Aufgaben zur Topologie

Prof. Dr. C.-F. Bödigheimer
Wintersemester 2016/17

Week 12 - Suspensions, coefficient rings, (co)invariants, surgery.
Due: 1. February 2017

Exercise 12.1 (Sums of maps.)
Let $\tilde{\Sigma} X$ denote the reduced suspension $\Sigma X / \Sigma x_{0}$ of a based space X with x_{0} the basepoint; and denote by

$$
\nabla: \tilde{\Sigma} X \longrightarrow \tilde{\Sigma} X \vee \tilde{\Sigma} X
$$

the so-called co-multiplication defined by

$$
\nabla([x, t])= \begin{cases}{[x, 2 t] \text { in the left summand, }} & \text { if } 0 \leqslant t \leqslant \frac{1}{2} \\ {[x, 2 t-1] \text { in the right summand, }} & \text { if } \frac{1}{2} \leqslant t \leqslant 1\end{cases}
$$

Here we denote the points of $\tilde{\Sigma} X=X \times[0,1] / A$ with $A=(X \times\{0,1\}) \cup_{\tilde{\Sigma}}\left(\left\{x_{0}\right\} \times[0,1]\right)$ by $[x, t]$, using their X-coordinate and their height t in the double cone. We denote by $p_{i}: \tilde{\Sigma} X \vee \tilde{\Sigma} X \rightarrow \tilde{\Sigma} X$ for $i=1,2$ the projection onto the left resp. right summand, which collapses the other summand to a point. And by $\iota_{i}: \tilde{\Sigma} X \rightarrow \tilde{\Sigma} X \vee \tilde{\Sigma} X$ we denote the inclusions of the left resp. right summand.
(1) Show that $p_{i} \circ \nabla \simeq \mathrm{id}_{\tilde{\Sigma} X}$ for $i=1,2$.
(2) Show that $(a, b) \mapsto \iota_{1 *}(a)+\iota_{2 *}(b)$ is an isomorphism $\Phi: H_{n}(\tilde{\Sigma} X) \oplus H_{n}(\tilde{\Sigma} X) \rightarrow H_{n}(\tilde{\Sigma} X \vee \tilde{\Sigma} X)$, for $n>0$.
(3) Conclude that the homomorphism $\Phi^{-1} \circ \nabla_{*}: H_{n}(\tilde{\Sigma} X) \rightarrow H_{n}(\tilde{\Sigma} X) \oplus H_{n}(\tilde{\Sigma} X)$ is the diagonal.

Now we write the n-sphere $\mathbb{S}^{n}=\Sigma \mathbb{S}^{n-1}$ (for $n \geq 1$) as a suspension of \mathbb{S}^{n-1}. For two based maps $f, g: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ we declare their sum $f+g: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ by $f+g:=\mathrm{F} \circ(f \vee g) \circ \nabla$, where $\mathrm{F}: \tilde{\Sigma} X \vee \tilde{\Sigma} X \rightarrow \tilde{\Sigma} X$ is the folding map.
(4) Prove the formula:

$$
\operatorname{deg}(f+g)=\operatorname{deg}(f)+\operatorname{deg}(g)
$$

(5)* More generally, prove that $(f+g)_{*}=f_{*}+g_{*}: H_{n}(\tilde{\Sigma} X) \rightarrow H_{n}(\tilde{\Sigma} X)$.

Exercise 12.2 (An application of mapping degree: fixed and antipodal points of self-maps of spheres.)
Let $n \geqslant 1$ and let $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ be a self-map of the n-sphere.
(a) If n is even, show that f must have either a fixed point or an antipodal point $\left(x \in \mathbb{S}^{n}\right.$ such that $\left.f(x)=-x\right)$.
(b) More generally, if n is even, any two self-maps f, g of \mathbb{S}^{n} must have either an incidence point $\left(x \in \mathbb{S}^{n}\right.$ such that $f(x)=g(x))$ or an opposite point $\left(x \in \mathbb{S}^{n}\right.$ such that $\left.f(x)=-g(x)\right)$.
(c) For n odd, give an example of a self-map $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ with no fixed point and no antipodal point.
(d) More generally, given a self-map $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$, construct (when n is odd) another self-map $g: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ such that f and g have no incidence points and no opposite points.

Exercise 12.3 (Coefficient rings.)
Let Z be the space $\mathbb{D}^{2} \times\{0,1\}$, i.e., the disjoint union of two closed 2-discs, and let $A \subset Z$ be its boundary $\mathbb{S}^{1} \times\{0,1\}$. Let $Y=\mathbb{S}^{1}$ and consider a map $f: A \rightarrow Y$ that sends $\mathbb{S}^{1} \times\{0\}$ to Y by a map of degree m and sends $\mathbb{S}^{1} \times\{1\}$ to Y by a map of degree n. See the figure on the next page.
(a) Using the Mayer-Vietoris sequence for an appropriate open covering of $X=Z \cup_{f} Y$, show that there is an exact sequence

$$
0 \rightarrow H_{2}(X) \rightarrow \mathbb{Z}^{2} \xrightarrow{\phi} \mathbb{Z} \rightarrow H_{1}(X) \rightarrow 0
$$

where ϕ is given by the matrix $(m n)$, and hence that $H_{2}(X) \cong \mathbb{Z}$ (unless $m=n=0$, in which case $\left.H_{2}(X) \cong \mathbb{Z}^{2}\right)$ and $H_{1}(X) \cong \mathbb{Z} / h \mathbb{Z}$, where $h=\operatorname{gcd}(m, n)$ is the greatest common divisor of m and n if they are both non-zero,
and is $\max (|m|,|n|)$ otherwise.
(b) What happens when we compute homology not with \mathbb{Z} coefficients, but rather with R coefficients, where
(i) $R=\mathbb{Q}$,
(ii) $R=\mathbb{F}_{p}$, for a prime p,
(iii) $R=\mathbb{Z}\left[\frac{1}{p}\right]$, for a prime p, where $\mathbb{Z}\left[\frac{1}{p}\right]=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\, a\right.$ and b are coprime and $b=p^{c}$ for some integer $\left.c \geqslant 0\right\}$?
(c)* Now take $Y^{\prime}=\mathbb{S}^{1} \vee \mathbb{S}^{1}$ and consider a map $g: A \rightarrow Y^{\prime}$ that sends $\mathbb{S}^{1} \times\{0\}$ to Y^{\prime} as a loop that winds 3 times around the left-hand circle of the "figure-of-eight" and twice around the right-hand circle, and sends $\mathbb{S}^{1} \times\{1\}$ to Y^{\prime} as a loop that winds 5 times around the left-hand circle and 7 times around the right-hand circle. Let $X^{\prime}=Z \cup_{g} Y^{\prime}$. Similarly to part (a), show that there is an exact sequence

$$
0 \rightarrow H_{2}\left(X^{\prime}\right) \rightarrow \mathbb{Z}^{2} \xrightarrow{\psi} \mathbb{Z}^{2} \rightarrow H_{1}\left(X^{\prime}\right) \rightarrow 0
$$

where ψ is given by the matrix $\left(\begin{array}{ll}3 & 5 \\ 2 & 7\end{array}\right)$, and hence that $H_{2}\left(X^{\prime}\right)=0$ and $H_{1}\left(X^{\prime}\right) \cong \mathbb{Z} / 11 \mathbb{Z}$.
$(\mathrm{d})^{*}$ What happens if we change the ring of coefficients as in part (b)?

The attaching map f for the space $X=Z \cup_{f} Y$ in Exercise 12.3(a).
Exercise 12.4 (Invariants and coinvariants.)
Let X be a space with an action of a group G. We write X^{G} for the subspace of X consisting of all fixed points under the action (the invariants) and X / G for the quotient space $\{x . G \mid x \in X\}$ (the orbit space).
Fix a commutative ring R with unit. If M is an R-module with a G-action by R-linear automorphisms, we define the invariants M^{G}, as above, to be the submodule of all elements that are fixed under the action. The module of coinvariants M_{G} is the quotient of M by the submodule generated by the set $\{m-m . g \mid m \in M, g \in G\}$.
(a) If X is a space with a G-action, then $M=H_{n}(X ; R)$ is an R-module with a G-action. There are inclusion and quotient maps $X^{G} \hookrightarrow X \rightarrow X / G$ and also $M^{G} \hookrightarrow M \rightarrow M_{G}$. Complete the following commutative diagram by defining the dotted arrows:

(b) Take $R=\mathbb{Z}$ and let $X=\mathbb{S}^{n}(n \geqslant 2)$ with $G=\mathbb{Z} / 2 \mathbb{Z}$ acting by a reflection. Show that
(i) g_{i} is an isomorphism for $i<n$, but g_{n} is not injective;
(ii) f_{n-1} is also not injective.
(c) Now consider the same set-up, except that $G=\mathbb{Z} / 2 \mathbb{Z}$ acts by the antipodal map instead. Show that
(i) f_{0} is not surjective;
(ii) f_{n} is an isomorphism if and only if n is even; whereas g_{n} is injective but not surjective for n odd and is surjective but not injective for n even;
(iii) in degrees $0<i<n$ we have: g_{i} is an isomorphism if and only if i is even.
(d) In part (c), replace $R=\mathbb{Z}$ with $R=\mathbb{Q}$ or $R=\mathbb{F}_{p}$ for an odd prime p. Now g_{i} is an isomorphism for all i.

Exercise 12.5 (Surgery on a manifold.)
Recall that an n-dimensional topological manifold is a Hausdorff space which is locally homeomorphic to \mathbb{R}^{n}. A framed embedded sphere S in M of dimension m is an embedding $S: \mathbb{S}^{m} \times \mathbb{D}^{n-m} \hookrightarrow M$. Write S_{∂} to denote the restriction of S to $\mathbb{S}^{m} \times \partial \mathbb{D}^{n-m}=\mathbb{S}^{m} \times \mathbb{S}^{n-m-1}=\partial \mathbb{D}^{m+1} \times \mathbb{S}^{n-m-1}$. We then define

$$
M(S)=\left(\mathbb{D}^{m+1} \times \mathbb{S}^{n-m-1}\right) \cup_{S_{\partial}} M_{\circ}, \quad \text { where } \quad M_{\circ}=M-S\left(\mathbb{S}^{m} \times \dot{\mathbb{D}}^{n-m}\right)
$$

and call this the result of surgery on M along S. For example, the result of surgery along a framed embedded 1 -sphere in a surface look like the following:

(a) Draw a sketch to show why this is again a manifold.
(b) Explain why we have a diagram of the form

with one exact row and one exact column. To relate $H_{i}(M(S))$ to $H_{i}(M)$, it is important to understand the relative homology groups appearing in (1).
(c) Using Excision, show that

$$
\begin{aligned}
H_{i}\left(M, M_{\circ}\right) & \cong H_{i}\left(\mathbb{S}^{m} \times \mathbb{D}^{n-m}, \mathbb{S}^{m} \times \mathbb{S}^{n-m-1}\right) \\
H_{i}\left(M(S), M_{\circ}\right) & \cong H_{i}\left(\mathbb{D}^{m+1} \times \mathbb{S}^{n-m-1}, \mathbb{S}^{m} \times \mathbb{S}^{n-m-1}\right)
\end{aligned}
$$

(d) Explain why the inclusion map $\mathbb{S}^{a} \times \mathbb{S}^{b} \hookrightarrow \mathbb{S}^{a} \times \mathbb{D}^{b+1}$ induces surjections on homology in every degree.
(Hint: Apart from degree 0 , it is enough to show that a certain homology class in $H_{*}\left(\mathbb{S}^{a} \times \mathbb{D}^{b+1}\right)$ is in the image.)
(e) You may from now on assume the following fact:

$$
\tilde{H}_{i}\left(\mathbb{S}^{a} \times \mathbb{S}^{b}\right) \cong \mathbb{Z}^{\delta_{i, a}} \oplus \mathbb{Z}^{\delta_{i, b}} \oplus \mathbb{Z}^{\delta_{i,(a+b)}}
$$

where $\delta_{i, j}$ is the Kronecker delta function: $\delta_{i, i}=1$ and $\delta_{i, j}=0$ for $i \neq j$.
(If you like, try to prove this inductively using the Mayer-Vietoris sequence. Find an open cover $\{U, V\}$ of $\mathbb{S}^{a} \times \mathbb{S}^{b}$
such that $U \simeq V \simeq \mathbb{S}^{a}$ and $U \cap V \simeq \mathbb{S}^{a} \times \mathbb{S}^{b-1}$. For the base case, note that $\mathbb{S}^{a} \times \mathbb{S}^{0}=\mathbb{S}^{a} \sqcup \mathbb{S}^{a}$.)
(f) Using parts (c)-(e), compute:

$$
\begin{aligned}
& \quad H_{i}\left(M, M_{\circ}\right) \cong \begin{cases}\mathbb{Z}^{2} & i=n \text { and } m=0 \\
\mathbb{Z} & (i=n \text { or } i=n-m) \text { and } m \neq 0 \\
0 & \text { otherwise }\end{cases} \\
& H_{i}\left(M(S), M_{\circ}\right) \cong \begin{cases}\mathbb{Z}^{2} & i=n \text { and } m=n-1 \\
\mathbb{Z} & (i=n \text { or } i=m+1) \text { and } m \neq n-1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(g) Assume that $n \geqslant 1$ and $m \leqslant \frac{n}{2}$. Use these calculations and (1) to show that in degrees $i \leqslant m-2$,

$$
H_{i}(M(S)) \cong H_{i}(M)
$$

(h) ${ }^{*}$ Now we consider a more specific example. Let M be a 7 -manifold and let $S: \mathbb{S}^{4} \times \mathbb{D}^{3} \hookrightarrow M$ be a framed embedded 4-sphere. Show that

$$
H_{4}(M(S)) \cong H_{4}(M) /\langle[c]\rangle
$$

where $[c]$ is the image under S_{*} of a generator of $H_{4}\left(\mathbb{S}^{4} \times \mathbb{D}^{3}\right) \cong \mathbb{Z}$.

Exercise 12.6* (H-spaces and co-H-spaces.)

A based space C is called a co- H-space, if there is a map $\nabla: C \rightarrow C \vee C$ such that

$$
p_{i} \circ \nabla \simeq \operatorname{id}_{C} \quad \text { for } \quad i=1,2
$$

where p_{1} and p_{2} are the projections onto the first resp. second summand, which collapse the other summand to a point. One calls C co-associative, if

$$
\left(\nabla \vee \mathrm{id}_{C}\right) \circ \nabla \simeq\left(\operatorname{id}_{C} \vee \nabla\right) \circ \nabla
$$

Example: the reduced suspension $C=\tilde{\Sigma} X$ of a based space X is a co-associative co-H-space.
By $\iota_{i}: C \rightarrow C \vee C$ for $i=1,2$ we will denote the inclusions of the left resp. right summand. With the same proof as in Exercise 12.1 we see that $(a, b) \mapsto \iota_{1 *}(a)+\iota_{2 *}(b)$ is an isomorphism $\Phi: H_{n}(C) \oplus H_{n}(C) \rightarrow H_{n}(C \vee C)$, for $n>0$.
(1) Show that $\Phi^{-1} \circ \nabla_{*}: H_{n}(C) \rightarrow H_{n}(C) \oplus H_{n}(C)$ is the diagonal map.

For any two based maps $f, g: C \rightarrow C$ we can define their sum by $f+g:=F \circ(f \vee g) \circ \nabla$, where $F: C \vee C \rightarrow C$ is the folding map.
(2) We have $(f+g)_{*}=f_{*}+g_{*}: H_{n}(C) \rightarrow H_{n}(C)$.

A based space M is called an H-space, if there is a map $\mu: M \times M \rightarrow M$, such that

$$
\mu \circ \iota_{i} \simeq \operatorname{id}_{M} \quad \text { for } \quad i=1,2
$$

where $\iota_{1}: M \rightarrow M \times M$ sends m to $\left(m, m_{0}\right)$, where m_{0} is the basepoint of M, and similarly ι_{2} sends m to $\left(m_{0}, m\right)$. One calls M associative, if

$$
\mu \circ\left(\operatorname{id}_{M} \times \mu\right) \simeq \mu \circ\left(\mu \times \operatorname{id}_{M}\right)
$$

Example: A topological group, in particular a Lie group, is an H -space.
For a co-H-space C and a based space Y, we set $M:=\operatorname{maps}_{0}(C, Y)$, the space of all based maps $f: C \rightarrow Y$. These are important spaces when C is a sphere.
(3) Show that M is an H-space, and it is associative if C is co-associative.

