THE WEYL CHARACTER FORMULA
ATTYAH-SINGER INDEX THEOREM

ABSTRACT. Let U be a compact connected semisimple Lie group and T° C U be its
maximal torus. Further let W the Weyl group of U, i.e.,

W = Normalizer of T' in U/Centralizer of T in U.

Let R(U) be the representation ring of U and A be the weight lattice. Let Z[A] be
the group algebra of the group A with coefficients in Z; by definition Z[A] has a basis
{e* | X € A}, such that e* - X' = e}, Define a character homomorphism

x: R(U) = Z[A], xv=xr= ZdimVAe)‘,
where V) = {v € V | w(t)v = e Mt)v Vt € T} # {0} is the corresponding weight space of
(m, V) for to the weight A.

Theorem (WEYL FORMULA (1925)). Let V be a finite dimensional irreducible represen-
tation of U and xv its character. Then
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1. HOLOMORPHIC LEFSCHETZ FORMULA

Let X be a compact complex manifold of dimension dimg X = n. The complex cotan-
gential bundle splits into a direct sum of holomorphic and antiholomorphic cotangential
bundle

(1) T"X®C=(TYX)" @ (T"X)".

Corresponding to this decomposition the bundle of the complexified de Rham complex
decompose into the tensor product A*(T*X ® C) = A*(TX)* @ A*(T% X)*, so that

(2) NT*XoC= @ NMTHX) @ NMTX) = P A\
pta=r ptg=r

The exterior derivative d: A"(X) — A"(X) decompose correspondingly to ([l) into a direct
sum 0 + 0, where

9: NP1(X) — APTH(X) and 0: AP1(X) — ANPITL(X).
Let V' — X be a holomorphic vector bundle and
N X, V) =T(N(THX)* @ (T X)* @ V).
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Let 2 C X be a trivialization chart of V' — X i.e. there is a biholomorphic map v such

that ¥ V[Qi 2 x C*. Let eq,...,ex be a local holomorphic frame: {e; | 1 <i <k} €
Ihoi(V o) such that e (z),...,ex(z) € V, is a basis for all x € 2. Then A»9(£2,V],) =
AP4(§2, CF) and w € AP4(£2,V ] o) have the following local form

k
w = g w; ® e;
=1

Let U ; £2; be a good covering of X and {x;} the assoziated partion of unity. We define
w € N"(X V) by gluing the local (p, g)-forms w/ = wlo € AP9(£2;,V]g,) via x;:

k
w:Zijj :ZXJ(ng(@ei)'
J J i=1

By assumption is the transformation map ¢ of local frames ey, ..., e, and €], ..., €} holo-
morphic, so we define an elliptic complex

3) 0— A V) LX) S D e v) o,

where w = . (0w;) ® e;.
Let O(V) be the sheaf of germs of holomorphic sections of V. On the sheaf level there
is a fine resolution of O(V):

0—0W)— AYV)— A" (V) — ... — A" (V) — 0,

where A%4(V) is sheaf of germs of sections of A>¢®V, such that H*4(X; V) = HI(X; O(V))
and by (B) H»(X;V) = HY(X; O(N° @ V)).

We consider now a holomorphic map f: X — X. The natural lifting of f to A*(X) is then
compatible with @ and therefore induces endomorphisms AP*f in each complex AP*(X).
To lift f to the complex A*(X, V'), one only needs a holomorphic bundle homomorphism
w: f*V — V. In terms of it

Nif@e: ffAMRV) - AoV  (0<q<n).

The coresponding endomorphism in the sheaf cohomology H4(X; O(V)) & H*(X; V) will
be denoted by (f ® ¢); so that the Lefschetz numbers of A% f @ ¢ are given by:
LN f @ @) =) (~DTr((f @ hl HY(X; V).
q=0
Theorem 1. Let X be a compact complexr manifold and let V. — X a holomorphic
vector bundle. Further let f: X — X be a holomorphic map with simple fized points

and p: f*V.— V' a holomorphic bundle homomorphism. Then the Lefschetz number
LN f @ @) of H(X;0(V)) is:

Tr
0,% _ C Pz
(4) LN f ) ng)(f) deto(1 - 9f)
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2. GEOMETRIC METHODS IN REPRESENTATION THEORY

A Lie algebra g is semisimple if it can be written as a direct sum of simple ideals.

Remark. One can consider a linear reductive Lie algebra g, which generalizes the consid-
eration of semisimple Lie algebras, since g may be written as a direct sum of ideals

g9=2,D 9,9

with Z; is the centre of g and [g, g is semisimple Lie algebra. For the reason of simplicity
1 will consider only semisimple Lie algebra.

Mazimal compact subgroups and Cartan decomposition. Let G be a connected semisimple
Lie group. We denote by K C G a maximal compact subgroup. The maxiamal compact
subgroups of G have the following properties:

1) any two maximal compact subgroups of G are conjugate by an element of G
2) the normalizer of K in G coincides with K, i.e., Ng(K) = K.

Let g and € denote the Lie algebras of G and K respectively and K acts on g via the
restriction of the adjoint representation Ad: G — GL(g), Ad(g)(Y) =g 'Yy.

Let 6: g — g be a Cartan involution of g, i.e., there exists a unique K-invariant linear
complement p = £(0; —1) of £ =E(0;1) in g:

(5) g="top,
with the following property [p,p] C € and [, p] C p.

Example. The group G = SL(n,R) contains K = SO(n) a maximal compact subgroup.
In this situation

g={Y € End(R") | tr(Y) = 0},
t={Y €End(R") |Y'+Y =0, tr(Y)=0}
p={Y €cEnd(R")|Y' -Y =0, tr(Y)=0}

On the Lie algebra level a Cartan involution is (Y) = —Y T and on the group level
0(g) = (g")~!. The group K can be described as the fix point set of 0, i.e., K = {g € G |

0(g9) = g}

Complezifications of linear groups. Let G be a connected linear Lie group and let g =
Lie(G) be its Lie algebra. Like any linear Lie Group, G has a complexification — a complex
Lie group G%, with Lie algebra g¢ := g ® C containing G — GT as a Lie subgroup, such
that g — g, Y — Y ® 1. When GU is a complexification of G, one calls G a real form of
G®. One can complexify the Cartan decomposition (§): go = &c @ pe, where £ = E®@ C
and pg = p®C. The complexification G of G contains naturally K& = Exp(£) as complex
Lie subgroup.

Remark. A complexification K© of K can not be compact unless K = {e}, which does
not happen unless G is abelian. Indeed, any non-zero Y € £ is diagonalizable over C, with

pure imaginary eigenvalues. So the complex one-parameter subgroup {z — exp(zY)} of
K% is unbounded.
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By construction, the Lie algebras g, € its complexifications and the corresponding Lie
groups satisfy the following containments:

g C gc G c G°©
U U and U U
£ C t¢ K c K°©.

Since [p,p] C € and [&,p] C p,
u:=¢tdip

is a real Lie subalgebra of g¢. Let U denote Lie subgroup of G® with Lie algebra u. Since
GG is a semisimple Lie group by assumption we know that U is compact. Thus U lies in
a maximal compact subgroup of G, which we denote also by U. Since go = u @ iu a
maximal compact subgroup U is a real form of G and K = U NGY. Thus we call U also
a compact real form of G©.
Example. Let G = SL(n,R), K = SO(n). The complexifications are: G¥ = SL(n, C)
and K = SO(n, C). The corresponding compact real form of G is then U = SU(n).

Since g = u® C, these two Lie algebras have the same representations over C. On the
global level this means

(6) holomorphic finite dimensional | ., | finite dimensional complex
representations of G* o representations of U

this bijection one calls Weyl unitary trick. Since on every compact group U there is a left

invariant Haar measure du, any representation of U can be made unitary. This implies

that:

finite dimensional representations of a compact group are completely reducible.

I

In particular, to understand the finite dimensional representations of U, it suffices to under-

stand the finite dimensional, irreducible representations of U over € up to a isomorphism,
ie., Irre(U).

Complex semisimple Lie algebras. Let g be a complex Lie algebra, then by Cartan criterior
for semisimplicity g¢ is semisimple iff the Killing form B(Y,Y”) := Tr(ad(Y)ad(Y”)) on
go X go is nondenegenerate. A Cartan subalgebra he is in this case a maximal abelian
subspace of g¢ in which every ad(Z) for Z € b is diagonable.

The elements « € b, = Homg(he, C) are roots and g* are root spaces, the a being defined
as the nonzero elements of hg. such that

g ={Y €gc|ad(2)(Y)=[Z,Y] =a(2)Y for all Z € h¢}

is nonzero. Let @ be the set of all roots.

Example. Let g = sl(n, C) = {Y € Mat,(C) | tr(Y) = 0}. The Cartan subalgebra b
is the space of diagonal matices in g¢.

For a complex semisimple Lie algebra g there is a decompositions of the form

(7) gc = bG@ZG%

acd
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and have the following properties:

1) (g8, 9¢] C g¢7” and [g¢, 9¢] = g0 if o + 8 # 0;
(9@9@) =0 for o, € PU{0} and oo + 3 # 0;
lbexbe 18 nondegenerate. Define Z, to be the element of h¢ paired with «;

2)
3) B
4) If a is in @, then dimg g, = 1;
5) The real subspace b of he on which all roots are real is a real form of h¢, and Blgxy is

an inner product.
The centralizer H = Zgo(he) is a Cartan subgroup of G. It is connected since G is
complex, define
H ¥ Home(H, S

the group of holomorphic homomorphisms from H to the multiplicative group S' = {z €
C | |z| = 1}. It is an abelian group, which we identify with the weight lattice A C b, i.e.,
the lattice of linear functionals on by, whose values on the unit lattice

L={Z € bc|exp(Z) = e}

are integral multiples of 27i. Explicitly, the identification A =2 H is given by

1:1
)\<—>e’\

with e*(exp(Z)) = eM? for Z € he; here (A, Z) refers to the canonical pairing between
he and he induced by the Killing form restricted to a Cartan subalgebra.

Maximal Tori and the weight lattice. Let U be a connected compact semisimple Lie group
defined as above and T' C U be a maximal torus. Since any two maximal tori in U are
conjugated by an element of U, we fix a maximal torus 7" of U and denote by t its Lie
algebra. Since T' is abelian and connected, the exponential map exp: t — T is a surjective
homomorphism, moreover this map is locally bijective, hence a covering homomorphism

exp: t/ Ly 5 T,

where Ly = {Z € t | expZ = e} C t a discrete cocompact subgroup, i.e., the unit lattice.

Let T denote the group of characters, i.e., the group of homomorphisms from 7" to the unit
circle S*. Then the weight lattice A C it

A={xeit' | (\ Ly) C2mZ} ST, e

with e*: T — S* defined by e*(exp(Z)) = %) for any Z € Ly is the dual lattice of the
unit lattice Ly C t.

The space of roots & = ®(U) of U are by definition the characters of the irredicible
representation into which the tangent space of U/T at the coset eT' € U/T decomposes

under the left action of T', i.e., in Lie algebra terms we have with the identification A = T
(8) (u/t) ® C = Z B, 23 g2
acd

Since & C A — {0} C it* C b, roots take pure imaginary values on the real Lie algebra t,
which implies g, = g, = g~ For this reason every root « occurs with the inverse —a, so
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that it is natural to partion ® into a positive set of roots ®* und their inverse into negative
set of roots @ = & LU ®~. Of course this choise is to be made with some compatibility
relative to the Lie structure of u ® C = g¢; that is, one would like the relation

(9) [Ea, Es] € Eatp

to hold whenever a, 3 and o + 3 are in ®*. Weyl shows that such choise of ®* do exists
and in fact that they are in 1 : 1 correspondence with the dominant Weyl chambers into
which the action of the Weyl group

W = Ny(T)/Zy(T) = Nu(T)/T

breaks up t.

The compatibility condition (f) one can interpret in its more geomerical form, namely as
an integrability condition for a homogeneous complex structure on U/T'. Indeed a choise of
@7 induces an almost complex structure on U/T by declaring that the E,, a > 0, generate
the holomorphic part of the tangent space of U/T at o := €T € U/T, i.e. T}°(U/T). By
the group action one translate this subspace to the holomorphic part of the tangent space
of U/T at r € U/T.

A fundamental fact in the theory of compact groups is the following extension of the
spectral theorem:

FEvery u € U s conjugated to an element of T

It follows that functions f on U are determinated by their values ¢*f on T" alone (where
t: T — U) and it therefore stands to reason that if du denotes the left invariant Haar
measure on U, then there must be a measure du on 7' with the prorerty

/U fdu = /T g

for all integrable functions f on U. H. Weyl now finds an expilicit formula for dp in terms
of the positive roots and the Weyl group

1
#W
with D = [[,ce+(e®/? — e7%/2). Furthermore this D is not only well defined, but is

antisymmetric as regards the action of W on A, and so can also be described in the
followig way:

dp = = |D[*dt,

D = Z sign(w)e®),

where p = £ 3" 4+ a and sign(w) = D*/D € {+1}.

Remark. To compute the Weyl denominator D in this way one needs the assumption G
to be simply connected. This condition is of course equvalent to the assumption U to be
simply connected, since U «— GT is a deformations retract by global Cartan decompostion,
so m(GY) = m1(U). Then only in this case p = Y o+ @ lies in A, such that the product

o . 1
of positive roots [, .+ €* have a square root, which is given by e” = ez Locet @,
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At this moment one can see the deeper reason why the character of a finite dimensional
complex irreducible representation can be compute by restriction on a maximal torus 7" of
U. Consider the charcter of a finite dimensional complex irreducible representation as an
element of CO(U) = {f: U — C | f continous} defined by

Uz Tr(r(x)).

Now since Tr(m(z)) = Tr(m(gzg™')) for any g € U, and since every u € U is conjugated to
an element of T" we conclude, that Trm = Trw[p

Highst weight theorem and Irrg(g). An element A € b, is said to be singular, if (o, \) =0
for some o € @, ond otherwise reqular. The set of regular elements in 1t* breacks up into
a finite, disjoint union of open, convex cones, the so-called Weyl chambers. The Weyl
chamber C' can be recovered from the system of positive roots ®*, which we call dominant
Weyl chamber,

C={Zecit|{o,2) >0} &5 o+,
Definition. An element A € it* is said to be dominant if (A, ) > 0 for all a € @7

Via the identification 1t* =2 it by the Killing form, the set of all dominant regular A € it*
corresponds precisely to the dominant Weyl chamber C. Since the Weyl group W acts
simply transitively on the set of Weyl chambers, every regular A € it* is W-conjugated
to exactly one dominant regular \' € it*. The action of W preseves the weight lattice A,
hence every A € A is W-conjugate to a unique dominant A’ € A, in other words

{A € A | \is dominant} = W\A.

Now by the theorem of the hights weight, which says that for every m € Irrg(U) there is
exactly one weight A, such that A\ + « is not a weight for any o € ®*, the highest weight
of m. The heightst weight is dominant, has the multiplicity one, i.e., dimg V), = 1, and
determinates the representation m up to an isomorphism. Every dominant A € A aries as
the highst weight of an irreducible representation 7.

In effect, the theorem parametrize the isomorphism classes of irreducible finite dimen-
sional representation over C in terms of their heighst weights:

Irre: (U) &L {A e A| Xis dominant} EL WAA.
3. GEOMETRIC REALIZATION OF Irrg(U)

A Borel subalgebra b is a maximal solvable subalgebra of g¢ of the form b = h@n, where
nis ) o+ 8¢, @T is a system of positive roots of b in go. Any two Borel subalgebras
are Ad(G)-conjugated. To define the notion of Borel subgroups, let us consider a particular
Borel subalgebra b C g¢. Its normalizer in G,

B = Ngo(b) = {g € G" | Ad(g)b C b}
is connected and has Lie algebra b. Groups of this type are called Borel subgroups of G*.
It should be remarked that the connectedness of Borel subgroups depends crucially on the

assumption that the ambient group G is complex. As a set, the flag variety X of g¢ is
the collection of all Borel subalgebras of g¢. The solvable subalgebras of a given dimension
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constitute a closed subvariety in a Grassmannian for g¢, hence X has a natural structure
of complex projective variety. Since any two Borel subalgebras are conjugate via Ad, G©
acts transitively on X, with isotropy group B = Nge(b) at the point at b. Consequently
we may make the identification X = G¥/B. Every complex algebraic variety is smooth
(i.e., nonsingular) outside a proper subvariety. But G% acts transitively on X, so the flag
variety cannot have any singularities: it is a smooth complex projective variety.

Example. Let go = sl(n,C). Then X is (naturally isomorphic to) the variety of all
complete flags in C", i.e., nested sequences of linear subspaces of C" , one in each complex
dimension, i.e., dimg(F;/F;—1) = 1

X={(F)|0CFkHC---CF,=C"and dimF; = j}.

To see this, we assign to the complete flag (F}) its stabilizer in sl(n, C), which turns out to
be a Borel subalgebra b; this can be checked by looking at any particular flag (F}), since
any two are conjugate under the action of G® = SL(n,C). Using the transitivity of the
G®-action on the set of complete flags once more, we get the identification between this
set and G¥/Ngo(b) 2 GY/B 2 X.

Each member e of H lifts to a holomorphic character e*: B — C* via the isomorphism
H =~ B*» = B/|B, B]. Consider the fiber bundle product

L)\:GC XB(D)\,

where C) denotes C, equipped with the B-action via the character e*. By definition, the
fiber product L, is the quotient G x €,/ ~ under the equvalence relation

(9b, 2) ~ (g,€*(b)2).
The natural projection G¥ x 5Cy — G¥ induces a well defined G®-equivariant holomorphic
map Ly — G¥/B = X, which exihibits Ly as a G"-equivariant holomorphic line bundle
over X, i.e., a holomorphic line bundle with a holomorphic G®-action (by bundle maps)
that lies over the action of G on the base space X. Let us summerize the previuos results

T holomorphic ~ holomorphic [ holomorphic G®-equivariant
characters on H line bundles over X = G®/B | -

characters on B

Identifying the dual group T with the weight lattice A as usual, we get a canonical isomor-
phism

line bundles over X = G®/B

The action of G on X and L, determines a holomorphic, linear action on the space of
global section H(X; O(L,)) and, by functorality, also on the higher cohomology groups
HY(X;0O(Ly)) &2 H*(X;Ly), ¢ > 0. These groups are finite dimensional since X is
compact. The Borel-Weil theorem describes the resulting representations of the compact
real form U C G®, and in view of ([f), also as holomorphic representation of G©.
Theorem 2 (BOREL-WEIL). If X\ is a dominant weight, the representation of U on
HO(X;0O(Ly)) is irreducible, of highst weight \, and H(X;O(Ly)) = 0 for ¢ > 0. If
A fails to be dominant, then H°(X;O(L,)) = 0.

. C_ . . )
A { group of holomorphic G equlvarlant} A 1:1 L.
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3.1. Sketch of the Proof of Borel-Weil theorem. Let U < G% be a compact real
form, i.e., a compact Lie subgroup with Lie algebra u such that g = u@®iu. We can choose
the Cartan subalgebra b of g¢ so that it is the complexification of a subalgebra t of u; all
we have to do is take t to be any maximal abelian subspace of u. Then T'=U N H is a
Cartan subgroup of U, i.e.,; a maximal torus.

The U-orbit of the point b of X is a closed submanifold because U is compact, and it
is open in X by a dimension count. Therefore U acts transitively on X. To compute the
isotropy subgroup at b, we observe that UNB=UNBNB =UNH =T, hence

X2GY/B=2U/(UNB)=U/T.
If we identify X = U/T, we see that Ly, as U-equivariant complex C'*°-line bundle, is given
by
(10) Ly = U xp Cy,

here C, is the one dimensional T-module on which 7" acts via the character e*. This leads
to the following description of the space of C'*°-sections of Ljy:

(11)  C(X,Ly) =A{f € C*(U) | fgt) = e (1) f(g) for all t € T} = (C*(U) @ Cy)",

here (C°°(U)®C,)T denotes the space of T-invariants in C*(U)®C}, relative to the action
by right translation on C*°(U) and by e* on C,. How can one characterize the holomorphic
sections among the C*°-sections — in other words, what are the Cauchy-Riemann equations?
Suppose that 2 C X =2 U/T is open and that 2 C U is its inverse image. Then

(12) C™(02,L,) = {f € C*(2) | f(gt) = e (1) f(g) for t € T}
by specialization of the previous isomorphism to (2, and our question is answered by:

Lemma 3. Under the isomorphism ([J), a function f on Q corresponds to a holomorphic
section of Ly over (2 if and only if R(§)f = 0 for all ¢ € n, where R(§) denotes infinitesimal
right translation on U by & € go = u @ 1u.

The lemma is readily proved by starting from the Cauchy-Riemann equations on G*.
Using it, we can identify the space of global holomorphic sections as

HO(X;O(Ly)) = {f € C(U) | Rin)f = 0 and f(gt) = e () f(g) for t € T}

and this isomorphism is an isomorphism of representations of U. The space C*(U) is
contained in L?(U), which we can identify by the Peter-Weyl theorem as a Hilbert space
direct sum ). 5 V;®@V;*. Here U acts on V; by left translation, and on V;* by right trans-
lation. The subspace of C*°(U) corresponding to H°(X;O(L,)) is finite dimensional and
U-invariant, hence contained in the algebraic direct sum €, 5 V; ® V;*. We conclude that

H(X; 0(Ly) 2 { f € @,V @ Vi | R(n)f =0 and f(gt) = e (t)f(g) for t € T
g@%@{ve (V@ Cy)" | nv=0}
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The condition nv = 0 picks out the lowest weight space since b is built from the root spaces
for the negative roots. Therefore the right side is

@ V; ® (lowest weight space in V;*).

V;* has lowest
weight —\

At this point, the description of H°(X; O(L,)) in Borel-Weil theorem can be deduced from
the theorem of the highest weight and the vanishing of the higher cohomology groups is a
consequence of the Kodaira vanishing theorem.

Remark. According to our convention, b is built from the root spaces for the negative
roots. This has the effect of making the line bundle L, “positive” in the sense of complex
analysis (see [Wel80, p. 223], for example) precisely when the parameter A is dominant.
The opposite convention, which uses the root spaces for positive roots, lets positive line
bundles correspond to antidominant weights and makes H°(X; O(L,)), for antidominant
A, the G%-module with lowest weight \.

We denote by py the by e* induced irreducible highest weight representation of U:
(13) pr=Indy(e"): U — GL(H*(X;O(Ly))),  (pa(w)f)(x) = f(u™'w),
on the space of global holomorphic sections of Ly, i.e., on HY(X;O(Ly)).

4. PROOF OF THE WEYL CHARACTER FORMULA

Let m: U — U/T be the canonical projection. We start with the function f: X — X
which have to be the left translation of each element of t € X by g~ € U defined by

l1: X = X, lya(r)=g lr=g"7(x) =n(¢ '2),

where ¢ = 7(x) denotes a coset in U/T. Now let A € A be a highest weight, C, is the
one dimensional T-module on which T acts via the character e*. Let L, be the associated
homogeneous line bundle:

Ly =U x7Cy — U/T,

where U xp €, = (U x €,)/ ~ and the equvalence relation ~ is given by (ut,z) ~
(u,e*(t)z). Let Ly: U — U be the left translation on U by g € U. Clearly L,x1: UxC, —
U x C, preserves the fibers of U x C, — L, and hence induces a map

Pg = Lg XT]li L/\ — L)\,
which maps the fiber over [,-1(r) = 7(¢~ ') lineary into the fiber over r = 7 (), i.e.,
Pg - (L)\)W(gflx) - (L/\)ﬂ(:):)

One may interpreted ¢, as a lifting of the map /,~» on U/T to the associated homogeneuos
line bundle Ly over U/T, i.e., for [g7'x, 2] € (L)r(g-1a):

ollg™ u, 2]) = (Lg x7 1)([g7 w, 2]) = [Ly(97 @), 2] = [, 2] € (L)r(w)-
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Consider now a fized point x € X of [;-1, i.e., by definition that for each point x in the
coset ¢ = 7(x) we must have the relation

(14) g 'w = ahy(z)

for some hy(x) € T'. Conversely if ([[4) holds for some ¢ € T', then 7(x) = 1 is a fixed point
of l;-1: U/T — U/T. Hence we get the following

Lemma 4. [,-1 has a fized point iff g contained in the orbit of T under the conjugation

action of G, 1.e.,
ge U i
zeG
Observe that by as x varies over the coset of ¢t € U/T, hy(x) varies over a conjugacy class
hy(r) C T. Thus to every fixed point ¢ of [,~1 corresponds a conjugacy class hy(x) C T

Lemma 5. 1) Let ¢ be a fived point of l,-1 and let t € hy(xr). Then

(15) det(1 — dly-1), = det(L — Ady,r(t)).
2) Further for the lifting ¢4 of ;-1 to Ly = U xp Cy we have the relation
(16) Trp,(z) = Tre(t).

Proof. 1) Let x be an element in the coset ¢ such that
(*) g ' = zxt.

The map L,-10Ry-1: U — U defined by u +— g~ 'ut™! then obviously still induces the map
ly~1: U/T — U/T but also keeps z € U fixed:

Ly1Ri1(z) = g tat™ ® ..

The relation L,-1 o Ry-1 0 L, = L, o Ly o Ry implies, that under the identification dL, o
dr: u/t = T,(U/T):
dlg1](Y) = Adyyr(8)(Y) = tYt7,

where Y e u/t = T,(U/T).

2) To see ([[f) consider a linear isomorphism j,: Cy — (L)) () defined by j,(2) = [, 2].
Hence by definition of the lifting ¢, of I,-1 to Ly we get the following relation

g 0 Ju(2) = gz, 2] = [wa gz, 2] (@) & 2lg=t"2"")
= [at7", 2] = [z, ) ()] = e (t)a(2).
O

Consider first the case when 7 is a generator of 7', i.e., that the powers of 7 generate
T. It follows that if ¢ is fixed ander 7, and z is in the coset t, i.e. 77'2 = zt, then for all
integers n

e =t (teh(x) CT)
Thus Ad(x™!) keeps all of T' invariant, i.e., z7'Tx C T (since 7 is generic in T') so that
the fixed points of 7 correspond percisely to the cosets of the normalizer of T" modulo
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centralizer of T'. The fixed points are therefore independet of the choise of a generator of
T, and naturally form the Weyl group of U

W= Ny(T)/Zy(T) = Ny(T)/T.

This finite group acts naturally on T by permuting the roots a € ® and on T Hence by
(I6) one obtains the formula:

. B Tr(ep, (1)
Tr(r on C*(X; Ly)) = Z [det(1 — dl 1) Z |det 1- dl771)|

reFix(l_—1)

From the formula ([J) we have
det(1 — dl,—1)|; = det(1 — Adyr(z~'77'2)),

so that dl,-1[,: T,(U/T) — T,(U/T) just rotates the root spaces E, by a(7), such that by
(B) we obtam
2

| det(1 — dl-1)||* = = |D(7’)|2.

[[Ta-em)

acdt

Further by (E) we have
det@(ﬂ — dl771)|; = det@(ﬂ — AdU/T(I_lT_I{L’))
whence we obtain by (§) in the similar way:

dete(1 —dl-1)|, = H (1—e*)(z v 1) = H (I —e"*)*(7).

aed— acdt

Consider elliptic complex
0 — A2O(Ly) & A (Ly) — - & A% (L) — 0.

It has & = 0 and hence gives rise to cohomology group H%4(U/T'; Ly). Our group U acts
naturally on H9(U/T; Ly) which are by elliplicity all finite dimensional. We apply the
Lefschetz principle to this complex and get:

The character of the virtual module Y (—1)1HY(U/T; L)
should equal that of the virtual module > (—1)IA%(Ly)

The natural representation of T on Cy ® A%?(u/t) given by A® A% induce a representation
Q% = Ind¥(e* @A) on H%¢(U/T; Ly). One now obtains the relation:

(17) Z(—l)qTr(ngqr HY(X;Ly))(7)) = Z {H ¢+(€1 — e‘a)} (7).

From the identity (1 — e™®) = e~ 1/2%(el/2% — ¢=1/22) it follows, that

H (1 - e_a) = 6_%Za>00‘ H (60/2 _ e—a/?) — e D,

acdt acdt

A
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hence the right hand side of ([[7) is of the following form:

et }w 1 N
— = — Sign(w)ew( +)
zgv:v {Haeqﬁ(l —e ) [locor e2/? —e7o/? u%l/:v

Finally the Borel-Weil theorem comes into play for th left hand side of ([[7), to complete the
story. For a dominant weight A all the higher terms in ([7) vanishes, and Q3 turns to be
the by e* induced irreducible highest weight representation py: U — GL(H°(X;O(L,)))
defined by ([[3), such that

1
e/2 _ p—a/2

Z sign(w)e? )

XX = Ir(p)\) -
Hae<1>+
weW
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