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Week 8 — Homological algebra and homotopy invariance of homology Due: 21. December 2016

The birth of homology, from Analysis Situs, H. Poincaré (1895).

Exercise 8.1 (The five-lemma.)
Prove the famous five-lemma. Let R be a ring and suppose we have the following diagram of modules over R:

A B C D E

A′ B′ C ′ D′ E′

α β γ δ ε

Assume that this diagram is commutative and that the two horizontal rows of homomorphisms are exact. Moreover,
assume that α is surjective, β and δ are bijective and ε is injective. Prove that γ is bijective.

Application: let φ : B → B′ be a homomorphism of R-modules taking a submodule A ⊆ B to a submodule A′ ⊆ B′,
so that we have restricted and induced homomorphisms φ|A : A→ A′ and φ̄ : B/A→ B′/A′. If φ|A and φ̄ are both
isomorphisms then so is φ.

Exercise 8.2 (Mapping cones and mapping cylinders of chain complexes.)
Let A and B be chain complexes with differential ∂A resp. ∂B and let f : A→ B be a chain map.
(i) Define a new chain complex Cone(f) by Cone(f)n = An−1 ⊕ Bn and setting its differential ∂ : An−1 ⊕ Bn →
An−2 ⊕Bn−1 to be the sum of the four maps

∂A : An−1 → An−2 ∂B : Bn → Bn−1 0: Bn → An−2 (−1)n.fn−1 : An−1 → Bn−1,
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or as a formula
∂(a, b) := (∂A(a), (−1)n.fn−1(a) + ∂B(b)).

(1) Prove that this is indeed a chain complex.
(2) Construct chain maps B → Cone(f) and Cone(f)→ A[1], where A[1] simply means the chain complex A with
the modified grading A[1]n = An−1, and show that you have constructed a short exact sequence

0→ B −→ Cone(f) −→ A[1]→ 0.

(ii) Now define a chain complex Cyl(f) by Cyl(f)n = An−1 ⊕ Bn ⊕ An with differential ∂ : Cyl(f)n → Cyl(f)n−1
given in block form by the matrix  ∂A 0 0

(−1)n.fn−1 ∂B 0
(−1)n+1.id 0 ∂A

 .

(3) Prove that this is a chain complex.
(4) Construct a chain homotopy equivalence Cyl(f) ' B.

Exercise 8.3 (Cones of continuous maps and dunce caps.)
Let Z be a space with subspace A ⊆ Z and let f : A → Y be a continuous map. Recall (cf. Exercise 5.6) that the
space Z ∪f Y is defined to be the quotient of the disjoint union Z t Y by the smallest equivalence relation ∼ such
that a ∼ f(a) for all a ∈ A.
Now let g : X → Y be a continuous map and define its mapping cylinder to be Cyl(g) = Z∪f Y where Z = X×[0, 1],
A = X × {0} and f is g composed with the obvious identification X × {0} ∼= X. Define its mapping cone to be
Cone(g) = Cyl(g)/∼, where ∼ is the smallest equivalence relation such that (x, 1) ∼ (x′, 1) for all x, x′ ∈ X.

(1) Draw a picture to show what is going on geometrically in these constructions.
(2) Construct an embedding Y → Cone(g) and a projection Cone(g) → ΣX, where ΣX is the suspension of X,
defined to be X × [0, 1]/∼, where ∼ is the smallest equivalence relation such that (x, 1) ∼ (x′, 1) and (x, 0) ∼ (x′, 0)
for all x, x′ ∈ X.
(3) Show that Cyl(g) is homotopy equivalent to Y .
(We will see later in the course that these constructions yield those of the previous exercise after applying the
singular chain functor.)

(4) Now let A ⊆ X be a closed subspace for which there exists an open neighbourhood U ⊇ A that deformation
retracts onto A. Let f, g : A → Y be two continuous maps which are homotopic. Prove that X ∪f Y and X ∪g Y
are homotopy equivalent. Thus the operations Cyl(−) and Cone(−) are homotopy invariant.
(5) Thus show that the following two spaces are contractible:

(Hint: realise each of them as D2 ∪f S1 for some map f : ∂D2 → S1, and consider the degree of this map.)
The left-hand space above is often called the “dunce cap”. There are many generalised dunce caps like the right-
hand space above – each of them is the quotient of a polygon with an odd number of sides, which are all identified
with certain choices of orientations.
(6) Using a similar trick to above, show that the following two spaces each have fundamental group isomorphic to
Z, and draw a generator in each case:
(Note: in the left-hand space on the next page, in addition to the depicted identifications of edges, we also identify
all four (not just two) vertices to a single point.)
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Exercise 8.4 (Mapping tori of chain complexes.)
Let R be a ring, C a chain complex of R-modules and f : C → C be a chain map from C to itself. We can
formally adjoin an invertible indeterminate t to C to obtain a chain complex C̄ of R[t±1]-modules by first setting
C̄n = Cn ⊗R R[t±1] and then defining ∂̄ to be ∂ extended by linearity in t (more formally: ∂̄ = ∂ ⊗ id, where id
is the identity map R[t±1] → R[t±1]). Here, R[t±1] is the ring of Laurent polynomials in t with coefficients in R,
or, equivalently, the group-ring R[Z] of the group Z with coefficients in R. The chain map f extends by linearity
in t to a chain map f̄ : C̄ → C̄. There is also a canonical chain map t : C̄ → C̄ where each tn : C̄n → C̄n is just
multiplication by t. Define:

Torus(f) = Cone(f̄ − t).

(1) Describe this explicitly in terms of the Cn, ∂C and fn.
(2) Suppose that we have a commutative square

C C

D D

f

g

α α

Define a chain map (α, α)] : Torus(f) → Torus(g) and show that your construction satisfies the two functoriality
properties (id, id)] = id and (α, α)] ◦ (α′, α′)] = (α ◦ α′, α ◦ α′)].
(3) Show that, for any chain map f : C → C, the chain map (f, f)] : Torus(f) → Torus(f) induces isomorphisms
on all homology groups.
(Hint: construct a chain homotopy from (f, f)] to the “multiplication by t” chain map from Torus(f) to itself.
Then show that this “multiplication by t” chain map induces isomorphisms on all homology groups and use the
homotopy-invariance property of homology to deduce that the same is true for (f, f)].)
(4) Deduce that, for chain maps f : C → D and g : D → C, the chain complexes Torus(f ◦ g) and Torus(g ◦ f) have
the same homology groups.
(Hint: consider the chain maps (f ◦ g, f ◦ g)] and (g ◦ f, g ◦ f)].)

From Singular homology groups and homotopy groups of finite topological spaces by M. C. McCord (1966). In his
notation, Σ2 is the 6-point space considered in Exercise 8.5(c) on the next page. Thus you have a strong hint as to
what the homology of that space “should” be!
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Exercise 8.5 (Finite topological spaces.)
(a) There are three topological spaces X having exactly two points. In each case, compute the singular chain
complex S•(X) and the homology Hn(X) for all n.
(b) Consider the 4-point topological space {a, b, c, d} whose topology is generated by the base

{a}; {b}; {a, b, c}; {a, b, d}

and calculate its homology.
(c)* Do the same for the 6-point space {a, b, c, d, e, f} whose topology is generated by the base

{a}; {b}; {a, b, c}; {a, b, d}; {a, b, c, d, e}; {a, b, c, d, f}.

(d)* In general, there is a (2n+ 2)-point space {a1, b1, . . . , an+1, bn+1} whose topology is generated by the base

{a1}; {b1}; {a1, b1, a2}; {a1, b1, b2}; . . . . . . ; {a1, b1, . . . , an, bn, an+1}; {a1, b1, . . . , an, bn, bn+1}.

Make a conjecture about its homology, and about which (more familiar!) space it is homotopy equivalent to.
(e)** Prove your conjecture.

Exercise 8.6* (A chain complex of chain maps.)
Let C and D be chain complexes of R-modules. We define a chain map of degree d to be a collection f = {fn}n∈Z
of homomorphisms of R-modules fn : Cn → Dn+d such that ∂Dn+d ◦ fn = fn−1 ◦ ∂Cn for all n. We define a pre-chain
map of degree d to be simply a collection f = {fn}n∈Z of homomorphisms fn : Cn → Dn+d, with no condition.
(1) Show that the set of all pre-chain maps of a fixed degree d forms an R-module, denoted PreChaind(C,D).
(2) Given f = {fn} ∈ PreChaind(C,D), show that the formula

(df)n = ∂Dn+d ◦ fn − (−1)dfn−1 ◦ ∂Cn

defines a pre-chain map df ∈ PreChaind−1(C,D).
(3) Show that ddf = 0, and hence that PreChain•(C,D) is a chain complex.
(4) Prove that there is a natural isomorphism between H0(PreChain•(C,D)) and the set of chain-homotopy-classes
of chain maps (of degree 0) from C to D. (Hint: first note that Z0(PreChain•(C,D)) is naturally isomorphic to the
set of chain maps of degree 0.)
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