Aufgaben zur Topologie II

Prof. Dr. C.-F. Bödigheimer Sommersemester 2017

Week 4 — Simplicial approximations and Lefschetz fixed point theorem

due by: 17.05.2017

Exercise 4.1 (Relative simplicial approximation)

Let \mathfrak{X} be a finite simplicial scheme, let $\mathfrak{X}' \subseteq \mathfrak{X}$ be a subscheme (what does this mean?), and let \mathfrak{Y} be another finite simplicial scheme. Let $f: |\mathfrak{X}| = X \to |\mathfrak{Y}| = Y$ be a continuous map, such that its restriction on $X' = |\mathfrak{X}'| \subset X = |\mathfrak{X}|$ is simplicial: this means that there is a simplicial map $\varphi': \mathfrak{X}' \to \mathfrak{Y}$ such that $|\varphi'| = f|_{X'}$.

(1) Define the relative barycentric subdivision $BSD(\mathfrak{X}, \mathfrak{X}')$ as follows: the new vertex set $BSD(\mathfrak{X}, \mathfrak{X}')_0$ consits of the old vertex set \mathfrak{X}'_0 and an additional vertex for each simplex of \mathfrak{X} which is not contained in \mathfrak{X}' — thought of as barycenter; simplices of $BSD(\mathfrak{X}, \mathfrak{X}')$ have the form

$$\Sigma = \{v'_0, \dots, v'_p, \sigma_{p+1}, \dots, \sigma_n\}, \quad -1 \le p \le n,$$

where there may be no v_i' 's (if p=-1) or no σ_j 's (if p=n) and where

- $\tau = \{v'_0, \dots, v'_p\}$ is a simplex in \mathfrak{X}' , if non-empty;
- $\tau \subset \sigma_{p+1} \subset \cdots \subset \sigma_n$ is a flag of ascending simplices in \mathfrak{X} . There is an obvious total ordering of these vertices.

Show that $BSD(\mathfrak{X},\mathfrak{X}')$ is a simplicial scheme that contains \mathfrak{X}' as subscheme.

- (2) Show that the geometric realisation of $BSD(\mathfrak{X})$ is canonically homeomorphic to X, through a homeomorphism that restricts on X' to the inclusion $X' \subset X$.
- (3) Define recursively $BSD^{k+1}(\mathfrak{X}, \mathfrak{X}') := BSD(BSD^k(\mathfrak{X}, \mathfrak{X}'), \mathfrak{X}')$. Show that if k is large enough, there is a simplicial map $\varphi \colon BSD^k(\mathfrak{X}, \mathfrak{X}') \longrightarrow \mathfrak{Y}$ such that
 - the restriction of φ to the subscheme \mathfrak{X}' is the given map φ' and
 - the map $|\varphi| \colon |\mathrm{BSD}^k(\mathfrak{X}, \mathfrak{X}')| \to Y$ is homotopic to f relative to X'. (Here f is seen as a map $|\mathrm{BSD}^k(\mathfrak{X}, \mathfrak{X}')| \to Y$ under the canonical homeomorphism $|\mathrm{BSD}^k(\mathfrak{X}, \mathfrak{X}')| \cong X$.)

Exercise 4.2 (Fibers of simplicial maps)

Let $\varphi \colon \mathfrak{X} \to \mathfrak{Y}$ be a simplicial map between simplicial schemes.

(1) Let \mathfrak{Y}' be a subcomplex of \mathfrak{Y} . Show that $\mathfrak{X}' := \varphi^{-1}(\mathfrak{Y}') \subset \mathfrak{X}$ is a subcomplex of \mathfrak{X} .

We now consider the special case where $\mathfrak{Y}' = \langle \tau \rangle$ is generated by a simplex $\tau \in \mathfrak{Y}$, that is, $\mathfrak{Y}' = \{\tau' \in \mathfrak{Y} | \tau' \subseteq \tau\}$. Clearly, $|\mathfrak{Y}'| = \Delta(\tau) \subseteq |\mathfrak{Y}|$. We denote by

$$f = |\varphi| \colon X = |\mathfrak{X}| \to Y = |\mathfrak{Y}|$$

the induced map between the geometric realisations. Let $\sigma \in \varphi^{-1}(\tau)$.

- (2) Show that $\dim(\sigma) \geq \dim(\tau)$.
- (3) Let y be a point in $|\mathfrak{Y}|$ that lies in $\Delta(\tau)$ but not on its boundary. Prove that $f^{-1}(y) \cap \Delta(\sigma) \subseteq |\mathfrak{X}|$ is homeomorphic to a product of simplices with total dimension k, where $k = \dim(\sigma) \dim(\tau)$.

1

Leonhard Euler; 15. April 1707 in Basel bis 18. September 1783 in Sankt Petersburg

Exercise 4.3 (Poincaré polynomial)

Let $V = \bigoplus_{k \geq 0} V_k$ be a graded (and bounded below) vector space over a field \mathbb{F} . We call

$$P_V(t) := \sum_{i=0}^{\infty} \dim(V_i) t^i$$

its Poincaré polynomial (although it is a formal power series).

- 1. Compute $P_{\mathbb{F}[X]}$ for $\mathbb{F}[X]$, the polynomial ring in the indeterminant X of degree n.
- 2. Compute $P_{\Lambda_{\mathbb{F}}[X]}$ for $\Lambda_{\mathbb{F}}[X]$, the exteriour algebra in the indeterminant X of degree n.
- 3. Show $P_{V \oplus W}(t) = P_V(t) + P_W(t)$.
- 4. Show $P_{V \otimes W}(t) = P_V(t) \cdot P_W(t)$.
- 5. Show $P_V(t) = P_U(t) + P_W(t)$, if there is a short exact sequence $0 \to U \to V \to W \to 0$ of graded vector spaces, i.e., for each degree n we have a short exact sequence $0 \to U_n \to V_n \to W_n \to 0$ of vector spaces.
- 6. Let (C_{\bullet}, d) a chain complex of vector spaces of finite type, over a field. Forgetting the differential d, we can consider C_{\bullet} as a graded vector space; and similarly the cycles $Z_n := \ker(d)$, the boundaries $B_n := \operatorname{im}(d)$ and the homology $H_n := H_n(C_{\bullet})$. All are of finite type. Using this, prove the equality

$$P_C(t) - P_H(t) = (1+t)P_B(t),$$

and thus $P_C(-1) = P_H(-1)$.

These formulas and in particular the statement (6) (and the way it is proved) should remind you of the Euler characteristic of graded vector spaces (and chain complexes); no wonder, — because the Poincare polynomial is a generalization of the Euler characteristic:

$$\chi(C_{\bullet}) = \sum_{i} (-1)^{i} \dim(C_{i}) = P_{C}(-1).$$

Exercise 4.4 (Simplicial homotopy)

Let $f, g: \mathfrak{X} \to \mathfrak{Y}$ be simplicial maps, and suppose that the corresponding maps $|f|, |g|: X = |\mathfrak{X}| \to Y = |\mathfrak{Y}|$ are homotopic as continuous maps (so the maps F_t of a homotopy with $f = F_0$ and $g = F_1$ need not be simplicial for all 0 < t < 1. Recall the simplicial structure on $X \times I$ from exercise 3.1, where I, the unit interval, is given the simplicial structure of the standard 1-simplex Δ^1 .

(1) Is it always true that there is a simplicial map $X \times I \to Y$ restricting to |f| on $X \times \{0\}$ and to |g| on $X \times \{1\}$? What if we consider on I the simplicial structure with k 1-simplices, and we still consider on $X \times I$ the simplicial structure given by exercise 3.1?

Hint: Consider $X = \partial \Delta^2 \cong \mathbb{S}^1$ and Y is the surface of the icosahedron with two opposite faces removed. Let f and g be simplicial homeomorphisms of X into the two boundary components of Y, such that f and g are homotopic as maps $X \to Y$.

(2) Apply exercise 4.1 to show that there is a suitable simplicial subdivision of $X \times I$ and a simplicial map $\Phi \colon X \times I \to Y$ extending f and g on $X \times \{0\}$ and $X \times \{1\}$ respectively. This is called a *simplicial homotopy*.

Marius Sophus Lie; 17. Dezember 1842 in Nordfjordeid bis 18. Februar 1899 in Kristiania.

Exercise 4.5* (Euler, Lie and Lefschetz)

Let $G = |\mathfrak{G}|$ be a compact connected Lie group of positive dimension, i.e., \mathfrak{G} is a finite simplicial scheme and its realization $|\mathfrak{G}|$ is homeomorphic to a Lie group G. (It is actually a theorem that every compact Lie group G is homeomorphic to the geometric realisation of some finite simplicial scheme).

(1) Show that $\chi(G) = 0$.

Hint: Consider the map $f_g: x \mapsto g \cdot x$ for some fixed $g \in G$. It is homotopic to the identity of G (why?), but it has no fixed points (why?).

(2) Deduce that a sphere of even dimension cannot carry the structure of a Lie group. (Actually the only spheres admitting a Lie group structure are $\mathbb{S}^1 = SO(2)$ and $\mathbb{S}^3 = SU(2)$. It is a hard theorem for which K-theory is needed.)

Solomon Lefschetz; 3. September 1884 in Moskau bis 5. Oktober 1972 in Princeton, New Jersey, USA.