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Exercise 3.1 (Local properties of covering spaces)
A map f : Y → X is a local homeomorphism if, for each y ∈ Y , there exists an open neighbourhood U of y such
that f(U) is open in X and the restriction f |U : U → f(U) of f to U is a homeomorphism. Suppose that f : Y → X
is a local homeomorphism. Show for each of the following properties that if X has this property, then so does Y .
(a) locally connected,
(b) locally path-connected,
(c) locally compact.
Now let ξ : X̃ → X be a covering.
(d) Show that ξ is a local homeomorphism.
Show for each of the following properties that if X has this property, so does X̃.
(e) Hausdorff,
(f) compact, if – in addition – the fibre is finite.

Exercise 3.2 (A covering space of a manifold is a manifold.)
Let ξ : M̃ →M is a covering with finite or countable fibre. If M is a (differentiable, Cr, smooth, holomorphic, ... )
manifold, then so is M̃ . If M is orientable, then so is M̃ (however, the reverse implication does not hold).

Universal cover of the figure-eight space S1 ∨ S1

Exercise 3.3 (Properly discontinuous group actions)
Let the discrete group G act on a space Y and denote the action by (g, y) 7→ g � y. The action is said to be properly
discontinuous, if for each y ∈ Y there is a neighbourhood U , such that (g � U) ∩ U = ∅ for all but finitely many
g ∈ G. If Y is Hausdorff and the action is free, then this is equivalent to the statement that, for each y ∈ Y , there
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is a neighbourhood U , such that (g � U) ∩ U = ∅ for all g ∈ G except the identity element. (Why is this true?)

(a) For a free and properly discontinuous action on a Hausdorff space Y , the quotient map ξ : Y → X := Y/G is a
covering with fibre G.
(b) Example: G = Z and Y = C− {0}; for the action fix a complex number λ 6= 0 and set n � z := λn z. For which
λ is this action free, for which is it properly discontinuous ? What is the quotient ?
(c) Example: Let G = Fr(2) = 〈x, y | 〉 denote the free (non-abelian) group on two letters x, y. The figure above
shows its Cayley graph C, which is a tree and which we regard as a subspace of the plane. The vertices are reduced
words w in the letters x, y (and their inverses) and we denote this vertex by (w); an edge between the vertices (w)
and (w′) we denote by (w,w′) and such an edge exists iff w−1 w′ is x or y or x−1 or y−1. Thus there is a vertex
for each group element, and there are four edges emanating from each vertex. C is contractible and thus simply-
connected. The right-action of G on C is described for a g ∈ G as follows: for a vertex we set (w) � g = (wg); for an
edge we set (w,w′) � g = (wg,w′g). Note that as a continuous map the action by g must dilate the lengths of the
edges. Show that the action is free and properly discontinuous. And show that the quotient C/G is the figure-eight
space S1 ∨ S1. Conclude π1(S1 ∨ S1) = Fr(2).

A properly discontinuous and free action on the hyperbolic plane H2. Each semicircle S in the picture (together with
a choice of orientation) defines an isometry of H2 given by translation parallel to S by an amount such that each
vertex on S is moved forwards by two steps, i.e., it is sent to the next-but-one vertex in the direction given by the
orientation. These hyperbolic translations generate a discrete subgroup G of the group Isom(H2) of all hyperbolic
isometries of H2, which acts properly discontinuously and freely. Image credit: Indra’s Pearls, David Mumford,
Caroline Series and David Wright.
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Exercise 3.4 (The pull-back of a covering is a covering.)
Let ξ : X̃ → X be a covering and f : Y → X be any map. The pull-back of ξ along f consists of the space
Ỹ = f∗(X̃) := {(y, x̃) ∈ Y × X̃ | f(y) = ξ(x̃)} (with the subspace topology of the product topology) together with
two maps ξ̃ = f∗(ξ) : Ỹ = f∗(X̃)→ Y , defined by (y, x̃) 7→ y and f̃ : Ỹ = f∗(X̃)→ X̃, defined by (y, x̃) 7→ x̃. Thus
we have a commutative square:

Ỹ = f∗(X̃)
f̃ //

ξ̃=f∗(ξ)

��

X̃

ξ

��
Y

f // X

(a) ξ̃ : Ỹ → Y is a covering with the same fibre as ξ.

(b) The following formulae hold, where g : Z → Y and f : Y → X:

(1) g∗(f∗(X̃)) = (f ◦ g)∗(X̃) and g∗(f∗(ξ)) = (f ◦ g)∗(ξ);

(2) id∗(X̃) = X̃ and id∗(ξ) = ξ.

(c) If ξ : S2 → RP2 is the antipodal projection and f : RP2 − {P} → RP2 the inclusion, then the pull-back ξ̃ is the
covering of the Möbius-band by a band.
(d) Let ξn : S1 → S1 denote the n-fold covering z 7→ zn. What is ξ∗n(ξm) ? And what is ξn ◦ ξm from Exc. 2.3 ?

Exercise 3.5 (Maps out of spaces with finite fundamental group)
Let X be a path-connected (locally path-connected) space with basepoint x0 such that π1(X,x0) is finite.
(a) Show that any continuous map X → S1 must be nullhomotopic.

(b) Using part (a), show that any continuous map X →
∏k S1 to a product of k copies of the circle S1 must be

nullhomotopic.
(c) Show that any continuous map X →

∨` S1 to a wedge of copies of ` copies of the circle S1 must be nullhomotopic.
(Use Exercise 3.3(c) when ` = 2. For larger values of ` you will need an appropriate generalisation of that exercise.)

Exercise 3.6* (The fundamental groupoid and fibre-transport)

A groupoid is a category in which every morphism is invertible. It earns its name from the following example. If
G is a discrete group, then it may be considered as a groupoid BG with one object • and with the morphism set
HomBG(•, •) = AutBG(•) equal to G. Another example that one may build from G is EG, which has one object for
each element of G, and exactly one morphism between any pair of objects (there is then only one possible way in
which composition may be defined).

If we imagine a category C (and therefore in particular a groupoid) as having a vertex for each object, an edge for
each morphism, a triangle for each pair (f, g) of morphisms such that source(f) = target(g), etc.. One should think
of f as a ’connection’ between two objects, materialized as an edge, g likewise as another edge and f ◦ g as a third
edge; and the fact that the third edge stands for the compostion f ◦g and not just for any morphisms, we materilaize
as a triangle — etc., etc.. The resulting space is called the classifying space BC of the category C. For C = EG this
space turns out to be a simplex of cardinality |G| (which may be infinite).

A third example, which may be built out of any topological space X, is the following. We take one object for each
point x ∈ X. A morphism from x to y is then defined to be a homotopy class of paths in X starting at x and ending
at y, where “homotopy” means homotopy of maps [0, 1] → X relative to {0, 1}. It is obvious, what the identity
morphisms are and what the composition of two morphisms is. The result is a groupoid (why ?), denoted Π(X).
(1) What is the group of automorphisms of the object x ∈ X ?

(2) Show that any continuous map f : X → Y induces a functor Π(f) : Π(X) → Π(Y ). We have Π(g ◦ f) =
Π(g)◦Π(f). Furthermore, if F : X×[0, 1]→ Y is a homotopy between the maps f0(x) = F (x, 0) und f1(x) = F (x, 1),
the F allows us to define a transformation from the functor Π(f0) to the functor Π(f1).
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Now let ξ : X̃ → X be a covering.
(3) Show that the unique path-lifting property allows us to define a “fibre-transport” functor

trans : Π(X) −→ Sym,

where Sym is the category of sets and bijections, such that a point x ∈ X, i.e., an object of Π(X), is taken to its
fibre ξ−1(x).
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