
THE WEYL CHARACTER FORMULA

ATIYAH-SINGER INDEX THEOREM

Abstract. Let U be a compact connected semisimple Lie group and T ⊂ U be its
maximal torus. Further let W the Weyl group of U , i.e.,

W = Normalizer of T in U/Centralizer of T in U.

Let R(U) be the representation ring of U and Λ be the weight lattice. Let Z[Λ] be
the group algebra of the group Λ with coefficients in Z; by definition Z[Λ] has a basis
{eλ | λ ∈ Λ}, such that eλ · eλ′ = eλ+λ′ . Define a character homomorphism

χ : R(U)→ Z[Λ], χV = χπ =
∑

dimVλe
λ,

where Vλ = {v ∈ V | π(t)v = eλ(t)v ∀ t ∈ T} 6= {0} is the corresponding weight space of
(π, V ) for to the weight λ.
Theorem (Weyl formula (1925)). Let V be a finite dimensional irreducible represen-
tation of U and χV its character. Then

χV �T=
1∏

α∈Φ+ eα/2 − e−α/2
∑
w∈W

sign(w)ew(λ+ρ).

1. Holomorphic Lefschetz formula

Let X be a compact complex manifold of dimension dimCX = n. The complex cotan-
gential bundle splits into a direct sum of holomorphic and antiholomorphic cotangential
bundle

(1) T ∗X ⊗C = (T 1,0X)∗ ⊕ (T 0,1X)∗.

Corresponding to this decomposition the bundle of the complexified de Rham complex
decompose into the tensor product Λ∗(T ∗X ⊗C) = Λ∗(T 1,0X)∗ ⊗ Λ∗(T 0,1X)∗, so that

(2) ΛrT ∗X ⊗C =
⊕
p+q=r

Λp(T 1,0X)∗ ⊗ Λq(T 0,1X)∗ =:
⊕
p+q=r

Λp,q.

The exterior derivative d: Λr(X)→ Λr(X) decompose correspondingly to (1) into a direct
sum ∂ + ∂, where

∂ : Λp,q(X)→ Λp+1,q(X) and ∂ : Λp,q(X)→ Λp,q+1(X).

Let V → X be a holomorphic vector bundle and

Λp,q(X,V ) = Γ(Λp(T 1,0X)∗ ⊗ Λq(T 0,1X)∗ ⊗ V ).
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Let Ω ⊂ X be a trivialization chart of V → X, i.e. there is a biholomorphic map ψ such

that ψ : V �Ω
∼=−→ Ω × Ck. Let e1, . . . , ek be a local holomorphic frame: {ei | 1 ≤ i ≤ k} ∈

Γhol(V �Ω) such that e1(x), . . . , ek(x) ∈ Vx is a basis for all x ∈ Ω. Then Λp,q(Ω, V �Ω) ∼=
Λp,q(Ω,Ck) and ω ∈ Λp,q(Ω, V �Ω) have the following local form

ω =
k∑
i=1

ωi ⊗ ei

Let
⋃
j Ωj be a good covering of X and {χj} the assoziated partion of unity. We define

ω ∈ Λp,q(X,V ) by gluing the local (p, q)-forms ωj = ω�Ωj∈ Λp,q(Ωj, V �Ωj) via χj:

ω =
∑
j

χjω
j =

∑
j

χj

( k∑
i=1

ωji ⊗ ei
)
.

By assumption is the transformation map φ of local frames e1, . . . , ek and e′1, . . . , e
′
k holo-

morphic, so we define an elliptic complex

(3) 0→ Λp,0(X,V )
∂−→ Λp,1(X,V )

∂−→ · · · ∂−→ Λp,n(X,V )→ 0,

where ∂ω =
∑

i(∂ωi)⊗ ei.
Let O(V ) be the sheaf of germs of holomorphic sections of V . On the sheaf level there

is a fine resolution of O(V ):

0→ O(V )→ A0,0(V )→ A0,1(V )→ · · · → A0,n(V )→ 0,

whereA0,q(V ) is sheaf of germs of sections of Λ0,q⊗V , such thatH0,q(X;V ) ∼= Hq(X;O(V ))
and by (2) Hp,q(X;V ) ∼= Hq(X;O(Λp,0 ⊗ V )).

We consider now a holomorphic map f : X → X. The natural lifting of f to Λ∗(X) is then
compatible with ∂ and therefore induces endomorphisms Λp,∗f in each complex Λp,∗(X).
To lift f to the complex Λ∗(X,V ), one only needs a holomorphic bundle homomorphism
ϕ : f ∗V → V. In terms of it

Λ0,qf ⊗ ϕ : f ∗(Λ0,q ⊗ V )→ Λ0,q ⊗ V (0 ≤ q ≤ n).

The coresponding endomorphism in the sheaf cohomology Hq(X;O(V )) ∼= H0,q(X;V ) will
be denoted by (f ⊗ ϕ)! so that the Lefschetz numbers of Λ0,qf ⊗ ϕ are given by:

L(Λ0,∗f ⊗ ϕ) =
n∑
q=0

(−1)q Tr((f ⊗ ϕ)!� H
0,q(X;V )).

Theorem 1. Let X be a compact complex manifold and let V → X a holomorphic
vector bundle. Further let f : X → X be a holomorphic map with simple fixed points
and ϕ : f ∗V → V a holomorphic bundle homomorphism. Then the Lefschetz number
L(Λ0,∗f ⊗ ϕ) of H∗(X;O(V )) is:

(4) L(Λ0,∗f ⊗ ϕ) =
∑

z∈Fix(f)

TrC ϕz
detC(1− ∂fz)

.
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2. Geometric methods in representation theory

A Lie algebra g is semisimple if it can be written as a direct sum of simple ideals.

Remark. One can consider a linear reductive Lie algebra g, which generalizes the consid-
eration of semisimple Lie algebras, since g may be written as a direct sum of ideals

g = Zg ⊕ [g, g],

with Zg is the centre of g and [g, g] is semisimple Lie algebra. For the reason of simplicity
i will consider only semisimple Lie algebra.

Maximal compact subgroups and Cartan decomposition. Let G be a connected semisimple
Lie group. We denote by K ⊂ G a maximal compact subgroup. The maxiamal compact
subgroups of G have the following properties:

1) any two maximal compact subgroups of G are conjugate by an element of G;
2) the normalizer of K in G coincides with K, i.e., NG(K) = K.

Let g and k denote the Lie algebras of G and K respectively and K acts on g via the
restriction of the adjoint representation Ad: G→ GL(g), Ad(g)(Y ) = g−1Y g.

Let θ : g → g be a Cartan involution of g, i.e., there exists a unique K-invariant linear
complement p = E(θ;−1) of k = E(θ; 1) in g:

(5) g = k⊕ p,

with the following property [p, p] ⊂ k and [k, p] ⊂ p.

Example. The group G = SL(n,R) contains K = SO(n) a maximal compact subgroup.
In this situation

g = {Y ∈ End(Rn) | tr(Y ) = 0},
k = {Y ∈ End(Rn) | Y > + Y = 0, tr(Y ) = 0},
p = {Y ∈ End(Rn) | Y > − Y = 0, tr(Y ) = 0}.

On the Lie algebra level a Cartan involution is θ(Y ) = −Y > and on the group level
θ(g) = (g>)−1. The group K can be described as the fix point set of θ, i.e., K = {g ∈ G |
θ(g) = g}.

Complexifications of linear groups. Let G be a connected linear Lie group and let g =
Lie(G) be its Lie algebra. Like any linear Lie Group, G has a complexification – a complex
Lie group GC, with Lie algebra gC := g⊗C containing G ↪→ GC as a Lie subgroup, such
that g ↪→ gC, Y 7→ Y ⊗ 1. When GC is a complexification of G, one calls G a real form of
GC. One can complexify the Cartan decomposition (5): gC = kC ⊕ pC, where kC = k⊗C
and pC = p⊗C. The complexification GC of G contains naturally KC = Exp(k) as complex
Lie subgroup.

Remark. A complexification KC of K can not be compact unless K = {e}, which does
not happen unless G is abelian. Indeed, any non-zero Y ∈ k is diagonalizable over C, with
pure imaginary eigenvalues. So the complex one-parameter subgroup {z 7→ exp(zY )} of
KC is unbounded.
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By construction, the Lie algebras g, k its complexifications and the corresponding Lie
groups satisfy the following containments:

g ⊂ gC
∪ ∪
k ⊂ kC

and
G ⊂ GC

∪ ∪
K ⊂ KC.

Since [p, p] ⊂ k and [k, p] ⊂ p,
u := k⊕ ip

is a real Lie subalgebra of gC. Let U denote Lie subgroup of GC with Lie algebra u. Since
G is a semisimple Lie group by assumption we know that U is compact. Thus U lies in
a maximal compact subgroup of GC, which we denote also by U . Since gC ∼= u ⊕ iu a
maximal compact subgroup U is a real form of GC and K = U ∩GC. Thus we call U also
a compact real form of GC.

Example. Let G = SL(n,R), K = SO(n). The complexifications are: GC = SL(n,C)
and KC = SO(n,C). The corresponding compact real form of GC is then U = SU(n).

Since gC = u⊗C, these two Lie algebras have the same representations over C. On the
global level this means

(6)

{
holomorphic finite dimensional

representations of GC

}
∼=
{

finite dimensional complex
representations of U

}
;

this bijection one calls Weyl unitary trick. Since on every compact group U there is a left
invariant Haar measure du, any representation of U can be made unitary. This implies
that:

finite dimensional representations of a compact group are completely reducible.

In particular, to understand the finite dimensional representations of U , it suffices to under-
stand the finite dimensional, irreducible representations of U over C up to a isomorphism,
i.e., IrrC(U).

Complex semisimple Lie algebras. Let gC be a complex Lie algebra, then by Cartan criterior
for semisimplicity gC is semisimple iff the Killing form B(Y, Y ′) := Tr(ad(Y ) ad(Y ′)) on
gC × gC is nondenegenerate. A Cartan subalgebra hC is in this case a maximal abelian
subspace of gC in which every ad(Z) for Z ∈ hC is diagonable.
The elements α ∈ h∗C = HomC(hC,C) are roots and gα are root spaces, the α being defined
as the nonzero elements of h∗C such that

gαC = {Y ∈ gC | ad(Z)(Y ) = [Z, Y ] = α(Z)Y for all Z ∈ hC}
is nonzero. Let Φ be the set of all roots.

Example. Let gC = sl(n,C) = {Y ∈ Matn(C) | tr(Y ) = 0}. The Cartan subalgebra hC
is the space of diagonal matices in gC.

For a complex semisimple Lie algebra gC there is a decompositions of the form

(7) gC = hC ⊕
∑
α∈Φ

gαC
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and have the following properties:

1) [gαC, g
β
C] ⊆ gα+β

C and [gαC, g
β
C] = gα+β

C if α + β 6= 0;

2) B(gαC, g
β
C) = 0 for α, β ∈ Φ ∪ {0} and α + β 6= 0;

3) B�hC×hC is nondegenerate. Define Zα to be the element of hC paired with α;
4) If α is in Φ, then dimC gαC = 1;
5) The real subspace h of hC on which all roots are real is a real form of hC, and B�h×h is

an inner product.

The centralizer H = ZGC(hC) is a Cartan subgroup of GC. It is connected since GC is
complex, define

Ĥ
def
= HomC(H,S1)

the group of holomorphic homomorphisms from H to the multiplicative group S1 = {z ∈
C | |z| = 1}. It is an abelian group, which we identify with the weight lattice Λ ⊂ h∗C, i.e.,
the lattice of linear functionals on h∗C whose values on the unit lattice

L = {Z ∈ hC | exp(Z) = e}

are integral multiples of 2πi. Explicitly, the identification Λ ∼= Ĥ is given by

λ
1:1←→ eλ,

with eλ(exp(Z)) = e〈λ,Z〉 for Z ∈ hC; here 〈λ, Z〉 refers to the canonical pairing between
h∗C and hC induced by the Killing form restricted to a Cartan subalgebra.

Maximal Tori and the weight lattice. Let U be a connected compact semisimple Lie group
defined as above and T ⊂ U be a maximal torus. Since any two maximal tori in U are
conjugated by an element of U , we fix a maximal torus T of U and denote by t its Lie
algebra. Since T is abelian and connected, the exponential map exp: t→ T is a surjective
homomorphism, moreover this map is locally bijective, hence a covering homomorphism

exp: t/LT
∼=−→ T,

where LT = {Z ∈ t | expZ = e} ⊂ t a discrete cocompact subgroup, i.e., the unit lattice.

Let T̂ denote the group of characters, i.e., the group of homomorphisms from T to the unit
circle S1. Then the weight lattice Λ ⊂ it

Λ := {λ ∈ it∗ | 〈λ, LT 〉 ⊂ 2πiZ}
∼=−→ T̂ , λ 7→ eλ,

with eλ : T → S1 defined by eλ(exp(Z)) = e〈λ,Z〉 for any Z ∈ LT is the dual lattice of the
unit lattice LT ⊂ t.

The space of roots Φ = Φ(U) of U are by definition the characters of the irredicible
representation into which the tangent space of U/T at the coset eT ∈ U/T decomposes

under the left action of T , i.e., in Lie algebra terms we have with the identification Λ ∼= T̂

(8) (u/t)⊗C ∼=
∑
α

Eα
(7)
=
∑
α∈Φ

gαC.

Since Φ ⊂ Λ− {0} ⊂ it∗ ⊂ h∗C, roots take pure imaginary values on the real Lie algebra t,
which implies gαC = gαC = g−αC . For this reason every root α occurs with the inverse −α, so
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that it is natural to partion Φ into a positive set of roots Φ+ und their inverse into negative
set of roots Φ = Φ+ t Φ−. Of course this choise is to be made with some compatibility
relative to the Lie structure of u⊗C = gC; that is, one would like the relation

(9) [Eα, Eβ] ⊆ Eα+β

to hold whenever α, β and α + β are in Φ+. Weyl shows that such choise of Φ+ do exists
and in fact that they are in 1 : 1 correspondence with the dominant Weyl chambers into
which the action of the Weyl group

W = NU(T )/ZU(T ) = NU(T )/T

breaks up t.
The compatibility condition (9) one can interpret in its more geomerical form, namely as

an integrability condition for a homogeneous complex structure on U/T . Indeed a choise of
Φ+ induces an almost complex structure on U/T by declaring that the Eα, α > 0, generate
the holomorphic part of the tangent space of U/T at o := eT ∈ U/T , i.e. T 1,0

o (U/T ). By
the group action one translate this subspace to the holomorphic part of the tangent space
of U/T at x ∈ U/T .

A fundamental fact in the theory of compact groups is the following extension of the
spectral theorem:

Every u ∈ U is conjugated to an element of T .

It follows that functions f on U are determinated by their values ι∗f on T alone (where
ι : T ↪→ U) and it therefore stands to reason that if du denotes the left invariant Haar
measure on U , then there must be a measure dµ on T with the prorerty∫

U

fdu =

∫
T

ι∗fdµ

for all integrable functions f on U . H. Weyl now finds an expilicit formula for dµ in terms
of the positive roots and the Weyl group

dµ =
1

#W
|D|2dt,

with D =
∏

α∈Φ+(eα/2 − e−α/2). Furthermore this D is not only well defined, but is
antisymmetric as regards the action of W on Λ, and so can also be described in the
followig way:

D =
∑
w∈W

sign(w)ew(ρ),

where ρ = 1
2

∑
α∈Φ+ α and sign(w) = Dw/D ∈ {±1}.

Remark. To compute the Weyl denominator D in this way one needs the assumption GC

to be simply connected. This condition is of course equvalent to the assumption U to be
simply connected, since U ↪→ GC is a deformations retract by global Cartan decompostion,
so π1(GC) = π1(U). Then only in this case ρ =

∑
α∈Φ+ α lies in Λ, such that the product

of positive roots
∏

α∈Φ+ eα have a square root, which is given by eρ = e
1
2

∑
α∈Φ+ α.
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At this moment one can see the deeper reason why the character of a finite dimensional
complex irreducible representation can be compute by restriction on a maximal torus T of
U . Consider the charcter of a finite dimensional complex irreducible representation as an
element of C0(U) = {f : U → C | f continous} defined by

U 3 x 7→ Tr(π(x)).

Now since Tr(π(x)) = Tr(π(gxg−1)) for any g ∈ U , and since every u ∈ U is conjugated to
an element of T we conclude, that Tr π = Trπ�T

Highst weight theorem and IrrC(g). An element λ ∈ h∗C is said to be singular, if 〈α, λ〉 = 0
for some α ∈ Φ, ond otherwise regular. The set of regular elements in it∗ breacks up into
a finite, disjoint union of open, convex cones, the so-called Weyl chambers. The Weyl
chamber C can be recovered from the system of positive roots Φ+, which we call dominant
Weyl chamber,

C = {Z ∈ it | 〈α, Z〉 > 0} 1:1←→ Φ+.

Definition. An element λ ∈ it∗ is said to be dominant if 〈λ, α〉 ≥ 0 for all α ∈ Φ+.

Via the identification it∗ ∼= it by the Killing form, the set of all dominant regular λ ∈ it∗
corresponds precisely to the dominant Weyl chamber C. Since the Weyl group W acts
simply transitively on the set of Weyl chambers, every regular λ ∈ it∗ is W -conjugated
to exactly one dominant regular λ′ ∈ it∗. The action of W preseves the weight lattice Λ,
hence every λ ∈ Λ is W -conjugate to a unique dominant λ′ ∈ Λ, in other words

{λ ∈ Λ | λ is dominant} ∼= W\Λ.
Now by the theorem of the hights weight, which says that for every π ∈ IrrC(U) there is
exactly one weight λ, such that λ + α is not a weight for any α ∈ Φ+, the highest weight
of π. The heightst weight is dominant, has the multiplicity one, i.e., dimC Vλ = 1, and
determinates the representation π up to an isomorphism. Every dominant λ ∈ Λ aries as
the highst weight of an irreducible representation π.

In effect, the theorem parametrize the isomorphism classes of irreducible finite dimen-
sional representation over C in terms of their heighst weights:

IrrC(U)
1:1←→ {λ ∈ Λ | λ is dominant} 1:1←→ W\Λ.

3. Geometric Realization of IrrC(U)

A Borel subalgebra b is a maximal solvable subalgebra of gC of the form b = hC⊕n, where
n is

∑
α∈Φ+ g−α, Φ+ is a system of positive roots of hC in gC. Any two Borel subalgebras

are Ad(G)-conjugated. To define the notion of Borel subgroups, let us consider a particular
Borel subalgebra b ⊂ gC. Its normalizer in G,

B = NGC(b) = {g ∈ GC | Ad(g)b ⊆ b}
is connected and has Lie algebra b. Groups of this type are called Borel subgroups of GC.
It should be remarked that the connectedness of Borel subgroups depends crucially on the
assumption that the ambient group GC is complex. As a set, the flag variety X of gC is
the collection of all Borel subalgebras of gC. The solvable subalgebras of a given dimension
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constitute a closed subvariety in a Grassmannian for gC, hence X has a natural structure
of complex projective variety. Since any two Borel subalgebras are conjugate via Ad, GC

acts transitively on X, with isotropy group B = NGC(b) at the point at b. Consequently
we may make the identification X ∼= GC/B. Every complex algebraic variety is smooth
(i.e., nonsingular) outside a proper subvariety. But GC acts transitively on X, so the flag
variety cannot have any singularities: it is a smooth complex projective variety.

Example. Let gC = sl(n,C). Then X is (naturally isomorphic to) the variety of all
complete flags in Cn, i.e., nested sequences of linear subspaces of Cn , one in each complex
dimension, i.e., dimC(Fj/Fj−1) = 1:

X ∼= {(Fj) | 0 ⊂ F1 ⊂ · · · ⊂ Fn = C
n and dimFj = j}.

To see this, we assign to the complete flag (Fj) its stabilizer in sl(n,C), which turns out to
be a Borel subalgebra b; this can be checked by looking at any particular flag (Fj), since
any two are conjugate under the action of GC = SL(n,C). Using the transitivity of the
GC-action on the set of complete flags once more, we get the identification between this
set and GC/NGC(b) ∼= GC/B ∼= X.

Each member eλ of Ĥ lifts to a holomorphic character eλ : B → C
× via the isomorphism

H ∼= Bab = B/[B,B]. Consider the fiber bundle product

Lλ = GC ×B Cλ,

where Cλ denotes C, equipped with the B-action via the character eλ. By definition, the
fiber product Lλ is the quotient GC ×Cλ/ ∼ under the equvalence relation

(gb, z) ∼ (g, eλ(b)z).

The natural projection GC×BCλ → GC induces a well defined GC-equivariant holomorphic
map Lλ → GC/B ∼= X, which exihibits Lλ as a GC-equivariant holomorphic line bundle
over X, i.e., a holomorphic line bundle with a holomorphic GC-action (by bundle maps)
that lies over the action of GC on the base space X. Let us summerize the previuos results

T̂ ∼=
{

holomorphic
characters on H

}
∼=
{

holomorphic
characters on B

}
∼=
{

holomorphic GC-equivariant
line bundles over X ∼= GC/B

}
.

Identifying the dual group T̂ with the weight lattice Λ as usual, we get a canonical isomor-
phism

Λ ∼=
{

group of holomorphic GC-equivariant
line bundles over X ∼= GC/B

}
, λ

1:1←→ Lλ.

The action of GC on X and Lλ determines a holomorphic, linear action on the space of
global section H0(X;O(Lλ)) and, by functorality, also on the higher cohomology groups
Hq(X;O(Lλ)) ∼= H0,q(X;LΛ), q > 0. These groups are finite dimensional since X is
compact. The Borel-Weil theorem describes the resulting representations of the compact
real form U ⊂ GC, and in view of (6), also as holomorphic representation of GC.

Theorem 2 (Borel-Weil). If λ is a dominant weight, the representation of U on
H0(X;O(Lλ)) is irreducible, of highst weight λ, and Hq(X;O(Lλ)) = 0 for q > 0. If
λ fails to be dominant, then H0(X;O(Lλ)) = 0.
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3.1. Sketch of the Proof of Borel-Weil theorem. Let U ↪→ GC be a compact real
form, i.e., a compact Lie subgroup with Lie algebra u such that g = u⊕ iu. We can choose
the Cartan subalgebra h of gC so that it is the complexification of a subalgebra t of u; all
we have to do is take t to be any maximal abelian subspace of u. Then T = U ∩ H is a
Cartan subgroup of U , i.e., a maximal torus.

The U -orbit of the point b of X is a closed submanifold because U is compact, and it
is open in X by a dimension count. Therefore U acts transitively on X. To compute the
isotropy subgroup at b, we observe that U ∩B = U ∩B ∩B = U ∩H = T, hence

X ∼= GC/B ∼= U/(U ∩B) = U/T.

If we identify X ∼= U/T , we see that Lλ, as U -equivariant complex C∞-line bundle, is given
by

(10) Lλ ∼= U ×T Cλ,

here Cλ is the one dimensional T -module on which T acts via the character eλ. This leads
to the following description of the space of C∞-sections of Lλ:

(11) C∞(X,Lλ) ∼= {f ∈ C∞(U) | f(gt) = e−λ(t)f(g) for all t ∈ T} ∼= (C∞(U)⊗Cλ)
T ,

here (C∞(U)⊗Cλ)
T denotes the space of T -invariants in C∞(U)⊗Cλ, relative to the action

by right translation on C∞(U) and by eλ on Cλ. How can one characterize the holomorphic
sections among the C∞-sections – in other words, what are the Cauchy-Riemann equations?

Suppose that Ω ⊂ X ∼= U/T is open and that Ω̃ ⊂ U is its inverse image. Then

(12) C∞(Ω,Lλ) ∼= {f ∈ C∞(Ω̃) | f(gt) = e−λ(t)f(g) for t ∈ T}

by specialization of the previous isomorphism to Ω, and our question is answered by:

Lemma 3. Under the isomorphism (12), a function f on Ω̃ corresponds to a holomorphic
section of Lλ over Ω if and only if R(ξ)f = 0 for all ξ ∈ n, where R(ξ) denotes infinitesimal
right translation on U by ξ ∈ gC = u⊕ iu.

The lemma is readily proved by starting from the Cauchy-Riemann equations on GC.
Using it, we can identify the space of global holomorphic sections as

H0(X;O(Lλ)) ∼= {f ∈ C∞(U) | R(n)f = 0 and f(gt) = e−λ(t)f(g) for t ∈ T}

and this isomorphism is an isomorphism of representations of U . The space C∞(U) is
contained in L2(U), which we can identify by the Peter-Weyl theorem as a Hilbert space
direct sum

∑
i∈Û Vi⊗̂V ∗i . Here U acts on Vi by left translation, and on V ∗i by right trans-

lation. The subspace of C∞(U) corresponding to H0(X;O(Lλ)) is finite dimensional and
U -invariant, hence contained in the algebraic direct sum

⊕
i∈Û Vi ⊗ V ∗i . We conclude that

H0(X;O(Lλ)) ∼=
{
f ∈

⊕
iVi ⊗ V ∗i | R(n)f = 0 and f(gt) = e−λ(t)f(g) for t ∈ T

}
∼=
⊕
i

Vi ⊗
{
v ∈ (V ∗i ⊗Cλ)

T | n v = 0
}
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The condition nv = 0 picks out the lowest weight space since b is built from the root spaces
for the negative roots. Therefore the right side is⊕

V ∗i has lowest
weight −λ

Vi ⊗ (lowest weight space in V ∗i ).

At this point, the description of H0(X;O(Lλ)) in Borel-Weil theorem can be deduced from
the theorem of the highest weight and the vanishing of the higher cohomology groups is a
consequence of the Kodaira vanishing theorem.

Remark. According to our convention, b is built from the root spaces for the negative
roots. This has the effect of making the line bundle Lλ “positive” in the sense of complex
analysis (see [Wel80, p. 223], for example) precisely when the parameter λ is dominant.
The opposite convention, which uses the root spaces for positive roots, lets positive line
bundles correspond to antidominant weights and makes H0(X;O(Lλ)), for antidominant
λ, the GC-module with lowest weight λ.

We denote by ρλ the by eλ induced irreducible highest weight representation of U :

(13) ρλ = IndUT (eλ) : U → GL(H0(X;O(Lλ))), (ρλ(u)f)(x) = f(u−1x),

on the space of global holomorphic sections of Lλ, i.e., on H0(X;O(Lλ)).

4. Proof of the Weyl character formula

Let π : U → U/T be the canonical projection. We start with the function f : X → X
which have to be the left translation of each element of x ∈ X by g−1 ∈ U defined by

lg−1 : X → X, lg−1(x) = g−1.x = g−1.π(x) = π(g−1x),

where x = π(x) denotes a coset in U/T . Now let λ ∈ Λ be a highest weight, Cλ is the
one dimensional T -module on which T acts via the character eλ. Let Lλ be the associated
homogeneous line bundle:

Lλ = U ×T Cλ → U/T,

where U ×T Cλ = (U × Cλ)/ ∼ and the equvalence relation ∼ is given by (ut, z) ∼
(u, eλ(t)z). Let Lg : U → U be the left translation on U by g ∈ U . Clearly Lg×1 : U×Cλ →
U ×Cλ preserves the fibers of U ×Cλ → Lλ and hence induces a map

ϕg := Lg ×T 1 : Lλ → Lλ,

which maps the fiber over lg−1(x) = π(g−1x) lineary into the fiber over x = π(x), i.e.,

ϕg : (Lλ)π(g−1x) → (Lλ)π(x).

One may interpreted ϕg as a lifting of the map lg−1 on U/T to the associated homogeneuos
line bundle Lλ over U/T , i.e., for [g−1x, z] ∈ (Lλ)π(g−1x):

ϕg([g
−1u, z]) = (Lg ×T 1)([g−1x, z]) = [Lg(g

−1x), z] = [x, z] ∈ (Lλ)π(x).
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Consider now a fixed point x ∈ X of lg−1 , i.e., by definition that for each point x in the
coset x = π(x) we must have the relation

(14) g−1x = xhg(x)

for some hg(x) ∈ T . Conversely if (14) holds for some t ∈ T , then π(x) = x is a fixed point
of lg−1 : U/T → U/T . Hence we get the following

Lemma 4. lg−1 has a fixed point iff g contained in the orbit of T under the conjugation
action of G, i.e.,

g ∈
⋃
x∈G

xTx−1.

Observe that by as x varies over the coset of x ∈ U/T , hg(x) varies over a conjugacy class
hg(x) ⊂ T . Thus to every fixed point x of lg−1 corresponds a conjugacy class hg(x) ⊂ T .

Lemma 5. 1) Let x be a fixed point of lg−1 and let t ∈ hg(x). Then

(15) det(1− dlg−1)x = det(1− AdU/T (t)).

2) Further for the lifting ϕg of lg−1 to Lλ = U ×T Cλ we have the relation

(16) Trϕg(x) = Tr eλ(t).

Proof. 1) Let x be an element in the coset x such that

(∗) g−1x = xt.

The map Lg−1 ◦Rt−1 : U → U defined by u 7→ g−1ut−1 then obviously still induces the map
lg−1 : U/T → U/T but also keeps x ∈ U fixed:

Lg−1Rt−1(x) = g−1xt−1 (∗)
= x.

The relation Lg−1 ◦ Rt−1 ◦ Lx = Lx ◦ Lt ◦ Rt−1 implies, that under the identification dLx ◦
dπ : u/t

∼=−→ Tx(U/T ):

dlg−1

∣∣
x
(Y ) = AdU/T (t)(Y ) = tY t−1,

where Y ∈ u/t ∼= To(U/T ).
2) To see (16) consider a linear isomorphism jx : Cλ → (Lλ)π(x) defined by jx(z) = [x, z].

Hence by definition of the lifting ϕg of lg−1 to Lλ we get the following relation

ϕg ◦ jx(z) = [gx, z] = [xx−1gx, z] ((∗)⇔ x−1g = t−1x−1)

= [xt−1, z] = [x, eλ(t)z] = eλ(t)jx(z).

�

Consider first the case when τ is a generator of T , i.e., that the powers of τ generate
T . It follows that if x is fixed ander τ , and x is in the coset x, i.e. τ−1x = xt, then for all
integers n

x−1τ−nx = tn, (t ∈ hτ (x) ⊂ T )

Thus Ad(x−1) keeps all of T invariant, i.e., x−1Tx ⊂ T (since τ is generic in T ) so that
the fixed points of τ correspond percisely to the cosets of the normalizer of T modulo
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centralizer of T . The fixed points are therefore independet of the choise of a generator of
T , and naturally form the Weyl group of U

W := NU(T )/ZU(T ) = NU(T )/T.

This finite group acts naturally on T by permuting the roots α ∈ Φ and on T̂ Hence by
(16) one obtains the formula:

Tr(τ on C∞(X;Lλ)) =
∑

x∈Fix(lτ−1 )

Tr(ϕτ (x))

| det(1− dlτ−1)|x|
=
∑
w∈W

ew(λ)(τ)

| det(1− dlτ−1)|w

From the formula (15) we have

det(1− dlτ−1)|x = det(1− AdU/T (x−1τ−1x)),

so that dlτ−1�x : Tx(U/T )→ Tx(U/T ) just rotates the root spaces Eα by α(τ), such that by
(8) we obtain

| det(1− dlτ−1)||w =

∣∣∣∣∣ ∏
α∈Φ+

(1− eα(τ))

∣∣∣∣∣
2

= |D(τ)|2.

Further by (15) we have

detC(1− dlτ−1)|x = detC(1− AdU/T (x−1τ−1x))

whence we obtain by (8) in the similar way:

detC(1− dlτ−1)|x =
∏
α∈Φ−

(1− eα)(x−1τ−1x) =
∏
α∈Φ+

(1− e−α)w(τ).

Consider elliptic complex

0→ Λ0,0(Lλ)
∂−→ Λ0,1(Lλ)→ ·

∂−→ Λ0,m(Lλ)→ 0.

It has ∂
2 ≡ 0 and hence gives rise to cohomology group H0,q(U/T ;Lλ). Our group U acts

naturally on H0,q(U/T ;Lλ) which are by elliplicity all finite dimensional. We apply the
Lefschetz principle to this complex and get:

The character of the virtual module
∑

(−1)qH0,q(U/T ;Lλ)
should equal that of the virtual module

∑
(−1)qΛ0,q(Lλ)

The natural representation of T on Cλ⊗Λ0,q(u/t) given by λ⊗Λ0,q induce a representation
Ω0,q = IndUT (eλ⊗Λ0,q) on H0,q(U/T ;Lλ). One now obtains the relation:

(17)
∑
q

(−1)q Tr(Ω0,q
λ � H

0,q(X;Lλ)(τ)) =
∑
w∈W

[
eλ∏

α∈Φ+(1− e−α)

]w
(τ).

From the identity (1− e−α) = e−1/2α(e1/2α − e−1/2α) it follows, that∏
α∈Φ+

(1− e−α) = e−
1
2

∑
α>0 α

∏
α∈Φ+

(eα/2 − e−α/2) = e−ρD,
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hence the right hand side of (17) is of the following form:∑
w∈W

[
eλ∏

α∈Φ+(1− e−α)

]w
=

1∏
α∈Φ+ eα/2 − e−α/2

∑
w∈W

sign(w)ew(λ+ρ)

Finally the Borel-Weil theorem comes into play for th left hand side of (17), to complete the
story. For a dominant weight λ all the higher terms in (17) vanishes, and Ω0,0

λ turns to be
the by eλ induced irreducible highest weight representation ρλ : U → GL(H0(X;O(Lλ)))
defined by (13), such that

χλ = Tr(ρλ) =
1∏

α∈Φ+ eα/2 − e−α/2
∑
w∈W

sign(w)ew(λ+ρ)

�

References

[AB68] M. F. Atiyah and R. Bott. A Lefschetz fixed point formula for elliptic complexes. II. Applications.
Ann. of Math. (2), 88:451–491, 1968.

[Sch97] Wilfried Schmid. Discrete series. Notes by Vernon Bolton. In Bailey, T. N. (ed.) et al., Represen-
tation theory and automorphic forms. Proceedings of an instructional conference, Edinburgh, UK,
March 17-29, 1996. Providence, RI: American Mathematical Society. Proc. Symp. Pure Math.
61, 83-113 . 1997.

[Ser01] Jean-Pierre Serre. Complex semisimple Lie algebras. Springer Monographs in Mathematics.
Springer-Verlag, Berlin, 2001. Translated from the French by G. A. Jones, Reprint of the 1987
edition.

[Wel80] R. O. Wells, Jr. Differential analysis on complex manifolds, volume 65 of Graduate Texts in
Mathematics. Springer-Verlag, New York, second edition, 1980.

E-mail address: wotzke@math.uni-bonn.de


	1. Holomorphic Lefschetz formula
	2. Geometric methods in representation theory
	3. Geometric Realization of IrrC(U)
	3.1. Sketch of the Proof of Borel-Weil theorem

	4. Proof of the Weyl character formula
	References

