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The purpose of this talk is to review some aspects of
resonances in mathematics and physics. Resonances
are defined as poles of the meromorphic continua-
tion of the resolvent. They are related to the long
time behaviour of the wave equation. In physics a re-
sonance E — iy is related to a dissipative metastable
state with energy E and decay rate ~. In mathema-
tics resonances are discrete spectral data for elliptic
operators on noncompact manifolds which replace ei-
genvalues in the compact case.

1. Closed systems and eigenvalues

To begin with we review some aspects of spectral
theory for closed systems.

I) Geometry

In the geometric setting we consider a closed Rie-
mannian manifold X with metric g and the associated
Laplace operator on functions

A CP(X) - CF(X).

Then A\ is essentially self-adjoint and has pure point
spectrum

Spec(A): 0=Xg< A1 <+ > 400



consisting of eigenvalues \; of finite multiplicity with
eigenfunctions

Ap; = N¢;, 1€ Np.

If X is compact, but has a nonempty boundary

0X # ¢,

we need to impose boundary conditions. Natural choi-
ces are Dirichlet or Neumann boundary conditions:

_ 0p|  _
¢|8X - O) E‘BX = 0.

The corresponding self-adjoint extension of 4 has
again pure point spectrum. One of the main problems
is to understand the relation between Spec(A) and
the geometry and topology of X:

Spec(A)

N

Geometry ~—| Topology




II) Quantum mechanics

In quantum mechanics we consider the Schrodinger
operator

H=-h°A+V, VeC®RM.

Assume that

Then H has pure point spectrum for h <€ 1. More
generally, we may consider energies near a confining
nondegenerate enery level E, which means that

{(,2) : 2p° + V(@) = B}

IS @ smooth bounded hypersurface in phase space.
Problems:

e inverse spectral theory

e distribution of eigenvalues and classical dynamics

e fine structure of the spectrum



Results and Methods
1. Weyl’'s law
i) Geometry.

Let X ba a compact Riemannian manifold and let

O< XA <A< vv 5>

be the spectrum of the Laplacian A, with Dirichlet or
Neumann boundary conditions, if 0X # (. Define the
eigenvalue counting function by

N(A) = #{i| A < A}
Let n = dimX. Then we have Weyl’'s law:

vol(X)
(4m)"/21 (54 1)

as A — oo.

e If the geodesic flow is ergodic the remainder term
satisfies

R(\) = o(A(n—1)/2)

as A — oo.



i) Quantum mechanics.

H=-h°A+V, VeC®R").

Eigenvalues E of H can be counted using only the
classical Hamiltonian

1
H(z,p) =3 |l p I +V (2)
and Planck’s constant h. Let Eg < Eq and suppose
that for F € [Eq, F]
{(z,p): H(z,p) = E}
is @ bounded hypersurface. Then

#{E JINS [EOaEl]}
_vol({(z,p): Eo < H(z,p) < E1})
(2wh)™




2. Heat equation method

There is an symptotic expansion

©.@)
Tr(e t2) = Z et t—;\CJJ—I— (47rt)_n/2 > aktk

J k=0

e [ he heat coeficients aj’s are locally determined by
the metric.

1
ap = Vol(X), aj = E/X R(z)dvol,

Here R(x) denotes the scalar curvature.
e Similar formula for the Schrodinger operator
3. Wave equation method

The study of the wave equation leads to relation bet-
ween Spec(A) and the length spectrum

Lsp(X,g) := {l(vy) | v closed geodesic}

Let
i = —I—r(eit\/Z)



Then

sing supp u C length spectrum

i 17

e =", If g is generic

e Semi-classical trace formula for Schrodinger opera-
tors

4 .Higher spectral invariants

Regularized determinants are important spectral inva-
riants of elliptic operators. Let

Cal)= Y A% Re(s) > T

’\j>0

The regularized determinant of A is defined by

det A = exp (—%CA(S) |8=O> :



2. Open systems and resonances

Consider a noncompact Riemannian manifold X and
A C?(X) = C®(X)
or

H=-h’A+V, VeC RM.

New features:

e particles may escape to infinity

e there may be no bound states

Example: Obstacle scattering in R".

Possible replacement for eigenvalues: Resonances

e Resonances may be defined as poles of the scatte-
ring matrix



More general: Consider a self-adjoint operator

H:D—>H
in @ Hilbert space H. Let
RR)=(H—-2)"1:H->H

be the resolvent, which is bounded in the half-plane
Im(z) <O.

Assumption: Suppose there exist
Hep CH C Hioe
such that
R(z) : Hep = Hipe

has meromorphic extension to a Riemann surface > —
C covering C. Then define the resonance set as

Res(H) = {n € = | npole of R(z)}.

e The point spectrum is included in Res(H). Usually
resonances have non-zero imaginary parts and a di-
stingtion should be made.

Example:

H=-A4+V, VeCR")



Let A — C be the logarithmic covering. Then
(H—2%)"1 L5 (R™) — L, (R™)
has a meromorphic extension to

C,if, n=2k+4+1;, A, if, n=2k.

e In many settings a meromorphic extension of the
scattering matrix exists and resonances can be de-
fined as poles of the scattering matrix, denoted by
Ressc(H).

Resonances describe the longtime behaviour of
solutions of the wave equation.

Let
H=-h’A+V, VeCIERY,
and assume that V > 0. Let
<_8t2 - H) u=0; wul=0, Ouli=0 € C¢ .
Then



u(t,x) ~ Z eit/\’v)\(x)

reRes(H)

for x € K, K C R"™ any compact set, and ¢t — oo.
Re()\) «+— rate of oscillation
Im()\) «<— rate of decay

e Quantum resonances A\ = Fgy — [ describe states
which have an initial energy Eg and which decay at
an exponential rate .

e Resonances replace bound states in any system in
which particles have the possibility to escape to infi-
nity.

e At high energy the density of resonances increases
and their distribution is sensitive to the properties of
the lassical flow.



General problems
e Analytic continuation of the resolvent: For what
manifolds or perturbations exists a meromorphic ex-

tension of R(z) = (A —2)~ 17

e Resonance counting: Upper bounds for the num-
ber of resonances, Weyl’'s law?

e EXistence of resonances: Lower bounds for the
number of resonances

e Distribution of resonances.
e Semiclassical analysis and trace formulas.

e Inverse problem: What information about the scat-
terer can be obtained from the resonances?

e Perturbation theory of resonances.



Some results

1. Upper bounds: Let

Nres(r) = #{p € Res(H): |p| < r},

where poles are counted with multiplicities. For obstacle
scattering and n odd, Melrose proved the optimal
bound

Nres(”’) < Cr".

2. Potential scattering

Let
H=—-hA+V
and assume that the classical flow
(z,p) — ¢ (x,p),
associated to the Hamiltonian
1
H(z,p) = S Il p|I* +V (@),

iIs hyperbolic. Define the trapped set of the flow by



Ks(Eg) ={(=z,p): |H(x,p) — Eg| <26
¢! (x,p) -+ oo, t — Fo0}
€ R2".

Theorem(Sjostrand).

4{F — il : |E— Eo| <5, T <Ch)

Here d(Eg,d) is given in terms of the Minkowski di-
mension of K5(FEp).

e Further results: Melrose, Petkov, Sjostrand, VVodjeyv,
ZWorsKi,...

Geometric results
Riemann surfaces
Let (X, g) be a surface with a complete metric g.

Assume: X has a decoposition of the following form:



X =Xoudli4U---dCjuY7 U---UYm
with

1) Xp is @a compact surface with boundary

2) C; = [a;,00) X (]R/hiZ), a; > 0, h; > 0, and

glc, = dr? 4 e=2"dp?.

Each C; is called a cusp.

3) Y} = [bj,oo) X (R/ljZ), bj > 0, lj > 0, and

g|yj 2 dr? + cosh?(r)db?.

Each Y; Is called a funnel. It is a subset of the hyper-
bolic half-cylinder

on = [0,00) x St, gg = dr® + cosh?(r)db?.



A

cusp

funnel

Let A be the Laplacian of X with respect to the
metric g. Then

A CP(X) = L2(X)

IS essentially self-adjoint.

Theorem (Guillopé-Zworski)
Rx(s) = (A —s(1—3))"1: LX) —» H?(X)
Re(s) > 1/2, s(1—s) ¢ Spec,,(A)
extends to a meromorphic family of bounded operator
Rx(s) : LZpt(X) — HE(X)

with poles of finite rank.

Let
Res(A) = {n € C: npole of Rx(s)}.



For a given pole sg let

k

_ Aj
R~x(s) = E -+ Ap(s
X( ) ; 1(8 SO)J O( )

be the Laurant series at sg.

Define the multiplicity of the pole by

k
mso(Rx) = dim (Z Aj(Lgpt(X))> :
j=1

a) Finite area surfaces
Assume: Vol(X) < oo.

Then X has no funnels.

0

= TN\

Examples: Let H be the upper half-plane equipped
with the hyperbolic metric.



1) Let T =SL(2,7) and
X =TM\H

the modular surface.

The fundamental domain of SL(2,7) is the following
domain in H.

2) For N € N set
M(N)={yeSL(2,Z): v=Id mod N}
and X = M(N)\H.
3) Set X = R x SL. Let f € C®(R, (0,)) be such
that
f(y) = exp(—|yl/2), [y| >> 1.



Define the metric on X by
g = dy® + f(y)*de>.

Then (X, g) is complete, has finite area and Ky = —1
near infinity.

Theorem (M., Selberg) The spectrum of A has the
following structure:

1) Spec(A) = Specy,(A) USpecy.(A),

2) SpecCp,(A) :0=X <A1 <A <o

3) SpecCy.(A) = [1/4,00).
e embedded eigenvalues may exist

e The case X = IN'\H was first treated by Selberg,
1954.

e For X = SL(2,7Z)\H scattering resonances are rela-
ted to the zeros of the Riemann zeta function:

Ressc(A) = {p € C: ¢(2p) =0, 0 < Re(p) < 1/2}.



Let
Ngis(A) = #{ii Ai < >\2}
be the eigenvalue counting function and let
Nres(A) = > m(p)

p ERessc(A)
o] < A

be the counting function of the scattering resonances.

Theorem (M., Parnovski). For all e > 0
Vol(X)

U

1
Nais(V) + - Nres(A) = A2+ 0(N3/2Fe)

as A — oo.
e T he proof is based on the wave equation method

Let

n(T) = #{p=8+1v|{(p) =0,
0<pB<l, P<T}

be the counting function of the Riemann zeros.



Riemann-von Mangoldt formula

T T T
n(T) = o log— — o + O(log T)

T 2T T

This implies

Theorem (Selberg) For X =SL(2,7Z)\H
Vol(X)

U

Ngis(A) = A% 4+ O(Xlog \)

as \ — oo.

e T he existence of eigenvalues is very subtle. Eigen-
functions are believed to be related to number theory.
A conjecture of Osgood, Phillips and Sarnak states
that for a generic hyperbolic surface of finite area
there exist only finitely many eigenvalues, which all
lie below the continuous spectrum.

This is a theorem, if we allow more general metrics.

Theorem (Colin de Verdiere) For a generic surface
(X, g) of finite area, A has no embedded eigenvalues.



Our knowledge about the counting functions is as fol-
lows

X generic | hyberbolic | arithmetic
Ngis(A) | O(1) ? O(X9)
Nres(\) | O(X\%) ? O(Xlog \)

Put A = s(1 —s), s € C. Then eigenvalues \; corre-
spond to points

s; € {s: Re(s) = 1/2}U[1/2,1].

Scattering resonances are containes in

{s: Re(s) < 1/2YU[1/2,1].

e Generic surface: Resonances are randomly distri-
buted in Re(s) < 1/2.

e SL(2,7Z)\H: Points s; such that \; = s;(1—s;) # 1 is
an eigenvalue, are distributed on the line Re(s) = 1/2.
If the Riemann hypothesis is true, all scattering poles
are distributed on the line Re(s) = 1/4.



generic surface SL(2,2)\H

reﬁo7n<s resonances eigenvalues
% X
X X
X %K —X
X
X %
X
eigenvalues
Re(s)=1/2 Re(s)=1/4 Re(s)=1/2
Problems:

e dynamics of resonances
e extremal principle?

e role of arithmetic surfaces
b) Vol(X) = .

Assume that X = IN'\H is noncompact and has no
cusps. It is convenient to set

H=-A+">.



Theorem (Zworski)

#{E—il 1< E<\T <C} <At

where 6(IN) is the dimension of the limit set of I".

e T he dimension of the trapped set of the Hamiltonian
flow in T*X is equal to 2(1 4+ 6(IN)).

3. Regualrized determinants

e To define functional determinants for elliptic opera-
tors on noncompact manifolds, further regularization
IS necessary.

Example.

The following fact are known:
1) e tH — ¢~tHo s trace class for ¢ > O;

2) There exists an asymptotic expansion



(4mt)~"/2 Z @t
1=1

Tr (e_tH — e_tH()) t—>0+

3) Let S(\) be the on-shell scattering matrix of (H, Hp).
The following trace formula holds.

; 1 271

N
Tr( tH —tH0> _ Ay log det S(0)
1

=2 L 100 det S(A) d.
—_— (@) e
+27r/ d)\ g ()
Set

s(A) = iﬁ log det S(X).

If n is odd, there exists ¢ > 0 and a convergent power
series expansion:



dS S '/2
—(\) = ijAJ , 0<JXi<e
dA =0
J_
Using these facts, we can define partial zeta functions.

1

¢1(s,H,Hp) = F(s)

1
/0 51 Tr (e tH —e~tHoy g,

Re(s) > 0.
1 00
Cos, H, Ho) = =(s) [~ ¢ Tr(e™H — e7tHo) at,

Re(s) < Bp.

e For n odd, (1(s,H,Hp) and (»(s, H, Hy) admit me-
romorphic extensions to C.

Put

C(Sa H, HO) — Cl(sa H, HO) + CQ(Sa H, HO)

e ((s,H,Hp) is holomorphic at s = 0.



The regularized determinant can be defined as

d
det(H, HO) .= €xp (_£C(57H7 HO) |S=O> .

This works in the following cases:

a) Obstacle scattering in R", n odd.
b)Surfaces (X, g) with cusps.

c) Hyperbolic manifolds M\ H™, vol(M\H") < oo.
d) Manifolds with cylindrical ends.

Let X be a surface with cusps. Then we can define a
zeta function using resonances:

Ca(s) = > (1-m7"% Re(s)>2.
n €eRes(A)

n#*1



e (A(s) admits meromorphic extension to C, regular
at s = 0.

In this case we define the regularized determiant of A
by

d
detA = exp <——CA(S)
ds

o)

e A similar construction works for hyperbolic mani-
folds of finite volume.

4) Inverse scattering

Let X1, Xo be compact Riemannian manifolds and let
N;(\), 1 = 1,2, be the eigenvalue counting functions.
Then X4, X5 are said to be isospectral, if

Ni(A) = Na2(M), A >0.

Let (X, g) be a noncompact complete Riemannian ma-
nifold. Then eigenvalues are replaced by resonances.
The corresponding question is:



e To what extent is (X, g) determined by Res(Ax)7?
We discuss some examples.
1. Obstacle scattering in R? (Hassell-Zelditch)

Let © be a bounded domain in R? and let
Q=R2-0.

Let So(A\) be the on-shell scattering matrix for the
Dirichlet problem on 2. Set

s(A) = —ilogdet Sq(N).

Let 21, Q5 be two exterior domains in R2. Then Q1,25
are said to be isophasal, if

SQl(/\> _— SQQ(/\), A€ R.

Theorem (Hassell-Zelditch) Each class of isophasal
domains is sequentially compact in the C°°-topology.

e The proof uses the relative determinant det(Aq, Ag),
where Aq is the Laplacian of the domain 2 with Di-
richlet boundary conditions and A, is the Laplacian
of R2.



2. Hyperbolic surfaces We consider the class of
complete surfaces with constant Gaussian curvature.

Theorem (M.) Let X = N'\H, Vol(X) < oco. Then
Res(A x) determines X up to finitely many possibili-
ties in the moduli space of the surface.

Theorem (Bordwick, Judge, Perry) Let X =T\H
be geometrically finite, vol(F'\H) = oo. Then Res(A x)
determines X up to finitely many possibilities.



