## - ENTWURF

Klausur Topologie II
SS 2017

## Streng vertraulich !!!

## Aufgabe 1. (Questionnaire)

[1 point each]
Answer the following questions without arguments.
(1) $H^{1}(X ; \mathbb{Z}) \cong \pi_{1}\left(X, x_{0}\right)^{\text {ab }}$ for a path-connected space $X$.
YesNo
(2) $H_{n}(X ; \mathbb{Z})=0$ for a CW complex of dimension $\operatorname{dim}(X)<n$.
Yes $\square$ No
(3) $H^{n}(X \times Y ; \mathbb{Q}) \cong H^{n}(X ; \mathbb{Q}) \otimes H^{n}(Y ; \mathbb{Q})$ for each $n, X$ or $Y$ of finite type. ...... YesNo
(4) $(\alpha \cup \beta) \cap a=\alpha \cap(\beta \cap a)$ for $\alpha, \beta \in H^{*}(X)$ and $a \in H_{*}(X)$. YesNo
(5) The functor $M \mapsto M \otimes_{\mathbb{Z}} \mathbb{G}$ is right exact (on the category of abelian groups). . . YesNo
(6) $H_{n}(X ; \mathbb{Z})$ is finitely generated for all $n$, if $X$ is a compact CW complex.
Yes No
(7) $\chi(X \times Y)=\chi(X) \chi(Y)$ whenever defined. YesNo
(8) $H_{n}(\tilde{X}) \cong\left(H_{n}(X)\right)^{l}$ for an $l$-fold covering $\tilde{X} \rightarrow X$. ..............................................No
(9) $\operatorname{Tor}(\mathbb{Z} / 4, \mathbb{Z} / 6) \cong \mathbb{Z} / 2$.
YesNo
(10) Any submanifold of an orientable manifold is orientable. YesNo

Aufgabe 2. (Simplicial approximation of maps)
[5 5 points]
Let $\mathfrak{X}$ and $\mathfrak{Y}$ be two simplicial complexes and denote by $|\mathfrak{X}|$ resp. $|\mathfrak{Y}|$ their geometric realizations.
(1) Formulate the Simplicial Approximation Theorem for Continuous Maps $f:|\mathfrak{X}| \rightarrow|\mathfrak{Y}|$.
(2) Application: If $0<k<n$, any map $f: \mathbb{S}^{k} \rightarrow \mathbb{S}^{n}$ is null-homotopic.

Aufgabe 3. (Lefschetz number)
(1) Define the Lefschetz number $L(f)$ of a self-map $f: X \rightarrow X$ whenever it can be defined.
(2) Formulate the Lefschetz Fix Point Theorem.
(3) Prove this theorem (assuming, that $f$ is already a simplicial map).
(4) Let $f$ be a self-map of $X$ and $g$ a self-map of $Y$, both finite polyhedra. Show the product formula

$$
L(f \times g)=L(f) L(g)
$$

Aufgabe 4. (Universal Coefficient Theorem in Homology)

Let $\mathbb{K}$ be a principal ideal domain.
(1) How is the homology with coefficients in a $\mathbb{K}$-module $\mathbb{G}$ defined?
(2) Formulate the Universal Coeffcient Theorem for free chain complexes over $\mathbb{K}$.
(3) Derive the Universal Coefficient Theorem for spaces with coefficients in a $\mathbb{K}$-module $\mathbb{G}$.
(4) Compute for $\mathbb{K}=\mathbb{Z}, \mathbb{G}=\mathbb{Z} / 6$ the homology groups $H_{*}\left(\mathbb{R} P^{4} ; \mathbb{Z} / 6\right)$, starting with your knowledge of $H_{*}\left(\mathbb{R} P^{4} ; \mathbb{Z}\right)$.

Let $\mathbb{K}$ be a principal ideal domain.
(1) Formulate the Künneth Theorem for the homology of free chain complexes.
(2) Formulate the Künneth Theorem for the homology of spaces.
(3) For $\mathbb{K}=\mathbb{Z}$, compute $H_{*}\left(\mathbb{R} P^{2} \times \mathbb{C} P^{2} ; \mathbb{Z}\right)$ in all degrees, starting with your knowledge of $H_{*}\left(\mathbb{R} P^{2} ; \mathbb{Z}\right)$ and $H_{*}\left(\mathbb{C} P^{2} ; \mathbb{Z}\right)$.

Aufgabe 6. (Self-maps degrees)
$[1+1+4+4$ points $]$
Let us abbreviate $H_{*}(\quad)=H_{*}(\quad ; \mathbb{Z})$ and $H^{*}(\quad)=H^{*}(\quad ; \mathbb{Z})$. Assume $X$ is a space such that each homology group $H_{n}(X)$ is either trivial or free of rank 1 , generated by some element $c_{n}$.
(1) Then each cohomology group $H^{n}(X)$ is also either trivial or free of rank 1. Denote a generator by $\gamma_{n}$.
(2) For any self-map $f: X \rightarrow X$ we define (for each degree $n$, where $H_{n}(X)$ and $H^{n}(X)$ are non-trivial) natural numbers $\lambda_{n}$ by the equations

$$
f_{*}\left(c_{n}\right)=\lambda_{n} c_{n}
$$

Show that the equations

$$
f^{*}\left(\gamma_{n}\right)=\lambda_{n} \gamma_{n}
$$

follow.
(3) Using the action of $H^{\#}(X):=\bigoplus_{q} H^{q}(X)$ on $H_{\#}(X):=\bigoplus_{n} H_{n}(X)$ via the cap-product we define natural numbers $\mu_{q, n}$ by the equations

$$
\gamma_{q} \cap c_{n}=\mu_{q, n} c_{n-q},
$$

for degrees $q, n, n-q$ such that $H^{q}(X), H_{n}(X)$ and $H_{n-q}(X)$ are non-trivial. Use the adjunction formula $f_{*}\left(f^{*}\left(\gamma_{q}\right) \cap c_{n}\right)=\gamma_{q} \cap f_{*}\left(c_{n}\right)$ to prove the equations

$$
\lambda_{q} \lambda_{n-q} \mu_{q, n}=\lambda_{n} \mu_{q, n}
$$

and conclude

$$
\lambda_{q} \lambda_{n-q}=\lambda_{n},
$$

when $\mu_{q, n} \neq 0$.
(4) Now assume, that $X=M$ is an oriented, connected, compact manifold without boundary and of dimension $m$. Choose $c_{m}$ to be the fundamental class. Prove, that for all $q$, for which $H^{q}(M) \cong$ $H_{m-q}(M)$ is non-trivial,

$$
\mu_{q, m}= \pm 1
$$

Conclude in the case $m=2 n, q=n$ and $H^{n}(M) \cong H_{n}(M)$ non-trivial that

$$
\lambda_{q}{ }^{2}=\lambda_{m}
$$

Aufgabe 7. (Derived Functors )
$[2+2+2+4$ points $]$
Let $F: \mathbb{K}-\mathrm{MOD} \rightarrow \mathbb{K}-\mathrm{MOD}$ be an additive covariant functor from the category of $\mathbb{K}$-modules to itself.
(1) When do we call $F$ left-exact, right-exact and exact ?
(2) Extend $F$ to a functor from the category $\partial \mathbb{K}-\mathrm{MOD}$ of chain complexes over $\mathbb{K}$ to itself.
(3) What is a projective resolution of a module $\mathbb{M}$ over $\mathbb{K}$ ?
(4) Define the left derived functors $L_{i} F$ of a right-exact additive functor $F$.

Aufgabe 8. (Homology and cohomology in top dimensions)
Abbreviate $H_{*}(; \mathbb{Z})$ by $H_{*}(\quad)$ and $H^{*}(; \mathbb{Z})$ by $H^{*}(X)$.
(1) Prove or disprove: If $X$ is a CW complex of finite type and of dimension $m$, then $H^{q}(X)=0$ for $q>m$.
(2) Prove for a CW complex $X$ of finite type and dimension $m$, that $H_{m}(X)$ is free (or trivial). Conclude that $H^{m}(X)$ contains a free summand of the same rank.

Aufgabe 9. (Poincaré Duality)
(1) What is an orientation of a manifold $M$ of dimension $m$ ?
(2) What is a fundamental class of $M$ ?
(3) Define the Poincaré duality homomorphism $\mathrm{PD}_{M}: H^{q}(M ; \mathbb{Z}) \rightarrow H_{m-q}(M, \mathbb{Z})$.
(4) When is $\mathrm{PD}_{M}$ an isomorphism ?
(5) For which maps $f: M \rightarrow M^{\prime}$ between two orientable, connected and compact manifolds $M$ and $M^{\prime}$ of the same dimension $m$ does the formula

$$
f_{*}\left(\mathrm{PD}_{M}\left(f^{*}(\beta)\right)\right)=\mathrm{PD}_{M^{\prime}}(\beta)
$$

hold for all $\beta \in H^{*}\left(M^{\prime}\right)$ ?

Aufgabe 10. (The Pontryagin product: a new product)

- Activate your mathematical imagination ! -

Let $G$ be a Lie group of dimension $m$; denote the product by $\mu: G \times G \rightarrow G$. We define a new product, called the Pontryagin product on the homology $H_{*}(G)=H_{*}(G ; \mathbb{Z})$ of $G$, as follows

$$
\bullet: H_{i}(G) \otimes H_{j}(G) \xrightarrow{\times} H_{i+j}(G \times G) \xrightarrow{\mu_{*}} H_{i+j}(G)
$$

that is, as the composition of the homology cross product and the homomorphism induced by the multiplication $\mu$ in the Lie group $G$.
(1) Show that the product is associative: $a \bullet(b \bullet c)=(a \bullet b) \bullet c$ for all $a, b, c \in H_{*}(G)$.
(2) Show that the base class $[e] \in H_{0}(X)$, represented by the neutral element $e$ in the Lie group $G$, is the neutral element: $[e] \bullet a=a \bullet[e]=a$ for all $a \in H_{*}(G)$.
(3) If the Lie group $G$ is abelian, show that the product is graded commutative: $a \bullet b=(-1)^{i j} b \bullet a$ for $a \in H_{i}(G)$ and $b \in H_{j}(b)$.
(4) Example: One can quickly see, that for $G=\mathbb{S}^{3}=\mathrm{SU}(2)$ all products of classes in positive degrees are trivial. But consider the $r$-dimensional torus $G=\left(\mathbb{S}^{1}\right)^{r}$, whose homology is $H_{*}(G) \cong \Lambda_{\mathbb{Z}}\left[x_{1}, \ldots, x_{r}\right]$, an exterior algebra over $\mathbb{Z}$ on $r$ variables in degree 1. For $r=2$, find the multiplication table for the new product.

## Zusatzaufgabe

Which of the following mathematicians were no topologists ? (Delete their names.)
Poincaré
Brouwer
Seifert
Hurwitz
Alexander
Lefschetz
Steenrod
H. Hopf
E. Hopf

Eilenberg
MacLane
Künneth
Hurewicz
Whitney

## Viel Erfolg !

