SEMINAR UBER
DIRAC-OPERATOREN IN DER RIEMANNSCHEN
GEOMETRIE

Spin-DARSTELLUNG

ARTUR WOTZKE

1. EINFUHRUNG

1.1. Clifford Algebra. Sei V ein k—Vektorraum mit char(k) # 2, b bilineare
Form auf V und ¢ die dazu assoziierte, quadratische Form auf V. Sei ferner

TV)=PeV=kevVe Vel e @@V e...
k>0
Tensoralgebra auf V und I,(V') ein Ideal in T'(V'), der durch Elemente der Form
VR w4+ w® v+ 2b(v, w)l
mit v, w € V erzeugt wird, d.h.,

I, ={ Z Vi @ (v; @w; +w; @v; +2b(vi, wi) 1) @ Wil vg, w; € V, Vi, W; € T(V)}.
endlich

DEFINITION 1.1. Ein Paar (CI(V,q),i,) = CI(V,q) heifit Cliffordalgebra von
(V,q) falls

(1) CI(V,q) ist eine assoziative k—Algebra mit Eins.
(2) iq: V — CI(V,q) ist eine lineare Abbildung und

ig(v)? = —q(v) 1

gilt fiir alle v € V.

(3) (UNIVERSELLE EIGENSCHAFT) Ist A eine weitere assoziative k—Algebra mit
14 sowie u: V — A eine k-lineare Abbildung mit u(v)? = —q(v) - 1.4, so
existiert genau ein Algebrahomomorphismus u: Cl(V, ¢) — A mit u = Goi,,.

V)

\ [

A

Satz 1.2. Sei V ein k—Vektorraum.
i) Jede quadratische Form q auf V induziert eine Cliffordalgebra CI(V,q).

Datum: Mai 2001.
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ii) Seien CI(V,q) und /C\Z(V, q) zwei Cliffordalgebren der gleiche quadratischen
Form ¢, dann existiert ein Isomorphismus ¥: Cl(V,q) — CIl(V,q) der Al-
gebren mit ¥ o iy = i4, d.h.,

v— " W,

\o lw
q Cl(V, q).

Beweis. (EX1STENZ) Sei Cl(V,q) = T(v)/14(V) und 7: T(V) — CIl(V,q) die
Projektion sowie i: < T'(V') natiirliche Inklusion, so wird durch
lg=TOl

eine lineare Abbildung iy: V' — CI(V,q) definiert, fiir die i,(v)? = —q(v) - 1
nach Konstruktion gilt. Weiterhin, jede lineare Abbildung u: V' — A in eine
Algebra setzt sich mittels

Ul ® - ®@wg) = u(vr) - - ulvg)

zu einem Algebrahomomorphismus U: T(V) — A fort. Gilt u(v)? = —q(v)1 4,
so erhalten wir

I,(V) C ker(U)
und daher induziert U einen Homomorphismus

u: Cl(V,q) — A
mit der gewiinschten Eigenschaft. Ist @’': CI(V,q) — A ein weiterer Homomor-
phismus mit

u=1aoi, =1 oig

Dann stimmen @ und @' auf i,(V) C CI(V,q) iiberein. Nun erzeugen aber die
Elemente aus dem Vektorraum V' die Tensoralgebra T'(V') und damit auch die
Cliffordalgebra CI(V,q) multiplikativ. Demnach ist @ = @'.

EINDEUTIGKEIT ist eine direkte Konsequenz der dritten Bedingung fiir CI(V q).
]

Folgerung. Die lineare Abbildung i,: V. — CI(V,q) ist injektiv. Die Menge
iq(V) C Cl(V,q) erzeugt die Algebra CI(V,q) multiplikativ, d.h., fir eine Basis
{vi,...,vp} von V kann ¢ € CI(V,¢q) in der Form

(S) o= > fa.viteovi, mit fi o, €R
i,e{0,1}
geschrieben werden (Diese Darstellung ist eindeutig).

Wir wollen mit CI¥/(V, ¢) die Menge der Elemente der Cliffordalgebra Cl(v, q)
beschreiben, die von der Form (S) sind mit ji+- - -+, = k. Also ist CIP/(V, ¢) =
k und CIM(V, ) = V. Ferner lassen sich sofort Cliffordmultiplikationsregeln ab-
leiten

(R) (RO VRS —2b(vi,vj).
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Auf der Cliffordalgebra CI(V, q) definieren wir eine Involution
(1.1) a: Cl(V,q) — Cl(V,q) mit «a(v)=—vaufV,

genauer o(iq(v)) = —iq(v).
Weil o? = idy ist, existiert eine Zerlegung
ClV.q) = Cl(V.q) & DV, q),
wobei CI®) .= {o e CI(V,q)|a(p) = (=1)*¢ fiir k = 0,1} Eigenriiume von o
sind. Es gilt
GV, q) - I (V,q) € CIUHH(Vq).

Es ist einfach einzusehen, dass

a%wv,g)= @ aBv,q)und aAV(V,q) = @ ca¥(v,q)

k=2(m+1) k=2m~+1
ist, wobei m = 1,...,[%5!] und n = dimy V.
Sei v1,...,v, ONy-Basis von V, dann ist
(1.2) T CV,q) — Cl(V,q) mit ar—a’
definiert durch
(1.3) (Vi) - -v3,) | = v, vy = (—1)(5)%1 vy, weil b(vg, v;) = d45,
wobei v;, ---v;, mit 1 < i; < ... <4 < n Basisvektoren der Clifforgalgebra

Cl(V,q) sind, mit deg(v;, - - - v;,, ) = k. Fiir alle a,b € CI(V, q) gilt
(a-b)" =b"-a',
also ist insbesondere fiir a € Pin(V,q)
S S S +1, falls deg(a) =0(2)
—1, falls deg(a) = 1(2).

Damit kénnen wir im Fall deg(a) = 0(2) auch vom Inversen von a sprechen,
mit a” = ¢! und im Fall dega = 1(2) setzen wir a~' = a(a)a’.

Satz 1.3. a) Das Zentrum der Cliffordalgebra Cl(V,q) ist gegeben durch

) Zent(CI(V, q)) = k, falls d%mﬂ{ V =0(2),
k @ kl[vg---vy], falls dimy V = 1(2).

b) Das Zentrum der Algebra CI)(V, q) ist gegeben durch

(Z(0) Zent(C1O(V, q)) = k& klvy---vp),  falls dTm]k V =0(2),
ﬂ{v falls dlm]k V = 1(2)

BEMERKUNG. Wir werden in Theorem 1.4 den tieferen Grund fiir dieses Ver-
halten kennen lernen.

Beweis. Sei i = {i1,...,ix} mit 1 <4 < ... <ip < nund v;, = v, -y
mit v;; € V. Dann muss fiir ein a aus dem Zentrum

(*) Vi, -0 =a- v, fiir alle ikE'P+({1,-~,n}):,P7T

k
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gelten, also insbesondere fiir alle io € P;", wobei P;F Menge mit monoton geor-
denten Teilmengen ist. Sei also a = }_; a’*vj,, dann ist (x) equivalent zu

Jegy oy Lol — Jeo,.
E avi, - v, vy, = E avj,.

JeePt Je€P
Es gilt
T k-L—t(i5Nj
(V) ’Uik . Ujé . Uik — (_1) ﬂ(lkm.le)ruje'
Da nun vig . ”je . Ui_gl — (—1)ﬁ(j2)ﬁ(i2)7ﬁ(jfmi2)rvi2 . vi_gl . Uje — (—l)ﬂ(jémb)ij’ SO ISt

alt = (—1)80eNi2) gie fiir alle iy € P
eine notwendige Bedingung fiir zentrale Elemente. Daraus folgt sofort
a =0, falls j, # @, {1,...,n},

d.h.,

Zent(CI(V,q)), Zent(CIO(V, q)) C k @ Klvy - - - vp).

4 Ist n = 2m + 1 ungerade, so liegt v; - - - v, nicht in CI©(V, ¢) und damit gilt
Zent(C1O(V, q)) = k.

Andererseits, gilt fiir ungerade n und j, = {1,...,n}, also { =n

Uiy 0, vy, = (D) E Ry = a0

k n Vi = 05, Vi

e

Damit kommutiert v;, = vi---v, mit allen Elementen der Algebra CI(V,q),
und es folgt
Zent(Cl(V,q)) =k @ klvy - - - vy).
- Ist n gerade, so ist #(j, Nix) = O resp. 1(2), falls k£ gerade resp. ungera-
de ist. Damit ist also nach Vertauschungsregel (V) Zent(CI(V,q)) = T, sowie
Zent(CIO(V, q)) = k @ k[v; - - - v,). O
Wir wollen einige zusétzliche Bezeichnungen einfithren, wie z.B.
Clys == CIR™, (., .)7),
wobei (z, )8 =37 (2")? = 7 1 (2")? und insbesondere
Cly, := Cly 0,
mit euklidischem Skalarprodukt (.,.). Entsprechend erhalten wir
Wir wollen uns jetzt mit der folgenden Zerlegung der Cliffordalgebra CI(V, q)
Cl(V,q) = C1O(V,q) & CIM(V, q)
beschiftigen, dabei ist CI'9(V, q) = Fixq(CI(V, q)).
Theorem 1.4. Es existiert ein Algebraisomorphismus

~ 0
Clys = 1Y),

fiir alle r, s, insbesondere gilt fiir alle n

(1.4) Clno = Cl, = 1Y) .
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Beweis. Wir werden nur die zweite Aussage beweisen, weil diese fiir spétere
Uberlegungen wichtig wird. Die allegemeine Aussage wird jedoch analog bewie-
sen.

Wiihle eine ON-Basis {e1,...,en11} des R™"1 Sei dann R = spang{e;|i =
.,n} und eine Abbildung

&: R — C1O) || mit &(e;) = eny1 - i,

die wir durch lineare Fortsetzung erhalten. Beachte, dass der Bildraum richtig
ist, denn

a(®(e;)) = alepr - €) = alent1) - ale;) = (=1)%enta - €.

Fiir R" 3 2 = Y"1 | a%¢; erhalten wir

) o
&(x)* = E T - enq1 € engl €

ij=1
®) Z”
— :L'Z . JJJ . e’i . e]-
ij=1
_<$7 x>TL . 17
denn e; - ej + ej - ¢; = —26;; und damit
E ' -a!eiej + E ' - ei-ej =0.
1<i<j<n 1<j<i<n

Aus der universellen Eigenschaft der Cliffordalgebra wissen wir, dass @ ein
eindeutiges Algebrahomomorphismus

= 0
é: cl, — 1%,
induziert, d.h.,

R”%C’l
\ Ja'qs
n+1
Seie=¢; - e, € Cl,, mit 1 <i; <...<i, <n, dann ist

B(e) = Dlesy) - Blei,) = eny1 - €y - ent - €4

R) {(Ueh “ent1 - Cntl - €ip o (—1)ei | eny1 - enil €y

(—1)ei; - eng1 - €ntl - €iy* Entl - €ip 4 - €ntl - €,

€iy " €4y falls k£ = 0(2)
—€j, €, €y ent1, Tfalls k=1(2)

und das sind genau die Basisvektoren von C’lfg)rl. g
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1.2. Darstellung.

DEFINITION 1.5. Sei K D k Oberkorper von k. Dann heifit k—Algebra Homo-
morphismus

p: Cl(V,q) — Endg (W)

eine K-Darstellung der Cliffordalgebra CI(V, q), wobei W ein endlich diminsio-
naler Vektorraum iiber K ist. Der Vektorraum W heifit CI(V,q)-Modul tiber
K. Wir wollen ferner eine vereinfachte Darstellung

(@) (w) € paw

benutzen.

BEMERKUNG. In der Definition benutzter Ausdruck k—Algebra Homomorphis-
mus bedeutet, dafl p k-lineare Abbildung ist, die zusétzlich folgende Bedingung
erfiillt

ple =) = plp) o p(¢)
fiir alle p,v € CI(V,q). Beachte ferner, dass wir aus ¢ - ¢ + 1 - ¢ = —2b(, V)

p(@) 0 p(¥) + p(¢) 0 p(¢) = —2b(¢, 1)1
erhalten.

Wir sind an der K-Darstellung der Clifford Algebra Cl, ; fir K € {R, C, H}
interessiert. Es ist zu beachten, dafl ein komplexer Vektorraum ein reeller Vek-
torraum W ist, mit einer R-linearen Abbildung J: W — W, mit J? = —1.
Damit ist eine C-Darstellung der Clifford Algebra Cl, s eine reelle Darstellung

p: Cl, s — Endr(W),
so dafl
p(p)oJ =Jop(p)
fir alle ¢ € Cl,, gilt. Denn das Bild von p kommutiert mit der Teilalgebra
spang{1l, J} = C.

Analog verhilt sich das mit der Quaterninonen Darstellung von Cl, ;. Hier

miissen wir drei R—lineare Transformationen I, .J, K auf W betrachten, mit

P=7r=K=-1
lJ=—JI=K, JK=-KJ=1, KI=-IK=J.
Damit ist W ein H-Modul. Eine R-Darstellung p: Cl, s — Endr(W) ist quan-
tornionische, wenn
fiir alle ¢ € Cl, 5 ist.
BEMERKUNG 1.6. Jede komplexe Darstellung von Cl, s 1483t sich zu Darstellung
der komplexen Cliffordalgebra CZES = Cl, s erweitern.

DEFINITION 1.7. Sei K D k, V k—Vektorraum und ¢ quadratische Form auf V.
Dann heifit eine K-Darstellung p: CI(V,q) — Endg(W) reduzibel, wenn der
Vektorraum W in direkte nicht triviale Unterrdume W; und Wsy zerfillt, d.h.,

W:WI@W27
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so dass p(@)W; = o.W; C W; fir j = 1,2 und fiir alle ¢ € CI(V, q). Beachte,
dass in diesem Fall wir p wie folgt aufschreiben kénnen

p = p1D p2,
mit p;(p) = p(é)|w, fiir j = 1,2. Eine Darstellung heifit irreduzibel, wenn sie
nicht reduzibel ist.
Satz 1.8. Jede K-Darstellung p einer Cliffordalgebra CIl(V,q) kann in direkte
Summe
pP=p1D...Dpm
irreduziblen Darstellungen p; fiir j = 1,...,m zerlegt werden.

Beweis. Wenn p reduzibel ist, dann kénnen wir diese Darstellung in p = p1 & p2
zerlegen. Wenn nun entweder p; oder py reduzibel ist, konnen wir p weiter
zerlegen. Diese Zerlegung ist endlich, da dimg W < oo ist. O

Weil wir nicht an einzelnen Darstellungen der Cliffordalgebra interessiert
sind, sondern nur an den Aquivalenz Klassen, fithren wir deshalb folgende De-
finition ein:

DEFINITION 1.9. Zwei Darstellungen p;: CI(V,q) — Endg(W;), mit j = 1,2
heiflen dquivalent, wenn ein F' € Isox (W1, Wa) existiert, so dass

Fopi(p) = pa(p) o Fy

fiir alle ¢ € CI(V,q) gilt.
Theorem 1.10. Sei K € {R,C,H} und betrachte den Ring K(n) = Mat(n x
n,K) als eine Algebra iiber R. Dann ist die natiirliche Darstellung p von K(n)
auf den Vektorraum K", bis auf die Aquivalenz, die einziege irreduzible reelle
Darstellung von K(n).

Die Algebra K(n) @ K(n) hat genau zwei Aquivalenzklassen der irreduziblen
reellen Darstellungen. Diese sind durch

p1(¢1,92) = p(¢1) und  p2(¢1,$2) = p(é2)

gegeben.
2. DARSTELLUNG DER CLIFFORDALGEBRA
Tabelle
n| a,=a? | c,=c",
1 C CeC
2 H C2x2
3 HoH C2x2 @ C2x2
4 22 C22 x22
5 (C22><22 (C22x22 ® (C22 x 22
6 R23><23 C23 x23
7 R23><23 ® R23><23 (C23><23 ® (C23><23
] R24 x24 (324 x24

Wir haben bereits bewiesen ,dass
i) wenn dimg V = 2k, dann ist CL(V, ¢) = End(C?") und
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ii) wenn dimg V' = 2k + 1, dann ist CI(V,q) = End((C2k) @ End((CQk).
Jetzt wollen wir eine zusétzliche Struktur in der Darstellugn bestimmen.
DEFINITION 2.1. Sei (eq,...,e,) ONT-Basis des R™. Dann ist

w=e1 e, €R[eg---e,] C Cly,

der assoziierte Volumenelement. Wir definieren das entsprechende komplexe
Volumenelement we € Cl,, durch
1"ey - ep, falls n =0(2), n=2m
WC = 4. ntt
i 2 e;---e,, fallsn=1(2).

Man nennt wc auch Chiralitédts—Operator.

Lemma. Der Volumenelement w und damit auch wc sind unabhéngig von der
gewéhlten Basis, d.h., die Definition ist korrekt.

Beweis. Sei dazu (é1, ..., é,) eine weitere ONT-Basis des R™, dann ist
éj = Aéei,
wobei A := (A;) € SO(n) und nach der Multiplikationsregel,
(R) eiej + ejej = —26;4,
€1 €y = Aileil s A;"ezn
=det(A)er e, =€y -ep.
Zu besserem Verstiandnis betrachten wir den Fall n = 2, dann ist

€1 = cos ey + sin fesy

éo = —sinfe; + cosfeo,
wobei
A cosf) sinfd
—sinf cos6
ist. Dann ist
6169 = — sin 6 cos fereq + sin b cos Beses + cos? fejes — sin’ feqeq

R)
= €1€2,

Satz 2.2. Fiir das Volumenelement w gilt

1)

(2.1) W? = (1)),

2)

(2.2) v-w=(=1)""tw- v fiir allev €V,
d.h.,

n=1(2) = w € Zent(Cl,)
n = 0(2) = gw = wa(yp) fiir alle ¢ € i;_y(R™) C Cl,,.

*y
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Fiir das komplexe Volumenelement wc gilt

1)c Fiir alle n gilt

(2.3) (we)? = 1.

2)c Fiir n = 1(2) ist we € Zent(Cl,) = C @ Cley - - - ey,)].

BEMERKUNG. Wir kénnen die Beziehung (2.1) auch wie folgt aufschreiben

2 +1 , falls n =3 oder 4(4)
| -1 , falls n =1 oder 2(4).

Beweis. Sei (eq,...,e,) ONT-Basis des R".
1) Dann ist w = e -+ - e, und

wWwr=(e1---en) (e1---en) =€ - -en-(en---e1)!
1) Beyven-en---en
S G AR G Ve
2) Weil (eq, ..., e,) Basis des R" ist, ist v = v/e;. Damit reicht es die Beziehung
fiir Basisvektoren zu beweisen, sei dazu e; € (ey,...,ey), dann ist nach (R)

ej -e1-ep = (_1)61 .ej.€2...en: (_1)'7616] .ej...en
= (—1)/t D)l g, ej.
1)c Wir wissen, dass

2 +1, n =3 oder 4(4)
| -1, n=1 oder 2(4).

Sei n = 1(2), dann ist (w¢)? = i " w? und damit

(w )2 — 1= {ﬁ4k+2(_1)7 n= 1(4)
© P4EH(11), 0= 3(4).

Fiir n = 2m = 0(2) ist (wc)? = i ?"w? und damit

[ =
o)’ =1= {a4k<+1>, n=0().

2)c Folgt unmittelbar aus 2); oder allgemeiner aus Satz 1.3 fiir ungerade n. O

Lemma 2.3. Sei w das Volumennelement auf Cl,, mit w? = 1 und seien ferner

hi=1(1+w) und 7 :=3(1-w).
Dann gilt fiir 7+:
(2.4) 4T =1,
(2.5) (72 =a" und () =7,

(2.6) at.rT =7a" 7T =0.
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Sei we komplexes Volumenelement auf Cl,,, dann gelten fiir
+ .1 — .1
¢ = 5(1+we) und 7= 5(1—wc)

entsprechende Aussagen:

2.5¢ Tt 4+ an =1,

C C
(2.6¢) (r&)? =nf und (7z)* =g,
(2.7¢) ¢ me =mg - mg = 0.

Beweis. Die erste Aussage ist trivial; die restlichen folgen unmittelbar aus der
Voraussetzung w? = 1. So ist z.B.

(2 =Lt1+2w+w?) =7".
([l

Daraus folgen triviale jedoch wichtige Aussagen:
Satz 2.4. Sei w das Volumenelement auf Cl,, mit w?> = 1 und dimgr R"” = n
ungerade, d.h., nach der obigen Bemerkung n = 3(4). Dann kann man Cl,, in
direkte Summe zwei isomorpher Unteralgebren CL}, CI. zerlegen, d.h.,
(2.7) Cl, = Cl} & Cl;,,

wobei ClE¥ = 7% . Cl,, = Cl,, - 7% und o Cl¥) = CIT ist.
Fiir ungerade n gilt die entsprechende Aussage fiir die Cl,,:

(2.8) Cl, = Clt @ Cl,
wobei

+ +
(2.9) Ci; = ng - Cly,.

Beweis. Weil n ungerade ist, wissen wir nach Satz 2.2, dass w € Rle; - --e,] C
Zent(Cl,) = R & Rley - - - €,]. Damit sind auch 71 und 7~ Elemente des Zen-
trums von Cl,, und die Zerlegung (2.7) in Ideale folgt unmittelbar aus (2.4),(2.5)
und (2.6). Weil w ein ungerades Element ist, d.h., degw = n, ist

:i:) F

a(rt™) =

und damit a(CIE) = CIF. Weil ferner o ein Automorphismus ist, sind die Ideale
Cl,f isomorph zueinander. Der komplexe Fall wird analog bewiesen (|

BEMERKUNG. 1) Es wird auch sofort klar warum diese Zerlegung fiir gerade n
nicht finktioniert: Fiir gerade n liegt w, bzw. wc nicht im Zentrum von Cl,,,
bzw. Cl,, d.h., die oben angegebene C’l,f, bzw. (lef sind nicht definiert.

2) Die Teilalgebra CZSLO), bzw Clﬁlo) liegt diagonal in der Zerlegung (2.8), bzw.
(2.9), d.h.,

ClY = { € Clu|a(e) = ¢} = X = {(p,a(p)) € Clf & Cli;|p € CIf}.

In der Tat sei (p,ap) € X mit degp = k, also ¢ € C’lg?]7 dann ist a(p -

a(p)) =alp) - o= (D)oo =p- (-1)p = p-alp).



Spin-DARSTELLUNG 11

Satz 2.5. Sei p: Cl, — Endr(W) eine irreduzible R-Darstellung, mit n =
3 + 4m. Dann ist entweder

p(w)=1 oder pw)=—L1.

Beide Moglichkeiten konnen auftreten, und die entsprechenden Darstellungen
sind nicht dquivalent.
Analoge Aussage gilt auch fiir Cl,,, wenn n ungerade ist.

Beweis. Weil w? =1 und p(1) = 1 ist p(w?) = p(w)? = 1 und deshalb kénnen
wir W in W+ und W~ direkt zerlegen, also W = W* @ W~, wobei W#*
Eigenrdume von p(w) zu Eigenwerten +1 sind. Weil w € Zent(Cl,,) ist, gilt
©-w=uw - fiir alle ¢ € Cl,,, und damit sind W* CI,,-invariant, denn

p(p) o p(w) = p(w) o p(p)-
WEeil die Darstellung p irreduzibel nach Voraussetzung ist, ist entweder W =
W+ oder W =W-.

Um die nicht Aquivalenz der beiden Darstellungen p; und p_, mit pi(w) =
+1 zu beweisen, sei F' € Aut(IW) und p(w) = AL, mit A € {—1,+1}, dann ist
Fop(w)oF~' = A1 und nicht —A1 wie nach der Definition der Aquivalenz der
Darstellungen notig wére. ([l

Satz 2.6. Sei w das Volumenelement auf Cl,, mit w> = 1 und dimg R = n
gerade, d.h., nach der obigen Bemerkung n = 0(4). Sei ferner W ein Cl,,—Modul,
d.h., W ist ein R-Vektorraum mit einem Algebrahomomorphismus

Cl, & Endg(W).
Dann existiert eine Zerlegung
(2.10) W=Wwrew",
wobei W* Eigenrdume zu Eigenwerten +1 und —1 beziiglich Multiplikation mit
w sind, d.-h., W* = {w € W| p(w)w = +w}. Es gilt

Wt=atW und W~ =x".W,

und fiir alle v € R™ mit q(v) # 0 ist p(v) ein Automorphsmus von W der Form
(2.11) p(v): WH =W~ und p(v): W~ — WT.
Die linearen Teilrdume W¥ sind invariant unter der Multiplikation mit Clq(lo),
d.h., fiir p € CI'Y gilt

plp): WH — W+,
Also ist insbesondere dimg W+ = dimp W ™.

Nach Theorem 1.4 ist Clﬁlo) =~ (l,_1, und deshalb entsprechen diese Rdume
W= zwei verschiedenen irreduziblen R-Darstellungen von Cly,_1.
Entsprechende Aussagen gelten fiir Cl,, fiir gerade n.

BEMERKUNG. Die Beziehung (2.11) kénnen wir in folgender Form aufschreiben

p:R"\ {0} @ WF - WT,
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Beweis. Die Zerlegung ist unmittelbare Folgerung aus (2.4),(2.5) und (2.6) und
der Tatsache, dass fiir p: Cl,, — Endg(WW)

p(6 1) = pl@) o p(v) fir alle ¢, € Cl,

und damit p(w?) = p(1) = 1 gilt, d.h. fiir w € W gilt p(w?)w = p*(w)w =

w?w = w und 7w =: w* € W*. Die Eigenwerte lassen sich durch

wort=iw (1+w) =+l £w) = +a*

bestimmen.
Die Aussage (2.11) folgt aus

vt =1v- (14 )(2:2)%(1—@-11:7?_'1),
veor =gv-(1-w) = %(1+w)-v:7r+'v
und v v = —q(v) -1 = p(v) = —q(v)1

Weil fiir gerade n w € Zent(Cl%O)) h w- Y =1 w fiur alle ¢ € Cln), S0
gilt auch
p(w) o p(1) = p(¢) o p(w)
0)

und damit sind W¥ invariant unter Cl% . Unter Benutzung des Isomorphismus

b: Cl—1 — Cl( ) aus dem Theorem 1.4 transformiert sich das Volumenelment
(0)

w' =e;--e,_1 von Cl,—1 zum Volumenelement w € Cl,
betrachten wir

. Um dies zu sehen

n—1

(e1-€n) - (€n_1-en) = (_1)( 2 )ep - epy - (en)" !
= €1 €En,
denn fiir n = 4m (e,)*™ 1 = (en)4(m*1)+3 = (en)? = —en, weil (e,)* =1 und
damit (—1)(n51) -(=1) =1, dazu
Um-Dlm=2) | — (4m —1)(2m — 1) + 1 = 0(2).

Daraus folgt, dass p(w') = 1 auf W und p(w’') = =1 auf W~. Nunist n — 1 =
4m — 3 und damit sind, nach Satz 2.5, diese Darstellungen von Cl,_1 nicht
dquivalent.

Der komplexe Fall wird analog bewiesen. ([l

2.1. Spin—Darstellung. Sei C1*(V,q) multiplikative Gruppe aller invertierba-
rer Elemente aus CI(V,q), d.h.,

CI¥(V,q) ={ve Cl(V,¢)|3v e Cl(V,q): v-v =1}
Beachte, dass Spin—Gruppe
Spin(n) c 19 c C1,,
denn Spin(n) = Pin(n) N ¢ und Pin, C cly.
DEFINITION 2.7. Die reelle Spin—Darstellung von Spin(n) ist der Homomor-

phismus
A, Spin(n) — Aut(S),
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der durch Einschrankung einer irreduziblen reellen Darstellung p,: Cl, —
Endg(S) auf Spin(n) C o) ¢ Cl,, definiert ist.
BEMERKUNG. Es sit klar, dass die Darstellung in die multiplikative Untergrup-
pe Aut(S) der End(S) abbildet, denn fiir v € Spin(n) existiert ein v=! und
damit ist auch das Inverse von A, (v), d.h., A,(v™1) = A, (v) "L
Satz 2.8. Wenn n = 3(4) ist, ist die Definition von A, unabhingig von der
Wahl der irreduziblen Darstellung von Cl,.
Fiir n # 0(4) ist die Darstellung A,, entweder irreduzlibel oder ist Summe von
zwel dquivalenten irreduziblen Darstellungen. (der zweite Fall tritt genau fiir
n =1 oder 2(8) auf)
Im verbleibenden Fiéllen existiert eine Zerlegung

Ay = A DA}

4m

wobei A} und A}, nicht dquivalente irreduzible Darstellungen von Spin(4m)
sind.

Beweis. Weil fiir n = 3(4) die Involution o: Cl,, — Cl,, die Unteralgebren CI*
vertauscht und

(2.12) Cl, = CIt @ Cl,

ist, gilt
C1 = {(p, a(p)) € Cl & Clyy | ¢ € CIt},

d.h., liegt diagonal in der Zerlegung (2.12). Die beiden irreduziblen Darstellun-
gen von Cl,, unterscheiden sich durch die Multiplikation mit dem Automorphis-
mus «, und sind dquivalent wenn man diese auf C'l?(lo) D Spin(n) einschrankt.
Aus der Tabelle ist es sofort ersichtlich, dass Einschrinkung einer irreduziblen
Darstellung von Cl,, auf C’l%o) & (l,_1 eine irreduzible Darstellung fiir n =
3,5,6 oder 7(8) ergibt.

Wenn n = 0(8) ist, so wissen wir nach dem Satz 2.6, dass die Einschréinkung
auf C’l%o) sich in zwei nicht dquivalente irreduzible Darstellungen aufspaltet.

Nun ergibt die Einschrinkung eines irreduziblen Cl,(lo)fModuls auf Spin(n) eine

irreduzible Darstellung, da Spin(n) C . O

DEFINITION 2.9. Die komplexe Spin—Darstellung von Spin(n) ist der Homo-
morphismus

AL Spin(n) — Aute(S),
der durch Einschrinkung einer irreduziblen Darstellung Ci,, — Endc(S) auf
Spin(n) c CI c Cl,.
Wir kénnen nun die komplexe Version des Satzes 2.8 beweisen. Der Beweis
des Satzes wird analog gefiihrt.

Satz 2.10. Wenn n ungerade ist, ist die Definition von AS unabhéngig von der
Wahl der irreduziblen Darstellung von Cl,,. Weiterhin, wenn n ungerade ist, ist
die Darstellung AC irreduzibel. Wenn n gerade ist, so existiert eine Zerlegung

C C CcC —
AQm = A2m+ @ AQm
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in eine direkte Summe von zwei nicht dquivalenten irreduziblen komplexen Dar-
stellungen von Spin(n).

Wir wollen uns zuerst die komplexe Version des Satzes 2.6 ansehen.
Sei dazu Wa,, = Wapyr = C2" und damit ist CI(V,q) = End(Way,, falls
dimV = 2m und Cl(V, q¢) = End(Wap,+1) @ End(Wap,41), falls dim V = 2m+1.

Satz (Satz 2.6¢). Sei we das Volumenelement auf Cl,,, mit n = 2m und C—
Algebrahomomorphismus

pam: Clay — End(Wayy,).
Dann existiert eine Zerlegung
Wom = W5, @ Wy,
wobei Wi = {w € Way,|w.w = +w}. Ferner sind Wi, = mc.Way, und
R*™\ {0} ®r Way,, — Wi,
0)

sowie fiir o € CI©) po,, (@): Wi, — Wit . Weil Clém
nicht dquivalente Cls,,_1—Module.

=~ Clop,—1, sind WQim zwel

Beweis. Fiir n ungerade, d.h., n = 2m + 1 fiir ein m € Ny, ist (Clg?%ﬂ = Clom,

nach Theorem 1.4 und nach Satz 2.4
Cloma1 = Cl;m—i-l D (CZQ_m—f—l'

Ferner liegt (Clg;)1 41 diagonal in dieser Zerlegung von Cla;, 41, d.h.,

Cly) 1 = {(p,a(9) € Cli ®Cly |0 € Tl )

Die beiden irreduziblen Darstellungen von Clay,1 = End(C?™) @ End(C2?™)
unterscheiden sich durch die Multiplikation mit dem Automorphismus « und
sind dquivalent wenn man sie auf Spin(n) C Cl!Y einschriinkt.

Wenn n gerade ist, d.h. n = 2m, so wissen wir nach Satz 2.6, dass die Ein-
schrinkung der Darstellung auf (Clg?% sich in zwei nicht dquivalente irreduzi-
ble Darstellungen aufspaltet. Nun ergibt die Einschrdnkung eines irreduziblen

0)

C1) -Moduls auf Spin(2m)  CI{) eine irreduzible Darstellung. 0

3. AUSSERE ALGEBRA UND SPINOREN

Sei V' ein n-diminsionaler euklidischer Vektorraum mit (eq,...,e,) ONt—
Basis von V. Wir definieren nun

e: VXAV =AMV () (o A Avg) = Ap(Ui AL AvE) = VAULAL L Ay
und den dazu adjungierten Operation
0 VEX AR S ARV (o) (0r A A vpg) = (01 A A vgg) o,

Wir definieren ¢,: A¥V — A*=1V mit v € V durch «(b(v)), wobei b: V — V*
mit b(v, w) = b(v)(w).
Sei ¥ eine lineare Abbildung von V' nach End(AV') definiert durch

U(v) = Ay — Ly.
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Weil Ajtj + tjAi = ;5 ist, wobei A; = A¢; und ¢j = t;, erhalten wir
(U(©))* = =(to Av + Ay 1) = =1

und damit nach der Universellen Eigenschaft eine fortsetzung der Abbildung ¥
zZu

U: Cl(V,q) — End(AV),
mit AjAj = — Aj A und 1505 = —tj1; erhalten wir
U(v)¥(w) + ¥(w)¥(v) = —2b(v,w)1,

d.h., Algebrahomomorphismus.
Wir definieren nun eine lineare Abbildung

U: Cl(V,q) — AV, T(v) =T(v)(1)
fir w € CI(V,q) und 1 € AV. Beachte, dass fiir v € V C CI(V, q)
ﬁl(”) =V()(1) = (Ap = o) (1) = Ap(1) = 1p(1) = v.

def
=0

Damit ist fiir ein w = e{l el Cl[k](V, q)

(el eln) —el' AL el =0,
weil ,e; = b(e;,e;) =0, d.h., (e1,...,e,) ON-Basis ist. Allgemeiner erhélt man
fiir {v1,...,v,} Basis von V

(- vln) — vl AL A e AR
BEMERKUNG. Mit W: CI(V,q) — AV wird ein Isomorphsimus zwischen den
Vektorrdumen beschrieben. Beachte, dass

Cl(V,0) = AV

nach Definition.

Wir wollen nun Cla,, = End(C?") Modul genauer untersuchen. Sei dazu
V' ein n—diminsionaler reelle Vektorraum, mit n = 2m und (.,.), also ist im
wesentlichen V = R?™ euklidisch.

Sei eq,...,e2, ONT-Basis von V und J komplexe Struktur auf V, d.h.,
J? = —idy, die zusitzlich Isomotrie beziiglich b ist, d.h., b(v,w) = b(Jv, Jw)
fiir alle v,w € V. Daraus folgt

b(v, Jw) = —=b(Jv,w).

Sei V€ mit dime(V®) = k Komplexifizierung von V mit J. Dann definieren wir
auf VC folgende hermitsche Form

(v,0)c = (v,0) + 1 (v, JO),
dabei ist (a + 1b)v = aly(v) + bJ(v).
Wir erhalten die duBere Algebra von VC

AcVE =P ALVE.
j=0
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Fiir v € VC erhalten wir das duflere Produkt A, : AféVc — A{CHV(C und den
dazu adjungierten Operator beziiglich (.,.)c (das innere Produkt)
182 ALVE  ALVE
Sei
Y()(@) =vAp—ilp firveVCE peAcVE.

Beachte, dass v A ¢ in v C-linear ist und ¢$ ist konjugiert linear in v, denn
(v, Jo)c = (v, JD) + i (v, J?0) = (v, JD) — i (v,0), und damit ist ¥(v) nur R-
linear in v. Wir erhalten
(3.1) P(u)p(v) + ¥ (v)h(u) = =2(u,v)1
und damit kann wie oben v: V — End(AcV®) zu einem Algebrahomomorphis-
mus fortgesetzt werden

: CU(V,q) = End(AcV®)
und damit auch zu einem C—-Algebrahomomorphsimus
(3.2) ¥: Cl(V,q) — End(AcVE).

Satz 3.1. Der Homomorphismus v: Cl(V,q) — End(AcVC) ist fiir reelle Vek-
torrdume V der geraden Diminsion 2m ein Isomorphismus.

Beweis. Wir wissen bereits, dass

CUV, q) ——— End(AcVE)

I

End( (C2m

Ferner wollen wir benutzen, dass End(C?™) keinen Hauptideal hat (x).

Nun ist aber a = ker(¢) ein Hauptideal, denn fiir « € ker(¢)) und v € CI(V, q)
folgt aus

P(z - v) = ¢(x) op(v) =001h(v) =0

dass x - v und analog auch v -  aus dem Urbild von 0 € End((CQk) sind. Dann
ist nach (x) f(a) entweder Nullideal oder Einsideal. Also ist entweder i) = 0
oder 1 ein Isomorphsimus. Nun ist aber fiir v € V', ¢(v)(1) = v, also ist ¢ # 0.
Deshalb ist 9 ein Isomorphismus. O

Wir wollen uns jetzt an die Spin—Darstellung beschéftigen. Sei V' 2m dimin-
sionaler reeller Vektorraum mit komplexer Struktur J. Sei V€ Komplexefizie-
rung von V beziiglich J, mit dimc VC = m und sei

S=8(V,q,J) =AcV"
mit dem induziertem hermitischem Produkt. Aus der Inklusionskette
Pin(V,q) C CUI(V,q) C Cl(V,q)
und mit der Einschrénkung von ¢ aus (3.2) auf Pin(V, ¢) erhalten wir
p: Pin(V,q) — Aut(S).
Satz 3.2. Die Darstellung p von Pin(V,q) ist irreduzibel und unitér.
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Beweis. Die C-Teilalgebra von CI(V, q) die durch Pin(V, q) erzeugt wird ist die
ganze Algebra CI(V,q), denn {v € V||v| =1} C V C Pin(V, q), damit folgt die
Irreduzibilitat folgt aus der Tatsache, dass (3.2) ein Isomorphismus ist. Eine
Darstellung p heifit unitir, wenn

(p(d)v, p(P)v)c = (v,v')¢ fiir alle v,v" € S, ¢ € Pin(V,q).

Die Darstellung ist unitér, weil 1 (v) fiir v € V ¢*(v) = —¢(v) nach Definition
ist; aus (3.1) folgt, dass ¥(v)? = —|v|?1, und weil nach Definition von Pin(V,q)
fiir alle v € V' |v] = 1 ist. Also ist ¢ (v) unitdr und durch tensorielle Fortsetzung
erhalten wir die Behauptung. Also

¢1 P’Ln(‘/ﬂ Q) - U(A(CV(C? < ) >(C)
O
Die Einschréinkung von p auf Spin(V,q) ist nicht irreduzibel. In der Tat, sei
(33)  ST=8T(V.q.))=ADVE, ST =87(Viq,J) = APVE,

mit dim S* = 2F-1,
Der Spin(V, q)-Modul 148t die Réume ST und S~ invariant. Wenn wir ¢ aus
(3.2) auf CI(O)(V, q) eingeschriinken, so erhalten wir isomorphe Abbildung

(3.4) ¥: CIO(V, q) — Endc(ST) @ Ende(S7).

Folge dazu die Sétz 2.6 und 2.10.
Andererseits gilt fiir z € CI(V(V, q)

Y(z): S — ST,
Aus (3.4) erhalten wir ein irreduzible unitidre Darstellung
D:%t: Spin(V,q) — Autc(ST).
BEISPIEL. Sei V = R?* mit euklidischem Skalarprodukt und (e, ..., es) ON—
Basis von V. Ferner sei die komplexe Struktur J definiert durch
Jej =ejrr, Jer = —e; fir 1 <i<k.

Wir wollen mit S(2k) = S(R?* (.,.),J) und S*(2k) = ST(R?* (.,.),J) be-
zeichnen und erhalten auf diese Weise Darstellung

D Spin(2k) — Aut(S*(2Kk)).
2

Wir untersuchen jetzt den Fall V = R?*~1. Wie wir bereits wissen, ist Cloj_; =

Clg,? gegeben durch v — v - egy, fiir v € R?~1, Und damit erhalten wir aus der
Inklusion Spin(2k — 1) C Clog_1, dass

Spin(2k — 1) — Spin(2k).
Wir erhalten also

D7 : Spin(2k — 1) — Aut(S™(2k)).
2
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Die andere Darstellung D7 : Spin(2k —1) — Aut(S™(2k)) ist dquivalent zu
2

der oben beschriebenen, denn die Abbildung F' € Iso(S™(2k), S~ (2k)) aus der

Definition 1.9 ist gegeben durch

Y(egr): ST(2k) — S™(2k).

4. LIEALGEBRA

Es wichtig anzumerken, dass Cl [2]({/’ q) = spin(V, q) eine Liealgebra Struktur
aufweist, mit [a,b] =a-b—b-a. In der Tat sei {e;} ON-Basis von V, dann
leiej, exer] = ejejerer — epeeie;
= —20;peiep — ejepejep — epegeie;
= —20ke;e0 + 20g5€;e, + €;epee; — epepeie;
= —20;reiep + 20p5€ie) — 2005 — epeiee; — epegeie;
= —20jke;ep + 20g5e;e, — 20k;€0e5 + 20,0epej + epegeie; — epepeie;

—2(8;keie0 — dpjeier + dixerej — dpiege;),

die Jacobi-Identitét ist klar. Wir wollen zeigen, dass T1(Spin(n)) = spin(n) ist.
Sei dazu y(t) = x1(t) - z2m(t) eine Kurve in Spin(n) mit x;(t) € S"~ ! und
~v(0) = 1, dann ist

S ()li=0 = L (t)]1=0 - 22(0) - -+ 220 (0) + - + 21(0) - T2pp—1(0) - 22 (¢)]1=o.

Wir zeigen, dass jeder Summand von 4(0) in spin(n) liegt. Wegen ~v(0) = 1,
also 1 = 21(0) -+ 22, (0) = 27 5(0) = 22(0) - - - 22, (0), ist der erste Summand
gleich

G0 271(0) = —50) - 11(0),
weil -2 = —q(2)1 = 27! = —x fir z € S"L. Aus x1(t) - 21(¢t) = —1 folgt
jedoch
Z1(t)x1(t) + z1(t)x1(t) = 0, d.h. insbesondere, dass b(i1(0),z1(0)) = 0.

Also liegt der erste Summand in spin(n). Analog, der zweite Summand stimmt
mit

21(0)i2(0)z5 1 (0)27 1 (0) = —21(0)d2(0)x2(0)21 ' (0)
= {21(0)22(0)27 1 (0) } {21 (0)22(0)27 " (0) }

Weil b(i2(0),22(0)) = 0, so sind auch z1(0)2(0)z;(0), 21(0)22(0)z;(0) b-
orthogonal und der zweite Summand liegt in spin(n). Also ist T (Spin(n)) C
spin(n). Weil

dim Spin(n) = dim SO(n) = n(n;l) = dim spin(n)

stimmen beide Rdume iiberein, und Lie(Spin(n)) = T1(Spin(n)) = spin(n).
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Sei 7: CIMN(V,q) =V — cl(V,q) = V, mit 7(a)(v) = [a,v] =a-v—v-a,
wobei v € CIN(V, q) =V und a € spin(V, ¢). In der Tat
[eiej, ek] = €;€;€L — €LEE;

(E) _26]'14:61' + 25}“‘6]'.

Lemma 4.1. 7 definiert einen Liealgebra—Isomorphismus zwischen spin(V, q)
und so(V, q).

Beweis. Es ist einfach einzusehen, dass 7([a,b])(v) = [r(a),7(b)](v) fiir alle
v eV ist:

7([a, b])(v)
[7(a), 7(b)](v)

7(ab)(v) — 7(ba)(v) = [ab,v] — [ba, v]
7(a)([b, v]) — 7(b)([a, v]) = [a, [b,v] — [b, [a, v]]

abv — avb — bva + vba — bav + bva — avb + vab

= abv — vab — bav + vab = [ab, v] — [ba,v].
Also definiert 7 einen Liealgebra—Homomorphismus von spin(V, ¢) nach gl(V, q).
Fiir a € CI?(V,q) ist
b(r(a)v, w) 4+ b(v, 7(a)w) = blav, w) — b(va, w) + b(v, aw) — b(v, wa)

= —% (avw + wav — vaw — wua + vaw + awv — vwa — wav)

= —% (cww + awv — wva — vwa) =0.

Deshalb ist 7(a) € so(V,q), 7 ist injektiv fiir alle a € CIP(V,q) nach der

Folgerung aus dem Satz 1.2. Weil schliellich spin(V, ¢) und so(V, ¢) Vektorrdume

n(n—1)
2

sind mit Diminsion , folgt die Aussage. O

5. DIE GRUPPE Spin®(n)

DEFINITION 5.1. Spin®(V, q) ist multiplikative Gruppe der Einheiten von
CIl(V,q), die durch Spin(V,q) und U(1) erzeugt wird.
Weil Spin(n) NU(1) = {—1,+1} ist die Gruppe Spin®(n) offenbar gegeben
durch
Spin®(n) = Spin(n) xz, U(1) = (Spin(n) x U(1))/Zs.
Die Elemente von Spin®(n) sind also Klassen [g, z] von Paaren (¢, z) mit Aqui-
valentzrelation (@, z) ~ (—¢, —2).
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