Aufgaben zur Topologie II

Prof. Dr. C.-F. Bödigheimer Sommersemester 2017

Week 3 — Simplicial maps, triangulated manifolds and homology

due by: 10.05.2017

Exercise 3.1 (Triangulated manifolds)

If \mathfrak{X} is a finite simplicial scheme such that $X = |\mathfrak{X}|$ is a manifold (with or without boundary), we call \mathfrak{X} a triangulation of the manifold X. We want a criterion to recognize whether $|\mathfrak{X}|$ is a manifold or not.

Let σ be a k-simplex and let τ_1, τ_2, \ldots be all simplices containing σ properly. Then $\sigma_i := \tau_i - \sigma$ is the subsimplex of τ_i 'opposite' σ . The star of σ , denoted by $\operatorname{Star}(\sigma)$, is the union of the interior of $\Delta(\sigma)$ and all the interiors of $\Delta(\tau_i)$. The link of σ , denoted by $\operatorname{Link}(\sigma)$, is the union of all $\Delta(\sigma_i)$. (Note that the link of a simplex is a subcomlex, in contrast to the star.) Consider the following link conditions:

L(k): The link Link(σ) of any k-simplex σ is homeomorphic to a sphere of dimension n-k-1.

We remark (but will not use it here) that L(0) implies all the L(k) for higher k; see quotation from Thurston's book.

Assume \mathfrak{X} is finite of dimension n and satisfies the conditions L(k) for all $k = 0, \ldots, n$. Show that $|\mathfrak{X}|$ is a manifold of dimension n without boundary. (Hint: Consider first the case of a vertex $\sigma = \{v\}$ and study the cones of the σ_i with cone point v. Then consider the general case, namely a point x in the interior of a simplex σ and study the joins of the σ_i with σ .

A Dehn twist D on a tube, realized as a shear map on a square (with right and left side identified). The right lower picture shows D after a homotopy to simplicial map; the thick edges are the images of a the triangles as named.

Exercise 3.2 (Barycentric subdivision)

Given a simplicial scheme \mathfrak{X} we denote by $BSD(\mathfrak{X})$ its barycentric subdivision. We know the map

$$b\colon |\mathrm{BSD}(\mathfrak{X})| \to |\mathfrak{X}|,$$

which is given as follows. A vertex in BSD(\mathfrak{X}), i.e., a simplex $\sigma = \{v_0, \ldots, v_n\}$ in \mathfrak{X} , is sent to its barycenter

$$b(\sigma) := \left[\sigma; \frac{1}{n+1}, \dots, \frac{1}{n+1}\right] = \frac{1}{n+1}v_0 + \dots + \frac{1}{n+1}v_n$$

in $\Delta(\sigma)$. (N.B.: we use the same notation b for the map to be defined as we used for the barycenter.) A *l*-simplex in BSD(\mathfrak{X}), i.e. a flag $\Phi = (\sigma_0 \subset \sigma_1 \subset \ldots \subset \sigma_l)$ of length l + 1 of simplices in \mathfrak{X} , is sent to

$$b([\Phi; s_0, ..., s_l]) := s_0 b(\sigma_0) + s_1 b(\sigma_1) + ... + s_l b(\sigma_l),$$

where the sum on the right-hand side is to be understood as an 'affine combination' in the maximal $\Delta(\sigma_l)$, which contains all $\Delta(\sigma_k)$ and thus all barycenters for $k = 0, \ldots, l$. (Note that b is not simplicial.)

- 1. Show that b is a homeomorphism.
- 2. We define a map $\beta \colon BSD(\mathfrak{X}) \to \mathfrak{X}$ by giving it on vertices of $BSD(\mathfrak{X})$, i.e., on simplices $\sigma = \{v_{i_0} < v_{i_1} < \dots < v_{i_n}\}$ of \mathfrak{X} , setting $\beta(\sigma) = \max(\sigma) = v_{i_n}$, the maximal vertex of σ in the total ordering of the vertices \mathfrak{X}_0 . Show that β is a simplicial map.
- 3. Show that $|\beta|$ is homotopic to b. (Hint: See the figure below.)

Exercise 3.3 (Orientation and orientation class)

Let \mathfrak{X} be a triangulation of a compact *n*-manifold without boundary, i.e., \mathfrak{X} is a finite simplicial scheme and $M = |\mathfrak{X}|$ is a compact manifold of dimension *n* without boundary. An orientation on \mathfrak{X} is a function $\mathcal{O}: \mathfrak{X}_n \to \{\pm 1\}$ on the *n*-simplices such that

 $(-1)^{i}\mathcal{O}(\sigma) = -(-1)^{j}\mathcal{O}(\tau)$ for any two *n*-simplices σ and τ with a common face $\partial_{i}(\sigma) = \partial_{j}(\tau)$.

We call \mathfrak{X} orientable, if it admits an orientation.

- 1. If \mathcal{O} is an orientation, then $-\mathcal{O}$ is also an orientation (called the *opposite orientation*).
- 2. Assume \mathfrak{X} is orientable and connected (which means $|\mathfrak{X}|$ is connected). Show that \mathfrak{X} has exactly two orientations. (Hint: Consider for two orientations $\mathcal{O}_1, \mathcal{O}_2$ the function $\lambda(\sigma) := \mathcal{O}_1(\sigma)\mathcal{O}_2(\sigma)$ and show that it is constant, if \mathfrak{X} is connected.)
- 3. Assume \mathfrak{X} is orientable and connected; recall that \mathfrak{X} is finite. Consider the simplicial *n*-chain $U = \sum_{\sigma} \mathcal{O}(\sigma) \sigma$ in the simplicial chain complex $\mathcal{C}_{\bullet}(\mathfrak{X})$, the sum running over all *n*-simplices. Show that $U = U_{\mathcal{O}}$ is a cycle.
- 4. Since $U_{\mathcal{O}}$ can not be a boundary (why ?), it represents a non-trivial homology class $[U_{\mathcal{O}}]$ in $H_n(\mathfrak{X})$, called the *orientation class*. Check the equality $[U_{-\mathcal{O}}] = -[U_{\mathcal{O}}]$.
- 5. Consider the singular chain $V = \sum_{\sigma} \mathcal{O}(\sigma) f_{\sigma}$ in the singular chain complex $S_{\bullet}(M)$, where $f_{\sigma} \colon \Delta^n \to M$ is the characteristic map $f_{\sigma}(t_0, \ldots, t_n) = [\sigma; t_0, \ldots, t_n]$ of the simplex $\Delta(\sigma)$. Show that $V = V_{\mathcal{O}}$ is a cycle.
- 6. Prove that under the isomorphism $H_n(\mathfrak{X}) := H_n(\mathcal{C}_{\bullet}(\mathfrak{X})) \longrightarrow H_n(S_{\bullet}(|\mathfrak{X}|)) =: H_n(|\mathfrak{X}|)$ the homology classes $[U_{\mathcal{O}}]$ and $[V_{\mathcal{O}}]$ correspond to each other. In particular $V = V_{\mathcal{O}}$ is not a boundary (this is not at all obvious in the chain complex $S_{\bullet}(|\mathfrak{X}|)$).

Proposition 3.2.5 (spherical links imply manifold). Let X be a triangulated space of dimension n. If the link of every simplex of dimension p is homeomorphic to an (n - p - 1)-sphere, X is a topological manifold.

In fact, the conclusion is true whenever the links of vertices are (n-1)-spheres.

Proof of 3.2.5. By Exercise 3.2.4, every point in X has a neighborhood of the form $D^p \times CS^{n-p-1}$, which is homeomorphic to $D^p \times D^{d-p}$, since the cone on the sphere is a ball. These neighborhoods cover X, so X is a manifold. 3.2.5

Exercise 3.2.6. Show that a manifold obtained by gluing is orientable if and only if, when the faces of each simplex are oriented consistently, all face identifications are orientation-reversing (cf. Exercise 1.3.2).

It would be natural to suppose that the converse of Proposition 3.2.5 is true as well, but this is not the case if $n \ge 5$. The first counterexamples were found by R. D. Edwards. Example 3.2.11 below gives a somewhat different counterexample, found by Cannon [Can79].

(The right criterion is this: the polyhedron of a simplicial complex is a topological manifold if and only if the link of each cell has the homology of a sphere, and the link of every vertex is simply connected. The proof is far beyond the scope of the current discussion.)

In three dimensions this sort of thing can't happen:

Proposition 3.2.7 (manifolds have spherical links in dimension three). A three-dimensional gluing is a three-manifold if and only if the link of every vertex is homeomorphic to S^2 .

A quotation from Thurston's book, pages 120, 121.

Exercise 3.4 (*n*-dimensional gluings)

An *n*-dimensional gluing \mathfrak{G} is a collection D_{α} of *n*-simplices $D_{\alpha} = \Delta_{\alpha}^{n}$, $\alpha \in A$, together with a complete matching μ of the faces, i.e. of the index pairs (α, i) for $i = 0, \ldots, n$ and $\alpha \in A$. (No index pair is matched with itself, and each index pair is matched.) The geometric realization $|\mathfrak{G}|$ is the space

$$|\mathfrak{G}| = \left(\bigsqcup_{\alpha} D_{\alpha}\right) / \sim ,$$

where $(D_{\alpha}; t_0, \ldots, t_{i-1}, 0, t_i, \ldots, t_n) \sim (D_{\beta}; t_0, \ldots, t_{j-1}, 0, t_j, \ldots, t_n)$ if (α, i) and (β, j) are matched. Here we write $(D_{\alpha}; t_0, \ldots, t_n)$ for an arbitrary point in $D_{\alpha} = \Delta_{\alpha}^n$.

(1) Note that the geometric realization is equipped with the structure of a CW complex of dimension n with the D_{α} as n-cells. Can you find a simplicial scheme \mathfrak{X} of dimension n with the D_{α} as n-simplices together with a canonical homemomorphism $|\mathfrak{X}| \cong |\mathfrak{G}|$? What can go wrong?

For simplicity, let us assume there is a simplicial scheme \mathfrak{X} of dimension n with the D_{α} as n-simplices together with a canonical homemomorphism $|\mathfrak{X}| \cong |\mathfrak{G}|$.

(2) Check that the link condition L(n-1) is satisfied. However the condition L(k) may not be satisfied for k < n-1. Thus \mathfrak{G} may not be a manifold. Nevertheless, we define an orientation \mathcal{O} to be a function on the *n*-simplices $D_{\alpha} \mapsto \mathcal{O}(D_{\alpha}) = \pm 1$ such that $(-1)^{i}\mathcal{O}(D_{\alpha}) = -(-1)^{j}\mathcal{O}(D_{\beta})$ if $\partial_{i}(D_{\alpha})) = \partial_{j}(D_{\beta})$, i.e. (α, i) and (β, j) are matched. (3) If \mathfrak{G} is orientable and connected, then $H_{n}(|\mathfrak{G}|) \cong \mathbb{Z}$. Show that the chain $C = \sum_{\alpha} \mathcal{O}(D_{\alpha}) D_{\alpha}$ is a cycle in the simplicial cell complex, which represents a generator. We call it the fundamental class $u_{\mathfrak{G}} = [C] \in H_n(|\mathfrak{G}|)$.

A homotopy between $|\beta|$ and b for simplices of dimensions 1,2,3. The arrows indicate the movement of the barycenters during the homotopy; all old vertices (the vertices of \mathfrak{X}) are fixed. There is one flag $\Phi = (\{v_0\}, \{v_0, v_1\}, \ldots, \{v_0, \ldots, v_n\})$, a subdivision simplex, whose image under $|\beta|$ covers the entire old simplex $\Delta(\sigma)$; all other subdivision simplices are mapped to faces of $\Delta(\sigma)$.

Exercise 3.5* (Gluings and singular homology classes)

Now let X be an arbitrary space and let $C = \sum_{i=1}^{r} n_i s_i$ be a singular *n*-chain in X, so a finite sum with $n_i \in \mathbb{Z}$ and $s_i \colon \Delta^n \to X$ continuous maps. We can associate a gluing by first taking $l = |n_1| + \ldots + |n_r|$ copies of Δ^n , indexed by $\alpha = 1, \ldots, l$. If C is a cycle, then $\partial(C) = 0$; thus there must be (at least one) complete matching of all the faces of the copies of Δ^n , such that two matched faces are mapped in the same way to X, and their contributions to $\partial(C)$ cancel each other. Notice that in particular the number (n + 1)l must be even. We choose such a matching μ and call the resulting gluing \mathfrak{G} .

(1) Show that the assignment $\mathcal{O}(D_{\alpha}) = +1$ gives an orientation, that we call the *constant* orientation.

Let $P(\mathfrak{G}) = |\mathfrak{G}|$ denote the geometric realization of this gluing.

(2) Define a continuous map $f: P(\mathfrak{G}) \to X$ such that $f_*(u_{\mathfrak{G}}) = [C]$.

(3) What if we choose another matching μ' for the same chain C? What if we have two homologous chains C, C' with matchings μ, μ' ?