Prof. Dr. Werner Müller Dr. Fabian Meier

3. Übung Globale Analysis I

Abgabe am Montag, den 8. November, in der Vorlesungspause.

Aufgabe 1. (5 Punkte)

Beweise, daß das Tangentialbündel der Sphäre S^3 als Mannigfaltigkeit diffeomorph ist zu $S^3 \times \mathbb{R}^3!$

Tip: Durch Projektion auf die erste Spalte erhält man einen Diffeomorphismus der Mannigfaltigkeiten SU(2) und $S^3 \subset \mathbb{C}^2$.

Hinweis: Die Differenzierbarkeit der konstruierten Abbildung muß nicht in allen Details nachgeprüft werden.

Aufgabe 2. (4 Punkte)

Sei M eine n-dimensionale Mannigfaltigkeit. Angenommen, es gibt Vektorfelder X_1, \ldots, X_n über M, so daß die Vektoren $X_1(p), \ldots, X_n(p)$ an jedem Punkt $p \in M$ linear unabhängig sind. Zeige, daß dann TM diffeomorph zu $M \times \mathbb{R}^n$ ist.

Aufgabe 3. (2 Punkte)

Wie sieht die Standardbasis des Tangentialraums gesehen als $(I_x/I_x^2)^*$ bezüglich einer Karte (U,φ) um den Punkt x aus?

Wie sieht die "Formel" für die von einer Abbildung $f: M \to N$ induzierte Tangential-abbildung jetzt aus?

Aufgabe 4. (4 Punkte)

Angenommen, wir setzen den "Satz vom Igel" voraus. Wie zeigt man dann, daß gilt: TS^2 ist als Vektorraumbündel *nicht* isomorph zu dem trivialen Bündel $S^2 \times \mathbb{R}^2$.

Aufgabe 5. (4 Punkte)

Zeige, daß für den auf Übungsblatt 1 behandelten Torus \mathbb{R}^n/Γ gilt: $T(\mathbb{R}^n/\Gamma)$ ist als Vektorraumbündel isomorph zu dem trivialen Bündel $\mathbb{R}^n/\Gamma \times \mathbb{R}^n$.