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§ 8, — Hoxorogrus.

Considérons une variété V i p dimensions; soit maintenant W une
variété i g dimensions (¢ p) faisant partie de V. Supposons que la
frontitre complete de W se compose de % variétés continues & g—1
dimensions

Voo Py oo By

Nouvs exprimerons ce fuit par la notation
¢,y L0,
Plus généralement la notation
koo, 4=keogenho, kv,

ol les 4 sont des entiers et les ¢ des variétés & ¢ — 1 dimensions, signi-
fiera cu'il existe une variété W a g dimensions faisant partie de V et donl
Ia frontiére compléte se composera de &, variétés pea différentes de v, de
k, variérés pen différentes de v,, de &, variétés peu différentes de la va-
riété opposee a v, et de &, variétés peu différentes de la variété opposée
ay,.

Les relations de cette forme poucront s’appeler des homologies.

The birth of homology, from Analysis Situs, H. Poincaré (1895).

Exercise 8.1 (The five-lemma.)
Prove the famous five-lemma. Let R be a ring and suppose we have the following diagram of modules over R:

A B C D E
A B’ c’ D’ E'

Assume that this diagram is commutative and that the two horizontal rows of homomorphisms are exact. Moreover,
assume that « is surjective, 8 and § are bijective and ¢ is injective. Prove that 7 is bijective.

Application: let ¢: B — B’ be a homomorphism of R-modules taking a submodule A C B to a submodule A" C B,
so that we have restricted and induced homomorphisms ¢|4: A — A" and ¢: B/A — B'/A’. If ¢|4 and ¢ are both
isomorphisms then so is ¢.

Exercise 8.2 (Mapping cones and mapping cylinders of chain complexes.)

Let A and B be chain complexes with differential 04 resp. dp and let f: A — B be a chain map.

(i) Define a new chain complex Cone(f) by Cone(f), = A,—1 ® B, and setting its differential 9: 4,,_1 & B, —
A,_o® B,_1 to be the sum of the four maps

8,4: An,1 — An,Q 83: B, — B,_1 0: B, — An,Q (—1)n.fn,12 An,1 — anl,



or as a formula
d(a,b) := (0a(a),(—1)".fr—1(a) + IB(D)).

(1) Prove that this is indeed a chain complex.
(2) Construct chain maps B — Cone(f) and Cone(f) — A[1], where A[1] simply means the chain complex A with
the modified grading A[1],, = A,,—1, and show that you have constructed a short exact sequence

0 — B — Cone(f) — A[1] — 0.

(ii) Now define a chain complex Cyl(f) by Cyl(f)n, = An—1 ® B,, ® A,, with differential 9: Cyl(f),, = Cyl(f)n-1
given in block form by the matrix
oa 0 0
(=1)"for 85 O
(—)™lid 0 a9,

(3) Prove that this is a chain complex.
(4) Construct a chain homotopy equivalence Cyl(f) ~ B.

Exercise 8.3 (Cones of continuous maps and dunce caps.)

Let Z be a space with subspace A C Z and let f: A — Y be a continuous map. Recall (cf. Exercise 5.6) that the
space Z Uy Y is defined to be the quotient of the disjoint union Z LY by the smallest equivalence relation ~ such
that a ~ f(a) for all a € A.

Now let g: X — Y be a continuous map and define its mapping cylinder to be Cyl(g) = ZU;Y where Z = X x [0, 1],
A =X x {0} and f is g composed with the obvious identification X x {0} = X. Define its mapping cone to be
Cone(g) = Cyl(g)/~, where ~ is the smallest equivalence relation such that (x,1) ~ (2/,1) for all 2,2’ € X.

(1) Draw a picture to show what is going on geometrically in these constructions.

(2) Construct an embedding Y — Cone(g) and a projection Cone(g) — XX, where XX is the suspension of X,
defined to be X x [0,1]/~, where ~ is the smallest equivalence relation such that (z,1) ~ (2/,1) and (z,0) ~ (2/,0)
for all z, 2’ € X.

(3) Show that Cyl(g) is homotopy equivalent to Y.

(We will see later in the course that these constructions yield those of the previous exercise after applying the
singular chain functor.)

(4) Now let A C X be a closed subspace for which there exists an open neighbourhood U 2 A that deformation
retracts onto A. Let f,g: A — Y be two continuous maps which are homotopic. Prove that X U; Y and X Uy Y
are homotopy equivalent. Thus the operations Cyl(—) and Cone(—) are homotopy invariant.

(5) Thus show that the following two spaces are contractible:

(Hint: realise each of them as D? Uy S* for some map f: dD? — S!, and consider the degree of this map.)

The left-hand space above is often called the “dunce cap”. There are many generalised dunce caps like the right-
hand space above — each of them is the quotient of a polygon with an odd number of sides, which are all identified
with certain choices of orientations.

(6) Using a similar trick to above, show that the following two spaces each have fundamental group isomorphic to
Z, and draw a generator in each case:

(Note: in the left-hand space on the next page, in addition to the depicted identifications of edges, we also identify
all four (not just two) vertices to a single point.)
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Exercise 8.4 (Mapping tori of chain complexes.)

Let R be a ring, C a chain complex of R-modules and f: C — C' be a chain map from C to itself. We can
formally adjoin an invertible indeterminate ¢ to C to obtain a chain complex C of R[t*!]-modules by first setting
C, = C, ®r R[t*'] and then defining d to be 0 extended by linearity in ¢ (more formally: 9 = 9 ® id, where id
is the identity map R[t*1] — R[t*!]). Here, R[tT!] is the ring of Laurent polynomials in t with coefficients in R,
or, equivalently, the group-ring R[Z] of the group Z with coefficients in R. The chain map f extends by linearity
in t to a chain map f: C — C. There is also a canonical chain map ¢t: C — C where each t,,: C,, — C,, is just
multiplication by ¢. Define:

Torus(f) = Cone(f —t).

(1) Describe this explicitly in terms of the C,,, Oc and f,.
(2) Suppose that we have a commutative square

f

4)D

Define a chain map («, o)y: Torus(f) — Torus(g) and show that your construction satisfies the two functoriality
properties (id,id); = id and (o, @)y o (¢/, /)y = (a0, v 0 o).

(3) Show that, for any chain map f: C' — C, the chain map (f, f)y: Torus(f) — Torus(f) induces isomorphisms
on all homology groups.

(Hint: construct a chain homotopy from (f, f); to the “multiplication by ¢” chain map from Torus(f) to itself.
Then show that this “multiplication by ¢” chain map induces isomorphisms on all homology groups and use the
homotopy-invariance property of homology to deduce that the same is true for (f, f).)

(4) Deduce that, for chain maps f: C — D and g: D — C, the chain complexes Torus(f o g) and Torus(g o f) have
the same homology groups.

(Hint: consider the chain maps (fog, fog)y and (go f,g0 f)y.)

The 6-point space =* “would be homeomorphic to a 2-sphere if it were only
Hausdorff.” More precisely, consider the following conditions on a topological
space X : (1) The complement of each point in X s acyclic (in singular homology);
(2) H,(X) # 0. We have seen that the T, space = satisfies these two conditions.
However, simply by adding the extra condition (3) X 18 Hausdor[ff, one can con-
clude that X is homeomorphic to the 2-sphere. (See [5].)

From Singular homology groups and homotopy groups of finite topological spaces by M. C. McCord (1966). In his
notation, 32 is the 6-point space considered in Exercise 8.5(c) on the next page. Thus you have a strong hint as to
what the homology of that space “should” be!



Exercise 8.5 (Finite topological spaces.)

(a) There are three topological spaces X having exactly two points. In each case, compute the singular chain
complex Se¢(X) and the homology H,(X) for all n.

(b) Consider the 4-point topological space {a, b, ¢, d} whose topology is generated by the base

{a}; {b};{a,b,c};{a,b,d}

and calculate its homology.
(¢)* Do the same for the 6-point space {a,b,c,d, e, f} whose topology is generated by the base

{a}; {b};{a,b,c};{a,b,d};{a,b,c,d,e};{a, b, c.d, f}.
(d)* In general, there is a (2n + 2)-point space {a1,b1,...,ant1,bnt1} Whose topology is generated by the base
{al}; {bl}a {ala blv a2}; {al, bl» b2}7 """ ; {alv blv ceey O, bna an+1}; {ala blv ceey O, bnv bn+1}'

Make a conjecture about its homology, and about which (more familiar!) space it is homotopy equivalent to.
(e)** Prove your conjecture.

Exercise 8.6* (A chain complex of chain maps.)

Let C and D be chain complexes of R-modules. We define a chain map of degree d to be a collection f = {f,}nez
of homomorphisms of R-modules f,: C,, — D, 14 such that 87? rq©fn=fn-10 8,(5 for all n. We define a pre-chain
map of degree d to be simply a collection f = {f, }nez of homomorphisms f,: C,, = Dp44, with no condition.

(1) Show that the set of all pre-chain maps of a fixed degree d forms an R-module, denoted PreChaing(C, D).

(2) Given f = {f,} € PreChaing(C, D), show that the formula

(df)n = 0L, g0 fu— (1) fro100S

defines a pre-chain map df € PreChaing_1(C, D).

(3) Show that ddf = 0, and hence that PreChaine (C, D) is a chain complex.

(4) Prove that there is a natural isomorphism between Hy(PreChaine (C, D)) and the set of chain-homotopy-classes
of chain maps (of degree 0) from C to D. (Hint: first note that Zy(PreChaine (C, D)) is naturally isomorphic to the
set of chain maps of degree 0.)



