Prof. Dr. Werner Müller Dr. Fabian Meier

4. Übung Globale Analysis I

Abgabe am Montag, den 15. November, in der Vorlesungspause.

Bei Fehlern oder Fragen bitte eine eMail an: $brief \alpha fabianmeier.de$.

Question 1 (integral curves on S^2). (3 points)

Show, that

$$X(x, y, z) = (-y, x, 0)$$

defines a smooth vector field on S^2 . Determine the integral curves of X.

Question 2 (Vector fields on Submanifolds). (4 points)

Let M be a manifold and $N \subset M$ be an embedded submanifold. Furthermore, let $X \in C^{\infty}(TM)$ be a smooth vector field for which we have: $p \in N \Rightarrow X(p) \in T_pN$. Show:

- 1. $X|_N$ is a smooth vector field on N.
- 2. Let $\gamma: (-\varepsilon, \varepsilon) \to M$ be an integral curve of X with $\gamma(0) \in N$. Then we have $\operatorname{Im} \gamma \subset N$ and γ is an integral curve of $X|_{N}$.
- 3. Every smooth vector field Y on N is locally just the restriction of a smooth vector field X on M, i.e. for every point $p \in N$ there exists an open neighbourhood U of p in M and a vector field $X \in C^{\infty}(TU)$ with $Y|_{U \cap N} = X|_{U \cap N}$.

Question 3 (Properties of the Lie bracket). (4 points)

Prove Lemma 1.38!

Question 4 (Related Lie brackets). (5 points)

Let M, N be manifolds and $\phi: M \to N$ be a smooth map. Two vector fields $X \in C^{\infty}(M), Y \in C^{\infty}(N)$ are called ϕ -related, if

$$Y(\phi(p)) = (d\phi)_p (X(p)).$$

For i = 1, 2 let $X_i \in C^{\infty}(M)$ and $Y_i \in C^{\infty}(N)$ be ϕ -related vector fields. Show, that $[X_1, X_2]$ and $[Y_1, Y_2]$ are also ϕ -related.