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Week 6 — Fundamental groups and first homology groups Due: 7. December 2016

Exercise 6.1 (Gradients, rotation and divergence: grad, rot and div.)
(1) Let X be an open subset of R2 and define real vector spaces as follows.
◦ C0 = C∞(X), the space of smooth real-valued functions on X.
◦ C−1 = C∞(X)×C∞(X), to be thought of as the space of smooth vector fields v = (v1, v2) on X, in coordinates.
◦ C−2 = C∞(X), to be thought of as the space of volume forms on X.
There are linear maps grad: C0 → C−1 and rot : C−1 → C−2 defined by grad(f) = (∂f∂x ,

∂f
∂y ) and rot(v1, v2) =

∂v2
∂x −

∂v1
∂y .

(a) Show (using vector calculus) that this is a chain complex (over the field R), where all undefined chain modules
are 0.
(b) For arbitrary X, find the dimension of H0(C•), i.e., the kernel of grad.
(c) When X is not simply-connected, give an example of a vector field that has zero rotation, but is not the gradient
of any smooth function on X, thus showing that the homology group H−1(C•) is non-trivial in this case.

(2) Now let X be an open subset of R3 and define real vector spaces as follows.
◦ C0 = C∞(X).
◦ C−1 = C∞(X)× C∞(X)× C∞(X).
◦ C−2 = C∞(X)× C∞(X)× C∞(X).
◦ C−3 = C∞(X).
(a) Recall the definitions of the linear operators grad: C0 → C−1, rot : C−1 → C−2 and div : C−2 → C−3 in this
setting, and show that these form a chain complex.
(b) As above, compute the dimension of H0(C•).
(c) Show that the homology group H−1(C•) is non-trivial when X is not simply-connected by finding a vector field
with zero rotation and which is not the gradient of any smooth function on X.
(d)* Find an X such that H−2(C•) is non-trivial, i.e., we need a vector field defined on X with zero divergence and
which is not the rotation of any other vector field on X. (A first case to consider is X = R3 − {(0, 0, 0)}.)

Exercise 6.2 (Induced maps on π1 and the abelianisation of π1.)
Recall: If f : S1 → S1 is a map of degree k, then the induced map π1(f) : π1(S1, 1)→ π1(S1, 1) is the multiplication
by k in Z.
(1) Consider the following map Ta : S1 × S1 → S1 × S1, called the Dehn twist along the curve a.

The loop a is taken to itself, whereas the loop b is taken to the diagonal loop c pictured on the right-hand side. In
general, each vertical loop on the left-hand side is skewed to the right as it travels upwards, so that it becomes one
of the 45-degree diagonal loops on the right-hand side.
Describe the induced homomorphism π1(Ta) on the fundamental group π1(S1 × S1) = Z× Z.
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(2) Dehn twists may be defined more generally for surfaces. Given a piece of a surface, homeomorphic to a cylinder,
one may define the Dehn twist Ta along a as follows:

(it acts by the identity outside of the shaded region). Taking a to be one of the standard generators for the funda-
mental group of F2 (recall this from lectures), describe the induced homomorphism π1(Ta) : π1(F2)→ π1(F2).

A result that will soon appear in lectures is the fact that the first homology H1(X) of a path-connected space X is
isomorphic to the abelianisation of its fundamental group π1(X,x) based at any point x ∈ X.
(3)* Using the computations of the fundamental groups of orientable and non-orientable surfaces from the lecture,
compute their first homology groups.
(4)* Let Fg,n be the orientable surface of genus g with n > 0 points removed. Compute its fundamental group und
its first homology group. (Hint: Write Fg,n “in normal form”, that means as a quotient space of a regular 4g-gon;
draw n − 1 extra (not necessarily straight) edges from one corner to another or the same corner; now remove in
each of the n “compartments” one interior point; find a retraction onto the subspace which consists of the 4g edges
on the boundary and the n− 1 extra edges.)

Exercise 6.3 (Nullhomotopies and nullhomologies.)
Consider the following three curves on the surface F3.

(a) Observe that the curve A is nullhomotopic.
(b) Construct a 2-chain whose boundary is equal to the 1-cycle represented by the curve B. Thus, B is nullhomol-
ogous. (Write F3 in normal form as above and use the obvious triangulation.)
(c)* However, B is not nullhomotopic (show this using your knowledge of π1(F3) ; this is harder than one expects).
(d)* Show that the curve C is neither nullhomotopic nor nullhomologous. (Consider the commutator subgroup of
π1(F3), which also gives an alternative way to deduce that B is nullhomologous.)

Exercise 6.4 (Disjoint unions of spaces.)
Let X be a topological space which splits as the topological disjoint union of subspaces X =

⊔
αXα. Show that

the singular chain complex S•(X) of X splits into a direct sum of summands indexed by α, and that the boundary
operator ∂ preserves the summands. Deduce that the subcomplexes of cycles and of boundaries also split with
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respect to α, and therefore so does the homology of X, in other words we have, for each n,

Hn

(⊔
α

Xα

)
∼=
⊕
α

Hn(Xα).

Exercise 6.5 (Coverings and H1.)
Let ξ : X̃ → X be a covering. Recall from the lecture that the map of fundamental groups π1(ξ) : π1(X̃, x̃) →
π1(X,x) is injective. Consider the covering

of X = S1 ∨ S1.
(a) Show that H1(X̃) ∼= Z3, whereas H1(X) ∼= Z2.
(b) Compute the homomorphism π1(ξ) of fundamental groups induced by ξ, then abelianise this to compute the
homomorphism H1(ξ) that it induces on first homology. Deduce that coverings do not always induce injective maps
on homology.

Exercise 6.6* (Multi-valued functions: integrating on non-simply-connected domains.)
Let Ω ⊂ C be a region (i.e., open and connected) and z0 ∈ Ω, and consider a holomorphic function f : Ω → C; we
assume that f ′(z) 6= 0 for all z ∈ Ω.
We would like to define a new function

z 7→
∫
w

f(ζ)dζ :=

∫ 1

0

f(w(t))ẇ(t)dt,

where w is a path in Ω from z0 to z; but this path integral depends on the path w and not just on its endpoint
w(1) = z; so we would get a multi-valued function. However, — since f is holomorphic —, it depends only on the
homotopy class [w], not on the actual path. This is our chance: If ξ : Ω̃ → Ω denotes the universal covering of Ω,
we define a function

F̃ : Ω̃→ C, F̃ ([w], z) :=

∫
w

f(ζ)dζ =

∫ 1

0

f(w(t))ẇ(t)dt.

(1) F̃ is well-defined.
(2) F̃ is holomorphic. (N.B: Ω̃ is a holomorphic manifold, or a Riemann surface; cf. Exercise 3.2.)
(3) Now define the period homomorphism Perf : π1(Ω, z0)→ C as follows:

Perf ([w]) =

∫
w

f(ζ)dζ.
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Convince yourself of the formulae:
Perf (αβ) = Perf (α) + Perf (β), Perf (α−1) = −Perf (α), Perf (1) = 0, which say that Perf is a homomorphism.

There are more formulae like:
Perf+g(α) = Perf (α) + Perg(α), Perλf (α) = λPerf (α), Perf (α) = Perf (α), which say what ?

Next conclude, that the kernel K := ker(Perf ) 6 π1(Ω, z0) of Perf contains at least the commutator subgroup of

π1(Ω, z0). Now let ξf : Ωf → Ω be the covering corresponding to that subgroup K, i.e., the quotient of Ω̃ by the
action of K by deck transformations. Denote this quotient map by qf .
Show that

F̃ ([a ∗ w], z) = F̃ ([w], z) + Perf ([a]),

where a is a closed loop based at z0 and w is any path from z0 to z. Conclude that F̃ factors as the composite of
qf followed by a well-defined map F : Ωf → C. Summarising, we have the diagram:

Ω̃

Ω

Ωf Cξ
qf

ξf

F̃

F

Thus we have found the natural domain of (well -)definition of the multi-valued function z 7→
∫ z
z0
f .

(5) Examples.
In each example, describe π1(Ω, z0), compute the period homomorphism and describe the covering ξf : Ωf → Ω and
the function F .
(5.1) : Take Ω = C− {0} and f(z) = 1

z .
(5.2) : Take Ω = C− {−1, 1} and f(z) = 1

1+z + 1
1−z .

(5.3) : Take Ω = C− {−1, 1} and f(z) = a
1+z + b

1−z , for integers a, b ∈ Z.

(5.4) : Take Ω = C− {−1, 1} and f(z) = 1
1+z + π

1−z .
In the last three examples, feel free to build a model of the covering Ωf as demonstrated in lectures.

The Seifert-van-Kampen Theorem, from Lehrbuch der Topologie, H. Seifert and W. Threlfall.
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