Die Clifford Algebren

Jan Sahner

April 2001

Zusammenfassung
Dieser Vortrag fithrt die Clifford Algebren C* ein, die in dhnlicher
Weise aus der Tensoralgebra hervorgehen wie die duBere Algebra A(RF).
Teilriume Pin(k), Spin(k) werden eingefiihrt, beides doppelte Uberlage-
rungen von O(k) bzw. SO(k).
Abschliefend werden die Algebren C* berechnet und C* — Moduln ein-
gefiihrt und entschieden, wieviele verschiedene es gibt.
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1 Definitionen

1.1 Die Clifford Algebra

Sei K Korper, V' Vektorraum tiber K. Bezeichne T'(V') die Tensoralgebra iiber
V, also

T(V)=> Ti(V), TV)=QV, T°=K
i=0
Sei Q' eine Bilinearform, @ : V — R,v — Q'(v, v) die dazugehérige quadratische

Form. Sei I(Q) das Ideal in der Tensoralgebra T'(V), das von z @ z — Q(z) - 1
erzeugt wird.



Definition 1 C(Q) := % mit Multiplikation - heifst Clifford Algebra von Q.

Seip: T (V) = C(Q) die Projektion. Dann ist ig : V <4 T(V) & C(Q) injektiv,
weil p|ycr(v) injektiv ist (aus V' wird nichts herausgeteilt). Es gilt

Lemma 1 FEs gilt:
1. Ist (v;)?, orthogonale Basis von V bzgl. Q, so ist wegen v; -v; = —vj - v;
1,v5 - Vi 5 i < <
Basis von C(Q) und somit dim C(Q) = 2™

2. Definiere C°(Q) := p(X 1o T*(V)),CH(Q) = p(X 52y T* 1 (V)). Dann
ist C(Q) = C°(Q) + C*(Q) eine Z» graduierte Algebra, d.h.

CH(Q) - CI(Q) c CcHiltmet2) ()

3. Sei @ : V. = A eine K-lineare Abbildung in eine K-Algebra mit 1 und
®(z) - ®(z) = Q(z)-1Vr € V. Dann 3! @ : C(Q) — A, die ® erweitert,
also ® oig = @ (universelle Eigenschaft der Cliffordalgebra).

Beweis: zu 1):

zu 3): Definiere Algebrenhomomorphismus &' : T(V) —» A,21 Q@ -+ Q 2 —
®(x1)-- - --® () eindeutig, wohldefiniert und definiere fiir y € C'(Q) mit y = p(x)
firz e T(V):

®(y) := &' (x).

Uberpriife Wohldefiniertheit von @, also Unabhingigkeit von der Wahl von z:
Dafiir zeige ®'(7® (2 ®2—Q(2)-1)®n) =0, da p(z) = p(z') @ z —2' =
T®(2®z—Q(z) - 1) ®  oder Linearkombinationen von Elementen dieser Form.
Aber (2 @2z — Q(2)-1) = ®(2) - 2(2) — Q(2) -1 =0.

O

1.2 Die Automorphismen «,’~

Die Abbildung ! : T% — T*, (21®---®xz;)! — 23 ®---®2; iibertrigt sich auf
C(Q), da? I(Q) invariant lisst, (z®z—Q(z)-1)! =z®z—Q(z)-1.a: C(Q) =
C(Q) ist definiert als die (nach der universellen Eigenschaft der Cliffordalgebra
eindeutig existierende) Erweiterung von o : V. = C(Q), a(z) = —ig(x). a
erweitert, da a(z)? = (—ig(x)) - (—igE) =z -z = Qx) - 1.7: C(Q) = C(Q)



ist definiert durch Z := a(z!) = (a(z))!. a ist ein Automorphismus, ?,” sind

Antiautomorphismen. Es gilt a? = Id Fiir irreduzible Elemente in C(Q) z =
Ty zy, ist a(z) = (=1)*z, da a(z) = a(zy)----- afzg) = (—z1) - (—zp) =
(=1)*z. Somit kénnen wir unsere Zo-Graduierung von C'(Q) auch iiber

C'(Q) ={z € CQlz=a(2)}, C(Q)={zre€C(Q)lzr=—afz)}

erhalten.

2 Die Algebren Cj

Fiir uns sind hauptsiichlich die Algebren Cy := C(Q}) interessant, wobei @y :
Rf — R die negative euklidische quadratische Form ist: Qy(z1,...,2r) =

k
—2in1 xf

Lemma 2 Die Algebren Cy, kinnen aufgefasst werden als die von ey, . . .ex mul-
tiplikativ erzeugten Algebren unter den Bedingungen

e; =—1, ej-ep+ep-e; =0, j#k

Beweis: Ubung.

3 Die Gruppen I'y, Pin(k), Spin(k)
Sei C}; die multiplikative Gruppe invertierbarer Elemente in C},.
Definition 2 I'y, ist die Untergruppe aller x € C};, fr die

Yy € RF : a(z)yz~! € R*

Da a,z — ! den RF invariant lassen, gilt, dass o und * Fk invariant lassen
und somit Morphismen auf T'j, darstellen. Zentral in dieser Uberlegung ist die
Abbildung

p:Tr = Aut(RF), z+— (y— az)yz™?)
die sogenannte getwisted adjungierte Darstellung von Ty auf RF.
Definition 3 N : Ty — C}, sei definiert als N(z) := zZ.

Wir zeigen nun, dass N(T'x) C R* und dass N ein Gruppenhomomorphismus
ist. Das rechtfertigt die

Definition 4 Pin(k) := kerN C T}, C Cy,

Das vorher Behauptete liefern die folgenden Lemmata:



Lemma 3 kerp = R*

Lemma 4 N(T';) C R*

Beweis von Lemma 4: Wir zeigen, mit Lemma 3, dass N(z) C kerp. Fiir

xz €Ty gilt Vy € RF :
a(z)ye" = p(z)(y) =y € R*

Transponieren ergibt, da t = id auf R¥:

()" tya(z)t = a(z)yzrt, also ya(zh)z = rla(x)y
und somit

y =a'a(@)y(a(a')s) " “=" afala))y(a(s o)
Also ist a(zt)x € kerp = R* und, weil A\! = AVA € R:

N(zt) = 2lzt = xta(aztt) = z'a(r) = a(z')r € R*

Da ! ein Automorphismus ist, gilt N(z) € R*Vz € T

Beweis von Lemma 3: z € Ker(p) =
a(z)y = yz Yy € R¥
Mit z = 2° + ', 2’ € C} wird das zu
2y = ya°

oly = —ya

(1)

Sei e1,...e, ONB vom RF, 20 = a® + ¢;b', wobei a® € CY e; nicht enthilt

und b' € C} e; nicht enthilt. Setze in (1) y = e; und erhalte a® + e;b'

e;a’e; !t +e2ble;! = ag — e;b'. Daraus folgt b* = 0. Also enthilt 2° keines der
e;. Also ist 20 ein Vielfaches von 1. Analog erhélt man z! ist ein Vielfaches von
1, also z' =0, da z' € C}. Also ist z = X € R und, da z invertierbar, r € R*

Lemma 5 N : Ty — R* ist ein Homomorphismus, und N(a(z)) =

Beweis: Seien z,y € Ty,
N(z-y)=zy-zy =zyyz =z - N(y) -z = N(z)N(y)

und

O



O

Nun zeigen wir, dass Pin(k) C T eine doppelte Uberlagerung von O(k) ist.
Hierfiir brauchen wir zun#chst

Lemma 6 p(T;) C O(k)
Beweis: Fiir z € RF gilt: N(z) = - a(2!) = z- (—z) = —Q(x) = |z|? ist die
euklidische Linge. Da N ein Gruppenhomomorphismus ist, gilt:
N(p(z) - y) = N(a(z)yz™") = N(a(@))N(y)N(z™") = N(y)
O

Also p : Ty, = O(k). Pin(k) = kerN kann daher als eine verallgemeinerte
Sphire aufgefasst werden. Nun kénnen wir das vorhin Angedeutete beweisen:

Theorem 1 Wir haben eine kurze exakte Sequenz
15 Zo S Pin(k) 5 O(k) - 1

wobei Zo = {—1,1}. D.h., p ist surjektiv und hat Kernel Zs, also O(k) ~ —P’Z(k)

Beweis: Surjektivitéit von p: Fiir (v;) ONB auf RF gilt N(v;) = 1 und:

—v; fallsi=j

p(vi)v; = a(vi)vjo; = vwv; = {Uj fallsi# j

Also ist jede Reflexion an einer Hyperebene in p(Pin(k)), also ist p surjektiv.

kerp|pinr) = kerp N kerN
= z € kerp|pin(r)
sr=A1N)-1)=1
= A= =£1 = kerp|pin) = Z2 2

Definition 5 Spin(k) := p~1(SO(k))

Da Z» C Spin(k) (da p(Z2) = {Id} C SO(k)), sind wie eingangs erwéhnt
Pin(k) und Spin(k) doppelte Uberlagerungen von O(k) bzw. SO(k).

Theorem 2 Fiir Pin(k)" := Pin(k)NC} gilt: Pin(k) = |J, Pin(k)? und Spin(k)
Pin(k)°(= (kerN)?)

Beweis: Fiir z € Pin(k) gilt p(z) = R10---0 R; € O(k), wobei die R; Reflexio-
nen an Hyperebenen sind. Wie oben im Beweis der Surjektivitdt von p kdnnen
wir x; wihlen mit p(z;) = R;, so dass = *x; ...z, weil kerp = Z,. Also
z € C) oder z € C;. Da p(z) € SO(k) & 1 gerade, ist z € Spin(k) & p(z) €
SO(k) &z € C}.



O

Bemerkung: Spin(k) ist eine nichttriviale doppelte Uberlagerung von SO(k).
Dafiir iiberlegen wir uns, dass wir 1 und —1 in Spin(k) durch einen Pfad verbin-

den kénnen. In der Tat erbringt der Pfad ¢ A cos(t) +sin(t)e; - eq, 0<t<1
das gewiinschte, da B(t) € Cj) und N(B(t)) = 1Vt € [0, 1].
3.1 Komplexifizierung

Die ganze Theorie kann komplexifiziert werden. Dann ist Cf := C} ®gr C. Defi-
niere darauf

alz ® 2) = a(r) 2, (re2)l=2'e®z

und dariiber N und~wie vorher. I'; ist nun die Untergruppe der invertierbaren
Elemente, fiir die

VyeRr :a(z)-y®1-27 =y’ ®1, mity € R

Alle Erkenntnisse der vorherigen Lemmata bleiben erhalten, aufler dass R* durch
C* ersetzt wird und die kurze exakte Sequenz zu

1= U@Q) 5 Pinc(k) % Ok) — 1

wird, wobei U(1) = {1 ® z||z|*> = 1}.(Denn immer noch ist kerp|pipe) =
kerp° NkerN = {1® 2|z € C*} N {kerN ® z||z|?> = 1})

4 Berechnung der Algebren Cj

Um die C}, zu berechnen, geht man induktiv vor, indem man sukzessive Cy, C},
berechnet, wobei C}, = C(—Qy) die Algebra ist, die von den e; multiplikativ
erzeugt wird mit e? = +1, e;e; +eje; =0 fiir ¢ # j

Lemma 7 (Induktionsanfang)

Ci~C, 1—1l,e—1
CQZH, 1'—)1,61*—)i,€2|—)j,€162’—>k
Ci~RoR, 1~ (1,1),e;~ (1,-1)

0 1 01 1 0
Cy ~R(2), 1n—>E2,e1n—>(_1 0),62'—><1 0),6162'—>( _1>

Lemma 8 (Induktionslemma)

o

Ci ®r Cy ~ Cllc+2
C, ®r C ~ Cry2



Beweis: Die lineare Abbildung ¥ : R 2L e ® C!, definiert durch

B(e!) = ei—a®etey 2<i<k
¢ 1®e 1<i<2

erfiillt, ¥(x)?> = —Qg(z) - 1 und erweitert daher zu ¥ : C},, = C} ® C5. Da
¥ Basiselemente auf Basiselemente abbildet, ist ¥ Isomorphismus. Die zweite
Aussage geht analog

O
Aus dem Induktionslemma 8 folgt:
Ci ’102 ®RC§ 205 ®RCQ 204
Cs ~Cg@rCo~Cy ®r Cy Qr Ca ~ C4y ®r C4
Ci+s = Cya ®r Cy =~ C ®r Cy ®r Cy = Cf, ®r Cy

Bezeichne K(m) die Matrixalgebra der m x m-Matrizen iiber dem Korper K
Die bekannten Formeln

K(n) ~ R(n) ®r K, R(n) ®r R(m) ~ R(nm)
CerC~CaC
Her C ~ C(2)
H o H ~ R(4).

fithren nun durch iiberschaubares Rechnen mit den Induktionslemmata 7 und 8
zu folgender Tabelle iiber die Clifford-Algebren:

k| Cy C’,’g Ck ®RC=C;C ®r C
1(C RoR CeC
2 | H R(2) C(2)
3| HoH C(2) C(2) ® C(2)
4 | H(2) H(2) C(4)
5| C(4) H(2) @ H(2) | C(4) & C(4)
6 | R(8) H(4) C(8)
7 | R(8) @& R(8) | C(8) C(8) @ C(8)
8 | R(16) R(16) C(16)
Da Cs = R(16) und C; ~ K(m) bzw. K(m) @ K(m) fir 1 < ¢ < 8 folgt die

8-Periodizitét
Cris = Cr ®r Cs ~ K(m) ®r Cs ~ K(m) ®r R(16)
~ K ®gr R(m) ®r R(16) ~ K ®g R(16m)
~ K(16m)

der Clifford-Algebren Cj. Fiir die Komplexifizierungen ergeben sich Periodi-
zitdten von 2.



5 Clifford Moduln

Ein Cg-Modul iiber K ist ein K-Vektorraum, der ein Modul iiber Cj, ist. Aquiva-
lent dazu ist, dass eine K-Darstellung p existiert, also ein K-Algebren-Homomorphismus

p:Cy = Homg(W, W)

Der Zusammenhang zwischen Cy-Modul und K-Darstellung besteht in der Mul-
tiplikation

¢z = p(¢)(x)

die einerseits eine Ci-Modulstruktur definiert wenn p K-Darstellung, anderer-
seits eine K-Darstellung, wenn W C%-Modul ist.

Theorem 3 (K-Algebren-Darstellungssatz)

Fiir K = R, C, H ist die natiirliche Darstellung von K(n) auf den K*, p(A)(x) :=
A-z die einzige Darstellung (bis auf Aquivalenz). Die Algebra K* ®K" hat genau
zwei Darstellungen, gegeben durch

p1(A1, A2) = p(A1), p1(A1, A2) = p(As)

Beweis: siehe Lang. Hieraus folgt die unten abgebildete Tabelle. v, ist die Anzahl
verschiedener Ci-Moduln, 1, wenn Cy ~ K(m), 2, wenn Cj ~ K(m) ® K(m). di
ist die R-Dimension des Moduls. Analog sind v§ und dj, definiert. Die Periodi-
zitdten sind wie im letzten Abschnitt.

k| Cs v | dr | Cr ®r C = Ck ®r C vy d%
1| C 1 2 CopC 2 1
2 | H 1 4 C(2) 1 2
3| HeH 2 4 C(2)®»C(2) 2 2
4 | H(2) 1 8 C(4) 1 4
5 | (4 1|8 | c4)ec@) 2 |4
6 | R(8) 1 8 C(8) 1 8
7| RB) @R | 2 8 C(8) ®» C(8) 2 8
8 | R(16) 1 16 | C(16) 1 16




