darstellung von Cln auf Cl (0)

n
∼= Cln−1 eine irreduzible Darstellung für n =

3, 5, 6 oder 7(8) ergibt.
Wenn n = 0(8) ist, so wissen wir nach dem Satz 2.6, dass die Einschränkung
auf Cl (0)

n sich in zwei nicht äquivalente irreduzible Darstellungen aufspaltet.
Nun ergibt die Einschränkung eines irreduziblen Cl (0)

n –Moduls auf Spin(n) eine
irreduzible Darstellung, da Spin(n) ⊂ Cl (0)

n . �

Definition 2.9. Die komplexe Spin–Darstellung von Spin(n) ist der Homo-
morphismus

∆C

n : Spin(n)→ AutC(S),

der durch Einschränkung einer irreduziblen Darstellung Cln → EndC(S) auf
Spin(n) ⊂ Cl(0)

n ⊂ Cln.
Wir können nun die komplexe Version des Satzes 2.8 beweisen. Der Beweis

des Satzes wird analog geführt.
Satz 2.10. Wenn n ungerade ist, ist die Definition von ∆C

n unabhängig von der
Wahl der irreduziblen Darstellung von Cln. Weiterhin, wenn n ungerade ist, ist
die Darstellung ∆C

n irreduzibel. Wenn n gerade ist, so existiert eine Zerlegung

∆C

2m = ∆C

2m
+ ⊕∆C

2m
−
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in eine direkte Summe von zwei nicht äquivalenten irreduziblen komplexen Dar-
stellungen von Spin(n).

Wir wollen uns zuerst die komplexe Version des Satzes 2.6 ansehen.
Sei dazu W2m = W2m+1 = C

2m und damit ist Cl(V, q) ∼= End(W2m, falls
dimV = 2m und Cl(V, q) = End(W2m+1)⊕End(W2m+1), falls dimV = 2m+1.
Satz (Satz 2.6C). Sei ωC das Volumenelement auf Cln, mit n = 2m und C–
Algebrahomomorphismus

ρ2m : Cl2m
∼=−→ End(W2m).

Dann existiert eine Zerlegung

W2m = W+
2m ⊕W

−
2m,

wobei W±2m = {w ∈W2m|ω.w = ±w}. Ferner sind W±2m = πC.W2m und

R
2m \ {o} ⊗RW±2m →W∓2m

sowie für ϕ ∈ Cl(0) ρ2m(ϕ) : W±2m →W±2m. Weil Cl
(0)
2m
∼= Cl2m−1, sind W±2m zwei

nicht äquivalente Cl2m−1–Module.

Beweis. Für n ungerade, d.h., n = 2m + 1 für ein m ∈ N0, ist Cl(0)
2m+1

∼= Cl2m
nach Theorem 1.4 und nach Satz 2.4

Cl2m+1 = Cl+2m+1 ⊕ Cl
−
2m+1.

Ferner liegt Cl(0)
2m+1 diagonal in dieser Zerlegung von Cl2m+1, d.h.,

Cl
(0)
2m+1 = {(ϕ, α(ϕ)) ∈ Cl+2m+1 ⊕ Cl

−
2m+1|ϕ ∈ Cl

+
2m+1}.

Die beiden irreduziblen Darstellungen von Cl2m+1 = End(C2m) ⊕ End(C2m)
unterscheiden sich durch die Multiplikation mit dem Automorphismus α und
sind äquivalent wenn man sie auf Spin(n) ⊂ Cl(0)

n einschränkt.
Wenn n gerade ist, d.h. n = 2m, so wissen wir nach Satz 2.6, dass die Ein-
schränkung der Darstellung auf Cl(0)

2m sich in zwei nicht äquivalente irreduzi-
ble Darstellungen aufspaltet. Nun ergibt die Einschränkung eines irreduziblen
Cl

(0)
2m–Moduls auf Spin(2m) ⊂ Cl(0)

2m eine irreduzible Darstellung. �

3. Äußere Algebra und Spinoren

Sei V ein n–diminsionaler euklidischer Vektorraum mit (e1, . . . , en) ON+–
Basis von V . Wir definieren nun

ε : V ×ΛkV → Λk+1V, ε(v)(v1 ∧ . . .∧ vk) = ∧v(v1 ∧ . . .∧ vk) = v∧ v1 ∧ . . .∧ vk
und den dazu adjungierten Operation

ι : V ∗ × Λk+1V → ΛkV, ι(v∗)(v1 ∧ . . . ∧ vk+1) = (v1 ∧ . . . ∧ vk+1)yv.

Wir definieren ιv : ΛkV → Λk−1V mit v ∈ V durch ι(b(v)), wobei b: V → V ∗

mit b(v, w) = b(v)(w).
Sei Ψ eine lineare Abbildung von V nach End(ΛV ) definiert durch

Ψ(v) = ∧v − ιv.
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Weil ∧iιj + ιj∧i = δij ist, wobei ∧i = ∧ej und ιj = ιej , erhalten wir

(Ψ(v))2 = −(ιv ∧v + ∧v ιv) = −1

und damit nach der Universellen Eigenschaft eine fortsetzung der Abbildung Ψ
zu

Ψ: Cl(V, q)→ End(ΛV ),
mit ∧i∧j = − ∧j ∧i und ιiιj = −ιjιi erhalten wir

Ψ(v)Ψ(w) + Ψ(w)Ψ(v) = −2b(v, w)1,

d.h., Algebrahomomorphismus.
Wir definieren nun eine lineare Abbildung

Ψ̃ : Cl(V, q)→ ΛV, Ψ̃(v) = Ψ(v)(1)

für w ∈ Cl(V, q) und 1 ∈ ΛV . Beachte, dass für v ∈ V ⊂ Cl(V, q)

Ψ̃(v) = Ψ(v)(1) = (∧v − ιv)(1) = ∧v(1)− ιv(1)︸ ︷︷ ︸
def
= o

= v.

Damit ist für ein w = ej11 · · · e
jn
n ∈ Cl [k](V, q)

Ψ̃(ej11 · · · e
jn
n )− ej11 ∧ . . . ∧ e

jn
n = 0,

weil ιiej = b(ei, ej) = 0, d.h., (e1, . . . , en) ON–Basis ist. Allgemeiner erhält man
für {v1, . . . , vn} Basis von V

Ψ̃(vj11 · · · v
jn
n )− vj11 ∧ . . . ∧ v

jn
n ∈ Λk−1V.

Bemerkung. Mit Ψ̃ : Cl(V, q) → ΛV wird ein Isomorphsimus zwischen den
Vektorräumen beschrieben. Beachte, dass

Cl(V, 0) = ΛV

nach Definition.
Wir wollen nun Cl2m ∼= End(C2m) Modul genauer untersuchen. Sei dazu

V ein n–diminsionaler reelle Vektorraum, mit n = 2m und 〈. , .〉, also ist im
wesentlichen V ∼= R

2m euklidisch.
Sei e1, . . . , e2m ON+–Basis von V und J komplexe Struktur auf V , d.h.,

J2 = −idV , die zusätzlich Isomotrie bezüglich b ist, d.h., b(v, w) = b(Jv, Jw)
für alle v, w ∈ V . Daraus folgt

b(v, Jw) = −b(Jv,w).

Sei V C mit dimC(V C) = k Komplexifizierung von V mit J . Dann definieren wir
auf V C folgende hermitsche Form

〈v, v̂〉C = 〈v, v̂〉+ i 〈v, Jv̂〉,

dabei ist (a+ i b)v = a1V (v) + bJ(v).
Wir erhalten die äußere Algebra von V C

ΛCV C =
m⊕
j=0

Λj
C
V C.
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Für v ∈ V C erhalten wir das äußere Produkt ∧v : Λj
C
V C → Λj+1

C
V C und den

dazu adjungierten Operator bezüglich 〈. , .〉C (das innere Produkt)

ιcv : Λj+1
C

V C → Λj
C
V C.

Sei
ψ(v)(ϕ) = v ∧ ϕ− ιcvϕ für v ∈ V C, ϕ ∈ ΛCV C.

Beachte, dass v ∧ ϕ in v C–linear ist und ιcv ist konjugiert linear in v, denn
〈v, Jv̂〉C = 〈v, Jv̂〉 + i 〈v, J2v̂〉 = 〈v, Jv̂〉 − i 〈v, v̂〉, und damit ist ψ(v) nur R–
linear in v. Wir erhalten

(3.1) ψ(u)ψ(v) + ψ(v)ψ(u) = −2〈u, v〉1
und damit kann wie oben ψ : V → End(ΛCV C) zu einem Algebrahomomorphis-
mus fortgesetzt werden

ψ : Cl(V, q) = End(ΛCV C)

und damit auch zu einem C–Algebrahomomorphsimus

(3.2) ψ : Cl(V, q)→ End(ΛCV C).

Satz 3.1. Der Homomorphismus ψ : Cl(V, q)→ End(ΛCV C) ist für reelle Vek-
torräume V der geraden Diminsion 2m ein Isomorphismus.

Beweis. Wir wissen bereits, dass

Cl(V, q)

f

∼=

))RRRRRRRRRRRRRR

ψ
// End(ΛCV C)

End(C2m)

Ferner wollen wir benutzen, dass End(C2m) keinen Hauptideal hat (∗).
Nun ist aber a = ker(ψ) ein Hauptideal, denn für x ∈ ker(ψ) und v ∈ Cl(V, q)

folgt aus
ψ(x · v) = ψ(x) ◦ ψ(v) = 0 ◦ ψ(v) = 0,

dass x · v und analog auch v · x aus dem Urbild von 0 ∈ End(C2k) sind. Dann
ist nach (∗) f(a) entweder Nullideal oder Einsideal. Also ist entweder ψ ≡ 0
oder ψ ein Isomorphsimus. Nun ist aber für v ∈ V , ψ(v)(1) = v, also ist ψ 6= 0.
Deshalb ist ψ ein Isomorphismus. �

Wir wollen uns jetzt an die Spin–Darstellung beschäftigen. Sei V 2m dimin-
sionaler reeller Vektorraum mit komplexer Struktur J . Sei V C Komplexefizie-
rung von V bezüglich J , mit dimC V

C = m und sei

S = S(V, q, J) = ΛCV C

mit dem induziertem hermitischem Produkt. Aus der Inklusionskette

Pin(V, q) ⊂ Cl(V, q) ⊂ Cl(V, q)
und mit der Einschränkung von ψ aus (3.2) auf Pin(V, q) erhalten wir

ρ : Pin(V, q)→ Aut(S).

Satz 3.2. Die Darstellung ρ von Pin(V, q) ist irreduzibel und unitär.
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Beweis. Die C–Teilalgebra von Cl(V, q) die durch Pin(V, q) erzeugt wird ist die
ganze Algebra Cl(V, q), denn {v ∈ V | |v| = 1} ⊂ V ⊂ Pin(V, q), damit folgt die
Irreduzibilität folgt aus der Tatsache, dass (3.2) ein Isomorphismus ist. Eine
Darstellung ρ heißt unitär, wenn

〈ρ(φ)v, ρ(φ)v′〉C = 〈v, v′〉C für alle v, v′ ∈ S, φ ∈ Pin(V, q).

Die Darstellung ist unitär, weil ψ(v) für v ∈ V ψ∗(v) = −ψ(v) nach Definition
ist; aus (3.1) folgt, dass ψ(v)2 = −|v|21, und weil nach Definition von Pin(V, q)
für alle v ∈ V |v| = 1 ist. Also ist ψ(v) unitär und durch tensorielle Fortsetzung
erhalten wir die Behauptung. Also

ψ : Pin(V, q)→ U(ΛCV C, 〈. , .〉C).

�

Die Einschränkung von ρ auf Spin(V, q) ist nicht irreduzibel. In der Tat, sei

(3.3) S+ = S+(V, q, J) = Λ(0)
C
V C, S− = S−(V, q, J) = Λ(1)

C
V C,

mit dimS± = 2k−1.
Der Spin(V, q)–Modul läßt die Räume S+ und S− invariant. Wenn wir ψ aus

(3.2) auf Cl(0)(V, q) eingeschränken, so erhalten wir isomorphe Abbildung

(3.4) ψ : Cl(0)(V, q)→ EndC(S+)⊕ EndC(S−).

Folge dazu die Sätz 2.6 und 2.10.
Andererseits gilt für z ∈ Cl(1)(V, q)

ψ(z) : S± → S∓.

Aus (3.4) erhalten wir ein irreduzible unitäre Darstellung

D±1
2

: Spin(V, q)→ AutC(S±).

Beispiel. Sei V = R
2k mit euklidischem Skalarprodukt und (e1, . . . , e2k) ON–

Basis von V . Ferner sei die komplexe Struktur J definiert durch

Jei = ei+k, Jei+k = −ei, für 1 ≤ i ≤ k.

Wir wollen mit S(2k) = S(R2k, 〈. , .〉, J) und S±(2k) = S±(R2k, 〈. , .〉, J) be-
zeichnen und erhalten auf diese Weise Darstellung

D±1
2

: Spin(2k)→ Aut(S±(2k)).

Wir untersuchen jetzt den Fall V = R
2k−1. Wie wir bereits wissen, ist Cl2k−1

∼=
Cl (0)

2k gegeben durch v 7→ v · e2k für v ∈ R2k−1. Und damit erhalten wir aus der
Inklusion Spin(2k − 1) ⊂ Cl2k−1, dass

Spin(2k − 1) ↪→ Spin(2k).

Wir erhalten also

D+
1
2

: Spin(2k − 1)→ Aut(S+(2k)).
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Die andere Darstellung D−1
2

: Spin(2k − 1) → Aut(S−(2k)) ist äquivalent zu

der oben beschriebenen, denn die Abbildung F ∈ Iso(S+(2k), S−(2k)) aus der
Definition 1.9 ist gegeben durch

ψ(e2k) : S+(2k)→ S−(2k).

4. Liealgebra

Es wichtig anzumerken, dass Cl [2](V, q) = spin(V, q) eine Liealgebra Struktur
aufweist, mit [a, b] = a · b− b · a. In der Tat sei {ei} ON–Basis von V , dann

[eiej , eke`] = eiejeke` − eke`eiej
= −2δjkeie` − eiekeje` − eke`eiej
= −2δjkeie` + 2δ`jeiek + eieke`ej − eke`eiej
= −2δjkeie` + 2δ`jeiek − 2δkie`ej − ekeie`ej − eke`eiej
= −2δjkeie` + 2δ`jeiek − 2δkie`ej + 2δi`ekej + eke`eiej − eke`eiej
= −2(δjkeie` − δ`jeiek + δike`ej − δ`iekej),

die Jacobi–Identität ist klar. Wir wollen zeigen, dass T1(Spin(n)) = spin(n) ist.
Sei dazu γ(t) = x1(t) · · ·x2m(t) eine Kurve in Spin(n) mit xi(t) ∈ Sn−1 und
γ(0) = 1, dann ist

dγ
dt (t)|t=0 = dx1

dt (t)|t=0 · x2(0) · · ·x2m(0) + · · ·+ x1(0) · · ·x2m−1(0) · dx2m
dt (t)|t=0.

Wir zeigen, dass jeder Summand von γ̇(0) in spin(n) liegt. Wegen γ(0) = 1,
also 1 = x1(0) · · ·x2m(0) ⇒ x−1

1 (0) = x2(0) · · ·x2m(0), ist der erste Summand
gleich

dx1
dt (0) · x−1

1 (0) = −dx1
dt (0) · x1(0),

weil x · x = −q(x)1 ⇒ x−1 = −x für x ∈ Sn−1. Aus x1(t) · x1(t) ≡ −1 folgt
jedoch

ẋ1(t)x1(t) + x1(t)ẋ1(t) = 0, d.h. insbesondere, dass b(ẋ1(0), x1(0)) = 0.

Also liegt der erste Summand in spin(n). Analog, der zweite Summand stimmt
mit

x1(0)ẋ2(0)x−1
2 (0)x−1

1 (0) = −x1(0)ẋ2(0)x2(0)x−1
1 (0)

=
{
x1(0)ẋ2(0)x−1

1 (0)
}{
x1(0)x2(0)x−1

1 (0)
}

Weil b(ẋ2(0), x2(0)) = 0, so sind auch x1(0)ẋ2(0)x−1
1 (0), x1(0)x2(0)x−1

1 (0) b–
orthogonal und der zweite Summand liegt in spin(n). Also ist T1(Spin(n)) ⊂
spin(n). Weil

dim Spin(n) = dim SO(n) = n(n−1)
2 = dim spin(n)

stimmen beide Räume überein, und Lie(Spin(n)) = T1(Spin(n)) = spin(n).



Spin–DARSTELLUNG 19

Sei τ : Cl [1](V, q) = V → Cl [1](V, q) = V , mit τ(a)(v) = [a, v] = a · v − v · a,
wobei v ∈ Cl [1](V, q) = V und a ∈ spin(V, q). In der Tat

[eiej , ek] = eiejek − ekeiej
(R)
= −2δjkei + 2δkiej .

Lemma 4.1. τ definiert einen Liealgebra–Isomorphismus zwischen spin(V, q)
und so(V, q).

Beweis. Es ist einfach einzusehen, dass τ([a, b])(v) = [τ(a), τ(b)](v) für alle
v ∈ V ist:

τ([a, b])(v) = τ(ab)(v)− τ(ba)(v) = [ab, v]− [ba, v]

[τ(a), τ(b)](v) = τ(a)([b, v])− τ(b)([a, v]) = [a, [b, v]]− [b, [a, v]]
= abv − avb− bva+ vba− bav + bva− avb+ vab

= abv − vab− bav + vab = [ab, v]− [ba, v].

Also definiert τ einen Liealgebra–Homomorphismus von spin(V, q) nach gl(V, q).
Für a ∈ Cl [2](V, q) ist

b(τ(a)v, w) + b(v, τ(a)w) = b(av, w)− b(va,w) + b(v, aw)− b(v, wa)

= −1
2

(
avw + wav − vaw − wva+ vaw + awv − vwa− wav

)
= −1

2

(
avw + awv − wva− vwa

)
= 0.

Deshalb ist τ(a) ∈ so(V, q), τ ist injektiv für alle a ∈ Cl [2](V, q) nach der
Folgerung aus dem Satz 1.2. Weil schließlich spin(V, q) und so(V, q) Vektorräume
sind mit Diminsion n(n−1)

2 , folgt die Aussage. �

5. Die Gruppe SpinC(n)

Definition 5.1. SpinC(V, q) ist multiplikative Gruppe der Einheiten von
Cl(V, q), die durch Spin(V, q) und U(1) erzeugt wird.

Weil Spin(n) ∩ U(1) = {−1,+1} ist die Gruppe SpinC(n) offenbar gegeben
durch

SpinC(n) = Spin(n)×Z2 U(1) = (Spin(n)× U(1))/Z2.

Die Elemente von SpinC(n) sind also Klassen [ϕ, z] von Paaren (ϕ, z) mit Äqui-
valentzrelation (ϕ, z) ∼ (−ϕ,−z).
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