

Klausur Topologie II

SS 2017

Streng vertraulich !!!

Aufgabe 1. (Questionnaire)

[1 point each]

Answer the following questions **without** arguments.

(1)	$H^1(X;\mathbb{Z}) \cong \pi_1(X, x_0)^{\text{ab}}$ for a path-connected space X	No \Box
(2)	$H_n(X;\mathbb{Z}) = 0$ for a CW complex of dimension $\dim(X) < n$	No \square
(3)	$H^n(X \times Y; \mathbb{Q}) \cong H^n(X; \mathbb{Q}) \otimes H^n(Y; \mathbb{Q})$ for each n, X or Y of finite type Yes	No \square
(4)	$(\alpha \cup \beta) \cap a = \alpha \cap (\beta \cap a)$ for $\alpha, \beta \in H^*(X)$ and $a \in H_*(X)$	No \Box
(5)	The functor $M \mapsto M \otimes_{\mathbb{Z}} \mathbb{G}$ is right exact (on the category of abelian groups) Yes \Box	No \Box
(6)	$H_n(X;\mathbb{Z})$ is finitely generated for all n , if X is a compact CW complex	No \Box
(7)	$\chi(X \times Y) = \chi(X) \chi(Y)$ whenever defined	No \Box
(8)	$H_n(\tilde{X}) \cong (H_n(X))^l$ for an <i>l</i> -fold covering $\tilde{X} \to X$	No \square
(9)	$\operatorname{Tor}(\mathbb{Z}/4,\mathbb{Z}/6)\cong\mathbb{Z}/2.$	No \Box
(10)	Any submanifold of an orientable manifold is orientable	No \Box

Aufgabe 2. (Simplicial approximation of maps)

Let \mathfrak{X} and \mathfrak{Y} be two simplicial complexes and denote by $|\mathfrak{X}|$ resp. $|\mathfrak{Y}|$ their geometric realizations.

- (1) Formulate the Simplicial Approximation Theorem for Continuous Maps $f: |\mathfrak{X}| \to |\mathfrak{Y}|$.
- (2) Application: If 0 < k < n, any map $f : \mathbb{S}^k \to \mathbb{S}^n$ is null-homotopic.

Aufgabe 3. (Lefschetz number)

- (1) Define the Lefschetz number L(f) of a self-map $f: X \to X$ whenever it can be defined.
- (2) Formulate the Lefschetz Fix Point Theorem.
- (3) Prove this theorem (assuming, that f is already a simplicial map).
- (4) Let f be a self-map of X and g a self-map of Y, both finite polyhedra. Show the product formula

 $L(f \times g) = L(f) L(g) \,.$

Aufgabe 4. (Universal Coefficient Theorem in Homology)

Let \mathbbm{K} be a principal ideal domain.

- (1) How is the homology with coefficients in a \mathbb{K} -module \mathbb{G} defined ?
- (2) Formulate the Universal Coefficient Theorem for free chain complexes over \mathbb{K} .
- (3) Derive the Universal Coefficient Theorem for spaces with coefficients in a \mathbb{K} -module \mathbb{G} .
- (4) Compute for $\mathbb{K} = \mathbb{Z}$, $\mathbb{G} = \mathbb{Z}/6$ the homology groups $H_*(\mathbb{R}P^4; \mathbb{Z}/6)$, starting with your knowledge of $H_*(\mathbb{R}P^4; \mathbb{Z})$.

Aufgabe 5. (Künneth Theorem)

Let \mathbbm{K} be a principal ideal domain.

- (1) Formulate the Künneth Theorem for the homology of free chain complexes.
- (2) Formulate the Künneth Theorem for the homology of spaces.
- (3) For $\mathbb{K} = \mathbb{Z}$, compute $H_*(\mathbb{R}P^2 \times \mathbb{C}P^2; \mathbb{Z})$ in all degrees, starting with your knowledge of $H_*(\mathbb{R}P^2; \mathbb{Z})$ and $H_*(\mathbb{C}P^2; \mathbb{Z})$.

Aufgabe 6. (Self-maps degrees)

[1+1+4+4 points]

Let us abbreviate $H_*() = H_*(; \mathbb{Z})$ and $H^*() = H^*(; \mathbb{Z})$. Assume X is a space such that each homology group $H_n(X)$ is either trivial or free of rank 1, generated by some element c_n .

- (1) Then each cohomology group $H^n(X)$ is also either trivial or free of rank 1. Denote a generator by γ_n .
- (2) For any self-map $f: X \to X$ we define (for each degree *n*, where $H_n(X)$ and $H^n(X)$ are non-trivial) natural numbers λ_n by the equations

$$f_*(c_n) = \lambda_n \, c_n$$

Show that the equations

$$f^*(\gamma_n) = \lambda_n \, \gamma_n$$

follow.

(3) Using the action of $H^{\#}(X) := \bigoplus_{q} H^{q}(X)$ on $H_{\#}(X) := \bigoplus_{n} H_{n}(X)$ via the cap-product we define natural numbers $\mu_{q,n}$ by the equations

$$\gamma_q \cap c_n = \mu_{q,n} \, c_{n-q},$$

for degrees q, n, n - q such that $H^q(X)$, $H_n(X)$ and $H_{n-q}(X)$ are non-trivial. Use the adjunction formula $f_*(f^*(\gamma_q) \cap c_n) = \gamma_q \cap f_*(c_n)$ to prove the equations

$$\lambda_q \, \lambda_{n-q} \, \mu_{q,n} = \lambda_n \, \mu_{q,n}$$

and conclude

$$\lambda_q \,\lambda_{n-q} = \lambda_n,$$

when $\mu_{q,n} \neq 0$.

(4) Now assume, that X = M is an oriented, connected, compact manifold without boundary and of dimension m. Choose c_m to be the fundamental class. Prove, that for all q, for which $H^q(M) \cong H_{m-q}(M)$ is non-trivial,

 $\mu_{q,m} = \pm 1.$ Conclude in the case m = 2n, q = n and $H^n(M) \cong H_n(M)$ non-trivial that $\lambda_q^2 = \lambda_m$.

Aufgabe 7. (Derived Functors)

Let $F \colon \mathbb{K}-\mathrm{MOD} \to \mathbb{K}-\mathrm{MOD}$ be an additive covariant functor from the category of \mathbb{K} -modules to itself.

- (1) When do we call F left-exact, right-exact and exact ?
- (2) Extend F to a functor from the category $\partial \mathbb{K}$ -MOD of chain complexes over \mathbb{K} to itself.
- (3) What is a projective resolution of a module \mathbb{M} over \mathbb{K} ?
- (4) Define the left derived functors $L_i F$ of a right-exact additive functor F.

Aufgabe 8. (Homology and cohomology in top dimensions)

- Abbreviate $H_*(\ ;\mathbb{Z})$ by $H_*(\)$ and $H^*(\ ;\mathbb{Z})$ by $H^*(X)$. (1) Prove or disprove: If X is a CW complex of finite type and of dimension m, then $H^q(X) = 0$ for q > m.
 - (2) Prove for a CW complex X of finite type and dimension m, that $H_m(X)$ is free (or trivial). Conclude that $H^m(X)$ contains a free summand of the same rank.

Aufgabe 9. (Poincaré Duality)

[3+1+1+2+3 points]

- (1) What is an orientation of a manifold M of dimension m ?
- (2) What is a fundamental class of M?
- (3) Define the Poincaré duality homomorphism $PD_M \colon H^q(M;\mathbb{Z}) \to H_{m-q}(M,\mathbb{Z}).$
- (4) When is PD_M an isomorphism ?
- (5) For which maps $f: M \to M'$ between two orientable, connected and compact manifolds M and M' of the same dimension m does the formula

$$f_*(\mathrm{PD}_M(f^*(\beta))) = \mathrm{PD}_{M'}(\beta)$$

hold for all $\beta \in H^*(M')$?

Aufgabe 10. (The Pontryagin product: a new product)

— Activate your mathematical imagination ! —

Let G be a Lie group of dimension m; denote the product by $\mu: G \times G \to G$. We define a new product, called the *Pontryagin product* on the homology $H_*(G) = H_*(G; \mathbb{Z})$ of G, as follows

•:
$$H_i(G) \otimes H_i(G) \xrightarrow{\times} H_{i+i}(G \times G) \xrightarrow{\mu_*} H_{i+i}(G)$$

that is, as the composition of the homology cross product and the homomorphism induced by the multiplication μ in the Lie group G.

- (1) Show that the product is associative: $a \bullet (b \bullet c) = (a \bullet b) \bullet c$ for all $a, b, c \in H_*(G)$.
- (2) Show that the base class $[e] \in H_0(X)$, represented by the neutral element e in the Lie group G, is the neutral element: $[e] \bullet a = a \bullet [e] = a$ for all $a \in H_*(G)$.
- (3) If the Lie group G is abelian, show that the product is graded commutative: $a \bullet b = (-1)^{ij} b \bullet a$ for $a \in H_i(G)$ and $b \in H_j(b)$.
- (4) Example: One can quickly see, that for $G = \mathbb{S}^3 = \mathrm{SU}(2)$ all products of classes in positive degrees are trivial. But consider the *r*-dimensional torus $G = (\mathbb{S}^1)^r$, whose homology is $H_*(G) \cong \Lambda_{\mathbb{Z}}[x_1, \ldots, x_r]$, an exterior algebra over \mathbb{Z} on *r* variables in degree 1. For r = 2, find the multiplication table for the new product.

[1 + 1 bonus points]

Zusatzaufgabe

Which of the following mathematicians were no topologists ? (Delete their names.)

Poincaré Brouwer Seifert Hurwitz Alexander Lefschetz Steenrod H. Hopf E. Hopf Eilenberg MacLane Künneth Hurewicz Whitney

Viel Erfolg !