6. Übung Globale Analysis I

Abgabe am Montag, den 29. November, in der Vorlesungspause.

Bei Fehlern oder Fragen bitte eine eMail an: $brief\alpha$ fabianmeier.de.

Question 1 (Completeness of vector fields). (4 points)

- 1. Define a smooth vector field on \mathbb{R} which is not complete.
- 2. Let V be a smooth vector field on \mathbb{R} with $\lim_{x\to\pm\infty}V(x)=0$ and $\lim_{x\to\pm\infty}\frac{\partial^nV(x)}{\partial^nx}=0$ for all $n\geq 1$. Show that V is complete.

Question 2 (Proper maps). (5 points)

Let $k \leq n, U \subset \mathbb{R}^k$ be open and $f \colon U \to \mathbb{R}^n$ be a submanifold. Furthermore, let f be a *proper* map, i.e. for all compact subsets $K \subset \mathbb{R}^n$ we know that $f^{-1}(K)$ is also compact. Show that f is an embedding.

Question 3 (Flows don't commute). (4 points)

Define the following vector fields in the plane

$$V = x \frac{\partial}{\partial y} + y \frac{\partial}{\partial x},$$
 $W = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$

Compute the flows θ and ϕ of V and W. Show that they do not commute, i.e. find explicit times s and t such that $\theta_s \circ \phi_t \neq \phi_t \circ \theta_s$.

Question 4 (Contraction). (4 points)

Let V be a k-dimensional vector space. For each $\omega \in \Lambda^p(V^*)$ we define $\iota_a(\omega) \in \Lambda^{p-1}(V^*)$ The contraction of ω with respect to $a \in V$) by

$$\iota_a(\omega)(v_1,\ldots,v_{p-1})=\omega(a,v_1,\ldots,v_{p-1}).$$

For p=0 we take $\iota_a(\omega)=0$. Show that

$$\iota_a(\omega \wedge \eta) = \iota_a(\omega) \wedge \eta + (-1)^p \omega \wedge \iota_a(\eta)$$

for all p-forms ω and q-forms η on V.