Aufgaben zur Topologie

Prof. Dr. C.-F. Bödigheimer
Wintersemester 2016/17

Week 8 - Homological algebra and homotopy invariance of homology

§3. - Homologies.
Considérons une variété V à p dimensions; soit maintenant W unc
variété à q dimensions $\left(q_{-}^{<} p\right)$ faisant partie de V. Supposons que la
frontière complète de W se compose de λ variétés continues à $q-1$
dimensions
$\varphi_{1}, \quad v_{2}, \ldots, v_{1}$.
Nous exprimerons ce fait par la notation
$v_{1}+r_{2}+\ldots+v_{2} \sim 0$.
Plus généralement la notation
$k_{1} v_{1}+k_{2} v_{2} \leadsto k_{1} v_{2}+k_{4} v_{4}$,
ou les k sont des entiers et les φ des variétés à $q-\mathrm{t}$ dimensions, signi-
fiera qu'il existe une variété W à q dimensions faisant partie de V et dont
la frontière complète se composera de k_{1} variétés peu différentes de v_{1}, de
k_{2} variétés pen différentes de v_{2}, de k_{3} variétés peu différentes de la va-
riété opposée à v_{3} et de k_{4} variétés peu différentes de la variété opposée
à v_{4}.
Les relations de cette forme pourront s'appeler des homologies.

The birth of homology, from Analysis Situs, H. Poincaré (1895).

Exercise 8.1 (The five-lemma.)
Prove the famous five-lemma. Let R be a ring and suppose we have the following diagram of modules over R :

Assume that this diagram is commutative and that the two horizontal rows of homomorphisms are exact. Moreover, assume that α is surjective, β and δ are bijective and ε is injective. Prove that γ is bijective.

Application: let $\phi: B \rightarrow B^{\prime}$ be a homomorphism of R-modules taking a submodule $A \subseteq B$ to a submodule $A^{\prime} \subseteq B^{\prime}$, so that we have restricted and induced homomorphisms $\left.\phi\right|_{A}: A \rightarrow A^{\prime}$ and $\bar{\phi}: B / A \rightarrow B^{\prime} / A^{\prime}$. If $\left.\phi\right|_{A}$ and $\bar{\phi}$ are both isomorphisms then so is ϕ.

Exercise 8.2 (Mapping cones and mapping cylinders of chain complexes.)
Let A and B be chain complexes with differential ∂_{A} resp. ∂_{B} and let $f: A \rightarrow B$ be a chain map.
(i) Define a new chain complex Cone (f) by $\operatorname{Cone}(f)_{n}=A_{n-1} \oplus B_{n}$ and setting its differential $\partial: A_{n-1} \oplus B_{n} \rightarrow$ $A_{n-2} \oplus B_{n-1}$ to be the sum of the four maps

$$
\partial_{A}: A_{n-1} \rightarrow A_{n-2} \quad \partial_{B}: B_{n} \rightarrow B_{n-1} \quad 0: B_{n} \rightarrow A_{n-2} \quad(-1)^{n} \cdot f_{n-1}: A_{n-1} \rightarrow B_{n-1},
$$

or as a formula

$$
\partial(a, b):=\left(\partial_{A}(a),(-1)^{n} \cdot f_{n-1}(a)+\partial_{B}(b)\right) .
$$

(1) Prove that this is indeed a chain complex.
(2) Construct chain maps $B \rightarrow \operatorname{Cone}(f)$ and $\operatorname{Cone}(f) \rightarrow A[1]$, where $A[1]$ simply means the chain complex A with the modified grading $A[1]_{n}=A_{n-1}$, and show that you have constructed a short exact sequence

$$
0 \rightarrow B \longrightarrow \operatorname{Cone}(f) \longrightarrow A[1] \rightarrow 0
$$

(ii) Now define a chain complex $\operatorname{Cyl}(f)$ by $\operatorname{Cyl}(f)_{n}=A_{n-1} \oplus B_{n} \oplus A_{n}$ with differential $\partial: \operatorname{Cyl}(f)_{n} \rightarrow \operatorname{Cyl}(f)_{n-1}$ given in block form by the matrix

$$
\left(\begin{array}{ccc}
\partial_{A} & 0 & 0 \\
(-1)^{n} \cdot f_{n-1} & \partial_{B} & 0 \\
(-1)^{n} . \mathrm{id} & 0 & \partial_{A}
\end{array}\right)
$$

(3) Prove that this is a chain complex.
(4) Construct a chain homotopy equivalence $\operatorname{Cyl}(f) \simeq B$.

Exercise 8.3 (Cones of continuous maps and dunce caps.)
Let Z be a space with subspace $A \subseteq Z$ and let $f: A \rightarrow Y$ be a continuous map. Recall (cf. Exercise 5.6) that the space $Z \cup_{f} Y$ is defined to be the quotient of the disjoint union $Z \sqcup Y$ by the smallest equivalence relation \sim such that $a \sim f(a)$ for all $a \in A$.
Now let $g: X \rightarrow Y$ be a continuous map and define its mapping cylinder to be $\operatorname{Cyl}(g)=Z \cup_{f} Y$ where $Z=X \times[0,1]$, $A=X \times\{0\}$ and f is g composed with the obvious identification $X \times\{0\} \cong X$. Define its mapping cone to be $\operatorname{Cone}(g)=\operatorname{Cyl}(g) / \sim$, where \sim is the smallest equivalence relation such that $(x, 1) \sim\left(x^{\prime}, 1\right)$ for all $x, x^{\prime} \in X$.
(1) Draw a picture to show what is going on geometrically in these constructions.
(2) Construct an embedding $Y \rightarrow$ Cone (g) and a projection Cone $(g) \rightarrow \Sigma X$, where ΣX is the suspension of X, defined to be $X \times[0,1] / \sim$, where \sim is the smallest equivalence relation such that $(x, 1) \sim\left(x^{\prime}, 1\right)$ and $(x, 0) \sim\left(x^{\prime}, 0\right)$ for all $x, x^{\prime} \in X$.
(3) Show that $\operatorname{Cyl}(g)$ is homotopy equivalent to Y.
(We will see later in the course that these constructions yield those of the previous exercise after applying the singular chain functor.)
(4) Now let $A \subseteq X$ be a closed subspace for which there exists an open neighbourhood $U \supseteq A$ that deformation retracts onto A. Let $f, g: A \rightarrow Y$ be two continuous maps which are homotopic. Prove that $X \cup_{f} Y$ and $X \cup_{g} Y$ are homotopy equivalent. Thus the operations $\operatorname{Cyl}(-)$ and $\operatorname{Cone}(-)$ are homotopy invariant.
(5) Thus show that the following two spaces are contractible:

(Hint: realise each of them as $\mathbb{D}^{2} \cup_{f} \mathbb{S}^{1}$ for some map $f: \partial \mathbb{D}^{2} \rightarrow \mathbb{S}^{1}$, and consider the degree of this map.)
The left-hand space above is often called the "dunce cap". There are many generalised dunce caps like the righthand space above - each of them is the quotient of a polygon with an odd number of sides, which are all identified with certain choices of orientations.
(6) Using a similar trick to above, show that the following two spaces each have fundamental group isomorphic to \mathbb{Z}, and draw a generator in each case:

Exercise 8.4 (Mapping tori of chain complexes.)
Let R be a ring, C a chain complex of R-modules and $f: C \rightarrow C$ be a chain map from C to itself. We can formally adjoin an invertible indeterminate t to C to obtain a chain complex \bar{C} of $R\left[t^{ \pm 1}\right]$-modules by first setting $\bar{C}_{n}=C_{n} \otimes_{R} R\left[t^{ \pm 1}\right]$ and then defining $\bar{\partial}$ to be ∂ extended by linearity in t (more formally: $\bar{\partial}=\partial \otimes \mathrm{id}$, where id is the identity map $\left.R\left[t^{ \pm 1}\right] \rightarrow R\left[t^{ \pm 1}\right]\right)$. Here, $R\left[t^{ \pm 1}\right]$ is the ring of Laurent polynomials in t with coefficients in R, or, equivalently, the group-ring $R[\mathbb{Z}]$ of the group \mathbb{Z} with coefficients in R. The chain map f extends by linearity in t to a chain map $\bar{f}: \bar{C} \rightarrow \bar{C}$. There is also a canonical chain map $t: \bar{C} \rightarrow \bar{C}$ where each $t_{n}: \bar{C}_{n} \rightarrow \bar{C}_{n}$ is just multiplication by t. Define:

$$
\operatorname{Torus}(f)=\operatorname{Cone}(\bar{f}-t)
$$

(1) Describe this explicitly in terms of the C_{n}, ∂_{C} and f_{n}.
(2) Suppose that we have a commutative square

Define a chain map $(\alpha, \beta)_{\sharp}: \operatorname{Torus}(f) \rightarrow \operatorname{Torus}(g)$ and show that your construction satisfies the two functoriality properties $(\mathrm{id}, \mathrm{id})_{\sharp}=\mathrm{id}$ and $(\alpha, \beta)_{\sharp} \circ\left(\alpha^{\prime}, \beta^{\prime}\right)_{\sharp}=\left(\alpha \circ \alpha^{\prime}, \beta \circ \beta^{\prime}\right)_{\sharp}$.
(3) Show that, for any chain map $f: C \rightarrow C$, the chain map $(f, f)_{\sharp}$: $\operatorname{Torus}(f) \rightarrow \operatorname{Torus}(f)$ induces isomorphisms on all homology groups.
(Hint: construct a chain homotopy from $(f, f)_{\sharp}$ to the "multiplication by t " chain map from Torus (f) to itself. Then show that this "multiplication by t " chain map induces isomorphisms on all homology groups and use the homotopy-invariance property of homology to deduce that the same is true for $(f, f)_{\sharp}$.)
(4) Deduce that, for chain maps $f: C \rightarrow D$ and $g: D \rightarrow C$, the chain complexes Torus $(f \circ g)$ and Torus $(g \circ f)$ have the same homology groups.
(Hint: consider the chain maps $(f \circ g, f \circ g)_{\sharp}$ and $\left.(g \circ f, g \circ f)_{\sharp}.\right)$

> The 6-point space Σ^{2} "would be homeomorphic to a 2-sphere if it were only Hausdorff" More precisely, consider the following conditionson a topological space $X:(1)$ The complement of each point in X is acyclic (in singular homology); (2) $H_{2}(X) \neq 0$. We have seen that the T_{o} space Σ^{2} satisfies these two conditions. However, simply by adding the extra condition (3) X is Hausdorff, one can conclude that X is homeomorphic to the 2 -sphere. (See [5].)

From Singular homology groups and homotopy groups of finite topological spaces by M. C. McCord (1966). In his notation, Σ^{2} is the 6 -point space considered in Exercise $8.5(\mathrm{c})$ on the next page. Thus you have a strong hint as to what the homology of that space "should" be!

Exercise 8.5 (Finite topological spaces.)
(a) There are three topological spaces X having exactly two points. In each case, compute the singular chain complex $S_{\bullet}(X)$ and the homology $H_{n}(X)$ for all n.
(b) Consider the 4-point topological space $\{a, b, c, d\}$ whose topology is generated by the base

$$
\{a\} ;\{b\} ;\{a, b, c\} ;\{a, b, d\}
$$

and calculate its homology.
$(c)^{*}$ Do the same for the 6 -point space $\{a, b, c, d, e, f\}$ whose topology is generated by the base

$$
\{a\} ;\{b\} ;\{a, b, c\} ;\{a, b, d\} ;\{a, b, c, d, e\} ;\{a, b, c, d, f\}
$$

(d)* In general, there is a $(2 n+2)$-point space $\left\{a_{1}, b_{1}, \ldots, a_{n+1}, b_{n+1}\right\}$ whose topology is generated by the base

$$
\left\{a_{1}\right\} ;\left\{b_{1}\right\} ;\left\{a_{1}, b_{1}, a_{2}\right\} ;\left\{a_{1}, b_{1}, b_{2}\right\} ; \ldots \ldots ;\left\{a_{1}, b_{1}, \ldots, a_{n}, b_{n}, a_{n+1}\right\} ;\left\{a_{1}, b_{1}, \ldots, a_{n}, b_{n}, b_{n+1}\right\}
$$

Make a conjecture about its homology, and about which (more familiar!) space it is homotopy equivalent to. $(\mathrm{e})^{* *}$ Prove your conjecture.

Exercise 8.6* (A chain complex of chain maps.)
Let C and D be chain complexes of R-modules. We define a chain map of degree d to be a collection $f=\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ of homomorphisms of R-modules $f_{n}: C_{n} \rightarrow D_{n+d}$ such that $\partial_{n+d}^{D} \circ f_{n}=f_{n-1} \circ \partial_{n}^{C}$ for all n. We define a pre-chain map of degree d to be simply a collection $f=\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ of homomorphisms $f_{n}: C_{n} \rightarrow D_{n+d}$, with no condition.
(1) Show that the set of all pre-chain maps of a fixed degree d forms an R-module, denoted $\operatorname{PreChain}_{d}(C, D)$.
(2) Given $f=\left\{f_{n}\right\} \in \operatorname{PreChain}_{d}(C, D)$, show that the formula

$$
(d f)_{n}=\partial_{n+d}^{D} \circ f_{n}-(-1)^{d} f_{n-1} \circ \partial_{n}^{C}
$$

defines a pre-chain map $d f \in \operatorname{PreChain}_{d-1}(C, D)$.
(3) Show that $d d f=0$, and hence that PreChain• (C, D) is a chain complex.
(4) Prove that there is a natural isomorphism between $H_{0}(\operatorname{PreChain} \bullet(C, D))$ and the set of chain-homotopy-classes of chain maps (of degree 0) from C to D. (Hint: first note that $Z_{0}\left(\operatorname{PreChain}_{\bullet}(C, D)\right.$) is naturally isomorphic to the set of chain maps of degree 0 .)

