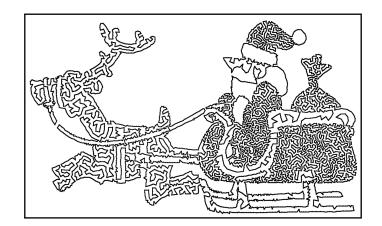
Aufgaben zur Topologie

Prof. Dr. C.-F. Bödigheimer Wintersemester 2016/17

Week 9 — Long exact homology sequences

Due: 11. January 2017



Henry Poincaré and his red-nosed reindeer called Rudolph Homology.

Exercise 9.1 (The connecting homomorphism I) Let

$$0 \to A_{\bullet} \xrightarrow{f_{\bullet}} B_{\bullet} \xrightarrow{g_{\bullet}} C_{\bullet} \to 0$$

be a short exact sequence of chain complexes over \mathbb{K} and denote by $\partial_* : H_n(C_{\bullet}) \to H_{n-1}(A_{\bullet})$ the connecting homomorphism.

(a) ∂_* is a homomorphism of K-modules.

(b) ∂_* is natural.

Exercise 9.2 (Induced maps on homology in degree zero.)

Let X be a space and denote by $\pi_0(X)$ the set of path-components of X.

(1) Show that there is an isomorphism $H_0(X) \cong \mathbb{Z}\langle \pi_0(X) \rangle := \bigoplus_{\pi_0(X)} \mathbb{Z}$, the free abelian group generated by the set $\pi_0(X)$.

(2) Show that any continuous map $f: X \to Y$ induces a well-defined function $\pi_0(f): \pi_0(X) \to \pi_0(Y)$.

(3) If we identify $H_0(X)$ with $\mathbb{Z}\langle \pi_0(X) \rangle$ and $H_0(Y)$ with $\mathbb{Z}\langle \pi_0(Y) \rangle$ as above, then the homomorphisms $H_0(f)$ and $\mathbb{Z}\langle \pi_0(f) \rangle$ are equal.

Exercise 9.3 (Relative homology in degree zero.)

Let A be a subspace of X; we denote by $i: A \to X$ the inclusion and by $q: X \to X/A$ the quotient map identifying A to a point. (What does this mean, when $A = \emptyset$?). For the sets of path-components we have induced functions $\pi_0(i): \pi_0(A) \to \pi_0(X)$ and $\pi_0(q): \pi_0(X) \to \pi_0(X/A)$.

(1) Show that the relative homology group $H_0(X, A)$ is isomorphic to $\mathbb{Z}\langle \pi_0(X/A) \rangle / \mathbb{Z}\langle [A/A] \rangle$, where [A/A] denotes the path-component of X/A containing the point A/A.

(2) When A is non-empty, show that $H_0(q): H_0(X) \to H_0(X, A)$ is surjective and that $H_0(X, A)$ is isomorphic to

the quotient module $H_0(X)/\operatorname{im}(H_0(i))$.

(3) Describe $H_1(X, A)$ and the connecting homomorphism $\partial_* \colon H_1(X, A) \to H_0(A)$.

Exercise 9.4 (Torus with one boundary curve.)

Let X be a torus with one boundary curve, as shown in the figure. We denote by A the boundary curve, by $i: A \to X$ the inclusion of spaces, by $S_{\bullet}(i): S_{\bullet}(A) \to S_{\bullet}(X)$ the inclusion of singular chain complexes, and by $q_{\bullet}: S_{\bullet}(X) \to S_{\bullet}(X, A) = S_{\bullet}(X)/S_{\bullet}(A)$ the quotient homomorphism of singular chain complexes; thus we have the short exact sequence of chain complexes

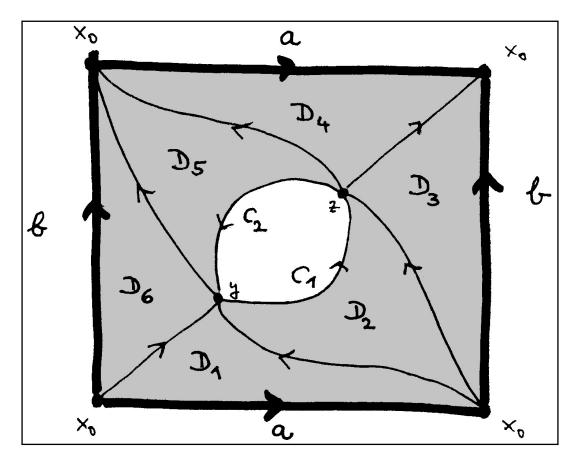
$$0 \to S_{\bullet}(A) \xrightarrow{S_{\bullet}(i)} S_{\bullet}(X) \xrightarrow{q_{\bullet}} S_{\bullet}(X, A) \to 0$$

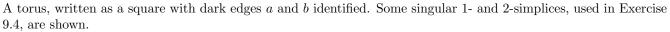
leading to a long exact sequence of homology groups:

 $\dots \to H_2(A) \xrightarrow{i_*} H_2(X) \xrightarrow{q_*} H_2(X, A) \xrightarrow{\partial_*} H_1(A) \xrightarrow{i_*} H_1(X) \xrightarrow{q_*} H_1(X, A) \xrightarrow{\partial_*} H_0(A) \xrightarrow{i_*} H_0(X) \xrightarrow{q_*} H_0(X, A) \to 0$

(1) Compute all homology groups in degrees 0 and 1 and all homomorphisms between them. (2) Show that $H_2(X, A)$ contains at least a summand which is isomorphic to \mathbb{Z} and generated by the relative cycle $D = -D_1 + D_2 + D_3 + D_4 + D_5 - D_6$.

(3) Compute for the connecting homomorphism $\partial_*([D]) = [c_1 + c_2]$.





Exercise 9.5 (Calculating with long exact sequences of abelian groups.)

(1) Show that, if $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} D \to 0$ is an exact sequence, then we also have exact sequences: (a) $0 \to B/\alpha(A) \xrightarrow{\bar{\beta}} C \xrightarrow{\gamma} D \to 0$ and (b) $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} \operatorname{image}(\beta) \to 0$.

(2) More generally, if we have an exact sequence $\cdots \to A \xrightarrow{e} B \xrightarrow{f} C \xrightarrow{g} D \xrightarrow{h} E \to \cdots$, then we may "localise" it at C, meaning that there is a short exact sequence:

$$0 \to \operatorname{coker}(e) \xrightarrow{\bar{f}} C \xrightarrow{g} \ker(h) \to 0,$$

where $\operatorname{coker}(e)$ means B/e(A).

(3) Show that, if $0 \to A \to B \to \mathbb{Z}^k \to 0$ is exact, then B is isomorphic to $\mathbb{Z}^k \oplus A$.

(Hint: start by constructing a homomorphism $\mathbb{Z}^k \to B$, which is a right-inverse for the given homomorphism $B \to \mathbb{Z}^k$.)

(4) Give an example of a short exact sequence $0 \to A \to B \to \mathbb{Z}/k\mathbb{Z}$ (for any $k \neq -1, 0, +1$) for which B is not isomorphic to $A \oplus \mathbb{Z}/k\mathbb{Z}$.

Exercise 9.6* (Connecting homomorphisms II)

Assume we have a short exact sequence

$$(*) \quad 0 \to A_{\bullet} \xrightarrow{\alpha_{\bullet}} B_{\bullet} \xrightarrow{\beta_{\bullet}} C_{\bullet} \to 0$$

of free chain complexes; we know that $B_n \cong A_n \oplus C_n$, since C_n is free. But the boundary operator $\partial^B \colon B_n \to B_{n-1}$ may not be the direct sum of ∂^A und ∂^C , i.e., not of diagonal block form; but it must have the form

$$\partial^B = \begin{pmatrix} \partial^A & \varphi_n \\ 0 & \partial^C \end{pmatrix}$$

for some family of homomorphisms $\varphi_n \colon C_n \to A_{n-1}$.

(1) Which condition must this family satisfy, such that $\partial^B \circ \partial^B = 0$?

(2) Compute the connecting homomorphism in the long exact homology sequence of (*).