Aufgaben zur Topologie

Prof. Dr. C.-F. Bödigheimer
Wintersemester 2016/17

Week 9 - Long exact homology sequences
Due: 11. January 2017

Henry Poincaré and his red-nosed reindeer called Rudolph Homology.

Exercise 9.1 (The connectinmg homomorphism I)
Let

$$
0 \rightarrow A_{\bullet} \xrightarrow{f_{\bullet}} B_{\bullet} \xrightarrow[\bullet]{g_{\bullet}} C \bullet 0
$$

be a short exact sequence of chain complexes over \mathbb{K} and denote by $\partial_{*}: H_{n}\left(C_{\bullet}\right) \rightarrow H_{n-1}\left(A_{\bullet}\right)$ the connecting homomorphism.
(a) ∂_{*} is a homomorphism of \mathbb{K}-modules.
(b) ∂_{*} is natural.

Exercise 9.2 (Induced maps on homology in degree zero.)
Let X be a space and denote by $\pi_{0}(X)$ the set of path-components of X.
(1) Show that there is an isomorphism $H_{0}(X) \cong \mathbb{Z}\left\langle\pi_{0}(X)\right\rangle:=\bigoplus_{\pi_{0}(X)} \mathbb{Z}$, the free abelian group generated by the set $\pi_{0}(X)$.
(2) Show that any continuous map $f: X \rightarrow Y$ induces a well-defined function $\pi_{0}(f): \pi_{0}(X) \rightarrow \pi_{0}(Y)$.
(3) If we identify $H_{0}(X)$ with $\mathbb{Z}\left\langle\pi_{0}(X)\right\rangle$ and $H_{0}(Y)$ with $\mathbb{Z}\left\langle\pi_{0}(Y)\right\rangle$ as above, then the homomorphisms $H_{0}(f)$ and $\mathbb{Z}\left\langle\pi_{0}(f)\right\rangle$ are equal.

Exercise 9.3 (Relative homology in degree zero.)
Let A be a subspace of X; we denote by $i: A \rightarrow X$ the inclusion and by $q: X \rightarrow X / A$ the quotient map identifying A to a point. (What does this mean, when $A=\emptyset$?). For the sets of path-components we have induced functions $\pi_{0}(i): \pi_{0}(A) \rightarrow \pi_{0}(X)$ and $\pi(q): \pi_{0}(X) \rightarrow \pi_{0}(X / A)$.
(1) Show that the relative homology group $H_{0}(X, A)$ is isomorphic to $\mathbb{Z}\left\langle\pi_{0}(X / A)\right\rangle$.
(2) Show that $H_{0}(i): H_{0}(A) \rightarrow H_{0}(X)$ is injective, that $H_{0}(q): H_{0}(X) \rightarrow H_{0}(X, A)$ is surjective, and that $H_{0}(X, A)$ is isomorphic to the quotient module $H_{0}(X) / H_{0}(A)$.
(3) Describe $H_{1}(X, A)$ and the connecting homomorphism $\partial_{*}: H_{1}(X, A) \rightarrow H_{0}(A)$.

Exercise 9.4 (Torus with one boundary curve.)
Let X be a torus with one boundary curve, as shown in the figure. We denote by A the boundary curve, by $i: A \rightarrow X$ the inclusion of spaces, by $S_{\bullet}(i): S_{\bullet}(A) \rightarrow S_{\bullet}(X)$ the inclusion of singular chain complexes, and by $q_{\bullet}: S_{\bullet}(X) \rightarrow S_{\bullet}(X, A)=S_{\bullet}(X) / S_{\bullet}(A)$ the quotient homomorphism of singular chain complexes; thus we have the short exact sequence of chain complexes

$$
0 \rightarrow S_{\bullet}(A) \xrightarrow{S_{\bullet}(i)} S_{\bullet}(X) \xrightarrow{q_{\bullet}} S_{\bullet}(X, A) \rightarrow 0
$$

leading to a long exact sequence of homology groups:
$\ldots \rightarrow H_{2}(A) \xrightarrow{i_{*}} H_{2}(X) \xrightarrow{q_{*}} H_{2}(X, A) \xrightarrow{\partial_{*}} H_{1}(A) \xrightarrow{i_{*}} H_{1}(X) \xrightarrow{q_{*}} H_{1}(X, A) \xrightarrow{\partial_{*}} H_{0}(A) \xrightarrow{i_{*}} H_{0}(X) \xrightarrow{q_{*}} H_{0}(X, A) \rightarrow 0$
(1) Compute all homology groups in degrees 0 and 1 and all homomorphism between them.
(2) Show that $H_{2}(X, A)$ contains at least a summand which is isomorphic to \mathbb{Z} and generated by the relative cycle $D=D_{1}+\ldots+D_{6}$.
(3) Compute for the connecting homomorphism $\partial_{*}([D])=\left[c_{1}+c_{2}\right]$.

A torus, written as a square with dark edges a and b identified. Some singular 1- and 2-simplices, used in Exercise 9.4, are shown.

Exercise 9.5 (Calculating with long exact sequences of abelian groups.)
(1) Show that, if $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} D \rightarrow 0$ is an exact sequence, then we also have exact sequences:
(a) $0 \rightarrow B / A \xrightarrow{\bar{\beta}} C \xrightarrow{\gamma} D \rightarrow 0$ and
(b) $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} \operatorname{image}(\beta) \rightarrow 0$.
(2) More generally, if we have an exact sequence $\cdots \rightarrow A \xrightarrow{e} B \xrightarrow{f} C \xrightarrow{g} D \xrightarrow{h} E \rightarrow \cdots$, then we may "localise" it at C, meaning that there is a short exact sequence:

$$
0 \rightarrow \operatorname{coker}(e) \xrightarrow{\bar{f}} C \xrightarrow{g} \operatorname{ker}(h) \rightarrow 0,
$$

where coker (e) means $B / e(A)$.
(3) Show that, if $0 \rightarrow A \rightarrow B \rightarrow \mathbb{Z}^{k} \rightarrow 0$ is exact, then B is isomorphic to $\mathbb{Z}^{k} \oplus A$.
(Hint: start by constructing a homomorphism $\mathbb{Z}^{k} \rightarrow B$, which is a right-inverse for the given homomorphism $B \rightarrow \mathbb{Z}^{k}$.)
(4) Give an example of a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow \mathbb{Z} / k \mathbb{Z}$ (for any $k \neq-1,0,+1$) for which B is not isomorphic to $A \oplus \mathbb{Z} / k \mathbb{Z}$.

Exercise 9.6* (Connecting homomorphisms II)
Assume we have a short exact sequence

$$
(*) \quad 0 \rightarrow A_{\bullet} \xrightarrow{\alpha_{\bullet}} B_{\bullet} \xrightarrow{\beta_{\bullet}} C \bullet \rightarrow 0
$$

of free chain complexes; we know that $B_{n} \cong A_{n} \oplus C_{n}$, since C_{n} is free. But the boundary operator $\partial^{B}: B_{n} \rightarrow B_{n-1}$ may not be the direct sum of ∂^{A} und ∂^{C}, i.e., not of diagonal block form; but it must have the form

$$
\partial^{B}=\left(\begin{array}{cc}
\partial^{A} & \varphi_{n} \\
0 & \partial^{C}
\end{array}\right)
$$

for some family of homomorphisms $\varphi_{n}: C_{n} \rightarrow A_{n-1}$.
(1) Which condition must this family satisfy, such that $\partial^{B} \circ \partial^{B}=0$?
(2) Compute the connecting homomorphism in the long exact homology sequence of $\left(^{*}\right)$.

