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Week 4 — Simplicial approximations and Lefschetz fixed point theorem due by: 17.05.2017

Exercise 4.1 (Relative simplicial approximation)
Let X be a finite simplicial scheme, let X′ ⊆ X be a subscheme (what does this mean ?), and let Y be another finite
simplicial scheme. Let f : |X| = X → |Y| = Y be a continuous map, such that its restriction on X ′ = |X′| ⊂ X = |X|
is simplicial: this means that there is a simplicial map ϕ′ : X′ → Y such that |ϕ′| = f |X′ .

(1) Define the relative barycentric subdivision BSD(X,X′) as follows: the new vertex set BSD(X,X′)0 consits of the
old vertex set X′0 and an additional vertex for each simplex of X which is not contained in X′ — thought of as
barycenter; simplices of BSD(X,X′) have the form

Σ =
{
v′0, . . . , v

′
p, σp+1, . . . , σn

}
, −1 ≤ p ≤ n,

where there may be no v′i’s (if p = −1) or no σj ’s (if p = n) and where

• τ =
{
v′0, . . . , v

′
p

}
is a simplex in X′, if non-empty;

• τ ⊂ σp+1 ⊂ · · · ⊂ σn is a flag of ascending simplices in X. There is an obvious total ordering of these vertices.

Show that BSD(X,X′) is a simplicial scheme that contains X′ as subscheme.

(2) Show that the geometric realisation of BSD(X) is canonically homeomorphic to X, through a homeomorphism
that restricts on X ′ to the inclusion X ′ ⊂ X.

(3) Define recursively BSDk+1(X,X′) := BSD(BSDk(X,X′),X′). Show that if k is large enough, there is a simplicial
map ϕ : BSDk(X,X′) −→ Y such that

• the restriction of ϕ to the subscheme X′ is the given map ϕ′ and

• the map |ϕ| : |BSDk(X,X′)| → Y is homotopic to f relative to X ′.
(Here f is seen as a map |BSDk(X,X′)| → Y under the canonical homeomorphism |BSDk(X,X′)| ∼= X.)

Exercise 4.2 (Fibers of simplicial maps)
Let ϕ : X→ Y be a simplicial map between simplicial schemes.

(1) Let Y′ be a subcomplex of Y. Show that X′ := ϕ−1(Y′) ⊆ X is a subcomplex of X.

We now consider the special case where Y′ = 〈τ〉 is generated by a simplex τ ∈ Y, that is, Y′ = {τ ′ ∈ Y|τ ′ ⊆ τ}.
Clearly, |Y′| = ∆(τ) ⊆ |Y|. We denote by

f = |ϕ| : X = |X| → Y = |Y|

the induced map between the geometric realisations. Let σ ∈ ϕ−1(τ).

(2) Show that dim(σ) ≥ dim(τ).

(3) Let y be a point in |Y| that lies in ∆(τ) but not on its boundary. Prove that f−1(y)∩∆(σ) ⊆ |X| is homeomorphic
to a product of simplices with total dimension k, where k = dim(σ)− dim(τ).
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Leonhard Euler; 15. April 1707 in Basel bis 18. September 1783 in Sankt Petersburg

Exercise 4.3 (Poincaré polynomial)
Let V = ⊕k≥0Vk be a graded (and bounded below) vector space over a field F. We call

PV (t) :=

∞∑
i=0

dim(Vi)t
i

its Poincaré polynomial (although it is a formal power series).

1. Compute PF[X] for F[X], the polynomial ring in the indeterminant X of degree n.

2. Compute PΛF[X] for ΛF[X], the exteriour algebra in the indeterminant X of degree n.

3. Show PV⊕W (t) = PV (t) + PW (t).

4. Show PV⊗W (t) = PV (t) · PW (t).

5. Show PV (t) = PU (t) + PW (t), if there is a short exact sequence 0 → U → V → W → 0 of graded vector
spaces, i.e., for each degree n we have a short exact sequence 0→ Un → Vn →Wn → 0 of vector spaces.

6. Let (C•, d) a chain complex of vector spaces of finite type, over a field. Forgetting the differential d, we can
consider C• as a graded vector space; and similarly the cycles Zn := ker(d), the boundaries Bn := im(d) and
the homology Hn := Hn(C•). All are of finite type. Using this, prove the equality

PC(t)− PH(t) = (1 + t)PB(t),

and thus PC(−1) = PH(−1).

These formulas and in particular the statement (6) (and the way it is proved) should remind you of the Euler
characteristic of graded vector spaces (and chain complexes); no wonder, — because the Poincare polynomial is a
generalization of the Euler characteristic:

χ(C•) =
∑
i

(−1)i dim(Ci) = PC(−1).
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Exercise 4.4 (Simplicial homotopy)
Let f, g : X → Y be simplicial maps, and suppose that the corresponding maps |f |, |g| : X = |X| → Y = |Y| are
homotopic as continuous maps (so the maps Ft of a homotopy with f = F0 and g = F1 need not be simplicial for
all 0 < t < 1. Recall the simplicial structure on X × I from exercise 3.1, where I, the unit interval, is given the
simplicial structure of the standard 1-simplex ∆1.

(1) Is it always true that there is a simplicial map X × I → Y restricting to |f | on X × {0} and to |g| on X × {1}?
What if we consider on I the simplicial structure with k 1-simplices, and we still consider on X × I the simplicial
structure given by exercise 3.1?
Hint: Consider X = ∂∆2 ∼= S1 and Y is the surface of the icosahedron with two opposite faces removed. Let f and
g be simplicial homeomorphisms of X into the two boundary components of Y , such that f and g are homotopic
as maps X → Y .

(2) Apply exercise 4.1 to show that there is a suitable simplicial subdivision of X × I and a simplicial map
Φ: X × I → Y extending f and g on X × {0} and X × {1} respectively. This is called a simplicial homotopy.

Marius Sophus Lie; 17. Dezember 1842 in Nordfjordeid bis 18. Februar 1899 in Kristiania.
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Exercise 4.5* (Euler, Lie and Lefschetz)
Let G = |G| be a compact connected Lie group of positive dimension, i.e., G is a finite simplicial scheme and its
realization |G| is homeomorphic to a Lie group G. (It is actually a theorem that every compact Lie group G is
homeomorphic to the geometric realisation of some finite simplicial scheme).

(1) Show that χ(G) = 0.
Hint: Consider the map fg : x 7→ g · x for some fixed g ∈ G. It is homotopic to the identity of G (why ?), but it has
no fixed points (why ?).

(2) Deduce that a sphere of even dimension cannot carry the structure of a Lie group. (Actually the only spheres
admitting a Lie group structure are S1 = SO(2) and S3 = SU(2). It is a hard theorem for which K-theory is needed.)

Solomon Lefschetz; 3. September 1884 in Moskau bis 5. Oktober 1972 in Princeton, New Jersey, USA.
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