Aufgaben zur Topologie II

Prof. Dr. C.-F. Bödigheimer Sommersemester 2017

Week 11 — Derived Functors, Künneth Theorem

due by: 12.7.2017

Exercise 11.1 (\lim^0 and \lim^1 .)

Consider for a sequence $\mathfrak{A}: \ldots \to A_n \xrightarrow{\varphi_n} A_{n-1} \ldots \to A_0$ of \mathbb{K} -modules the induced 'shift' homomorphism

$$\Phi \colon \prod A_i \longrightarrow \prod A_i, \qquad \Phi(\dots, a_n, a_{n-1}, \dots, a_0) = (\dots, \varphi_{n+1}(a_{n+1}), \varphi_n(a_n), \dots, \varphi_1(a_1)).$$

Recall the definition of the *(inverse) limit* of \mathfrak{A} as $\lim^{0} \mathfrak{A} = \lim \mathfrak{A} := \ker(\mathrm{id} - \Phi)$ and the *derived (inverse) limit* as $\lim^{1} \mathfrak{A} := \operatorname{coker}(\mathrm{id} - \Phi)$.

- 1. The snake lemma says: \lim^{0} is left-exact and \lim^{1} is right-exact as functors from the additive category of inverse systems (over the ordered set \mathbb{N}) of \mathbb{K} -modules to the category of \mathbb{K} -modules.
- 2. $\lim^{1}(\mathfrak{A}) \cong R^{1}(\lim^{0})(\mathfrak{A})$ is the first right-derived functor of \lim^{0} .
- 3. $\lim^{n}(\mathfrak{A}) := R^{n}(\lim^{0})(\mathfrak{A}) = 0$ for $n \ge 2$.
- 4. Let $A_0 = A$ be a group and all $\varphi_i \colon A_i \subset A_{i-1}$ be subgroups of A; in this case $\lim \mathfrak{A} = \bigcap_i A_i$ is the intersection. Assume further, that A is a topological group and all cosets $a + A_i$ are open.
 - (i) $\lim^{0} \mathfrak{A} = 0$ iff A is hausdorff.
 - (ii) $\lim^{1} \mathfrak{A} = 0$ iff A is complete (i.e., every Cauchy sequence has a limit, possibly not unique).

Exercise 11.2 (Projective modules)

For a \mathbb{K} -module P the following statements are equivalent:

- (i) P is projective.
- (ii) For every short exact sequence $0 \to A \to B \to C \to 0$ of K-modules the induced sequence

 $0 \to \operatorname{Hom}_{\mathbb{K}}(P, A) \to \operatorname{Hom}_{\mathbb{K}}(P, B) \to \operatorname{Hom}_{\mathbb{K}}(P, C) \to 0$

is exact.

- (iii) If $\pi: B \to P$ is a surjection, there is a section $s: P \to B$ with $\pi \circ s = id_P$.
- (iv) P is a direct summand of every module of which it is a quotient.
- (v) P is a direct summand of some free module.

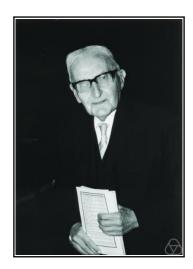
Exercise 11.3 (Injective Modules over Principal Ideal Domains)

A module over a principal ideal domain is injective if and only if it is divisible.

(Hint: To show divisibility of $x \in M$ by a scalar $0 \neq \lambda \in \mathbb{K}$ consider the multiplication by $\lambda \colon \mathbb{K} \to \mathbb{K}$ and the homomorphism $\psi \colon \mathbb{K} \to M$ given by $\psi(1) = x$. Vice versa, given a monomorphism $\iota \colon A \subset B$ and a homomorphism $\psi \colon A \to M$, to extend ψ to B consider all pairs (A_i, ψ_i) with $A \leq A_i \leq B$ an intermediate submodule and $\psi_i \colon A_i \to M$ a partial extension of ψ . They form an ordered set, to which one can apply Zorn's Lemma. To show $\overline{A} = B$ for a maximal element $(\overline{A}, \overline{\psi})$ you will finally need that \mathbb{K} is a PID.)

Exercise 11.4 (Künneth Theorem.)

Compute the homology and cohomology with coefficients in \mathbb{Z} and $\mathbb{Z}/2$ for the following product spaces:



Hermann Künneth, 6. Juli 1892 — 7. Mai 1975.

- 1. $(\mathbb{S}^1)^n$, a torus of dimension n.
- 2. $\mathbb{S}^2 \times \mathbb{R}P^3$, the product of a 2-sphere and the projective space.
- 3. $\mathbb{R}P^2 \times \mathbb{R}P^3$, the product of the projective plane and the projective space.

Exercise 11.5* (Universal Coefficient Theorem expressing homology via cohomology) The following two exercises are from S. MacLane: Homology, p. 172.

1. For abelian groups G and A construct natural homomorphisms $\text{Hom}(G, \mathbb{Z}) \otimes A \to \text{Hom}(G, A)$ and $G \otimes A \to \text{Hom}(\text{Hom}(G, \mathbb{Z}), A)$. Show them isomorphisms when G is a finitely generated free group. Show them chain transformations when G is a chain complex.

2. Let K be a complex of abelian groups, with each K_n a finitely generated free abelian group. Write $H^n(K)$ for $H^n(\text{Hom}(K,\mathbb{Z}))$. Using Ex. 1 and the universal coefficient theorems, establish natural exact sequences

$$0 \longrightarrow H^{n}(K) \otimes G \longrightarrow H^{n}(\operatorname{Hom}(K,G)) \longrightarrow \operatorname{Tor}(H^{n+1}(K),G) \longrightarrow 0$$

and

$$0 \longrightarrow \operatorname{Ext}(H^{n+1}(K), A) \longrightarrow H_n(K \otimes A) \longrightarrow \operatorname{Hom}(H^n(K), A) \longrightarrow 0.$$